

Magic Software

AppBuilder
Version 3.2

System Components Reference Guide

Corporate Headquarters:

Magic Software Enterprises
5 Haplada Street,
Or Yehuda 60218, Israel
Tel +972 3 5389213
Fax +972 3 5389333

© 1992-2013 AppBuilder Solutions
All rights reserved.
Printed in the United States of America.
AppBuilder is a trademark of AppBuilder Solutions. All
other product and company names mentioned herein are
for identification purposes only and are the property of,
and may be trademarks of, their respective owners.

Portions of this product may be covered by U.S. Patent
Numbers 5,295,222 and 5,495,610 and various other
non-U.S. patents.
The software supplied with this document is the property
of AppBuilder Solutions and is furnished under a license
agreement. Neither the software nor this document may
be copied or transferred by any means, electronic or
mechanical, except as provided in the licensing
agreement.
AppBuilder Solutions has made every effort to ensure
that the information contained in this document is
accurate; however, there are no representations or
warranties regarding this information, including
warranties of merchantability or fitness for a particular
purpose. AppBuilder Solutions assumes no responsibility
for errors or omissions that may occur in this document.
The information in this document is subject to change
without prior notice and does not represent a
commitment by AppBuilder Solutions or its
representatives.

1. System Components Reference Guide . 3
1.1 Introduction to System Components . 3
1.2 Interface System Components . 3

1.2.1 Hierarchy of an Interface System Components . 3
1.2.2 Interface Component by Enviornment . 4
1.2.3 Interface Components . 6

1.2.3.1 Get_Altered_Field . 7
1.2.3.2 Get_Business_Process_Name . 9
1.2.3.3 Get_Current_Date_Time . 9
1.2.3.4 Get_Elevator_Position . 11
1.2.3.5 Get_First_Visible_Occurrence . 12
1.2.3.6 Get_Full_User_Identity . 13
1.2.3.7 Get_Last_Visble_Occurence . 14
1.2.3.8 Get_Listbox_Window_Sizes . 15
1.2.3.9 Get_Menu_Mode_By_ID . 15
1.2.3.10 Get_Selected_Field . 17
1.2.3.11 Get_Text_Message . 19
1.2.3.12 Get_User_Workstation_ID . 20
1.2.3.13 HPS_Event_Post_to_Child . 21
1.2.3.14 HPS_Event_Post_to_Parent . 22
1.2.3.15 HPS_Get_Activate . 23
1.2.3.16 HPS_Get_Environment . 24
1.2.3.17 HPS_Get_MinMax . 25
1.2.3.18 HPS_Get_Window_Handle . 26
1.2.3.19 HPS_Intercept_Events . 27
1.2.3.20 HPS_Limit_Scroll_Size . 27
1.2.3.21 HPS_Set_Activate . 28
1.2.3.22 HPS_Set_Bitmap_File . 29
1.2.3.23 HPS_Set_Cursor_By_ID . 30
1.2.3.24 HPS_Set_Help_Topic . 32
1.2.3.25 HPS_Set_HTML_File . 33
1.2.3.26 HPS_Set_HTML_Fragment . 34
1.2.3.27 HPS_Set_MinMax . 36
1.2.3.28 HPS_Set_Selected_Field . 37
1.2.3.29 HPS_Set_Window_Attributes . 39
1.2.3.30 HPS_Tbl_Get_Data_State . 40
1.2.3.31 HPS_Tbl_Init_Size . 43
1.2.3.32 Restore_Altered_Fields . 44
1.2.3.33 Set_CloseDown_Notification . 45
1.2.3.34 Set_Control_Color_By_ID . 46
1.2.3.35 Set_Control_Mode_By_ID . 48
1.2.3.36 Set_Control_RGBColor_By_ID . 49
1.2.3.37 Set_Cursor_Field . 50
1.2.3.38 Set_Default_Push_Button . 51
1.2.3.39 Set_Field_Blink_By_ID . 52
1.2.3.40 Set_Field_Color . 53
1.2.3.41 Set_Field_Message . 55
1.2.3.42 Set_Field_Mode . 57
1.2.3.43 Set_Field_Numeric_By_ID . 58
1.2.3.44 Set_Field_Picture . 60
1.2.3.45 Set_First_Visible_Occurrence . 61
1.2.3.46 Set_Help_File_Name . 62
1.2.3.47 Set_Item_Text . 63
1.2.3.48 Set_Last_Visible_Occurrence . 64
1.2.3.49 Set_Menu_Mode . 66
1.2.3.50 Set_Menu_Mode_By_ID . 67
1.2.3.51 Set_PopUp_Position . 68
1.2.3.52 Set_Push_Color . 70
1.2.3.53 Set_Push_Mode . 71
1.2.3.54 Set_Virtual_Listbox_Size . 73
1.2.3.55 Set_Window_Message . 74
1.2.3.56 Set_Window_Position . 76
1.2.3.57 Set_Window_Timeout . 77
1.2.3.58 Set_Window_Title . 78
1.2.3.59 Set_Window_Title_Ex . 79
1.2.3.60 Show_Help_Topic . 80
1.2.3.61 Show_Window_Message . 81
1.2.3.62 Sound_3270_Alarm . 83
1.2.3.63 Cache_Object . 83
1.2.3.64 Clear_Field_Messages . 85
1.2.3.65 Clear_Selected_Fields . 86
1.2.3.66 Clear_Window_Changes . 87

1.2.4 Smooth Scrolling with Components . 88
1.3 DDE System Components . 97
1.4 System Components for Mainframe, Unix and Java Batch . 102

1.4.1 Mainframe Batch System Components . 102
1.4.2 OpenCOBOL for Unix and Java Batch System Components . 121
1.4.3 IMS Components . 128
1.4.4 BLOB System Components . 132

1.5 System Components Support Matrix . 136
1.6 System Sets . 139

System Components Reference Guide
Introduction to System Components
Interface System Components

Smooth Scrolling with Components
DDE System Components
System Components for Mainframe, Unix and Java Batch

Mainframe Batch System Components
OpenCOBOL for Unix and Java Batch System Components
IMS Components
BLOB System Components

System Components Support Matrix
System Sets

Introduction to System Components
A system component is a programming module written in a native programming language, such as Java C, or COBOL, rather than in the Rules
Language. AppBuilder system components are a set of internal components tightly integrated into the AppBuilder C, C#, COBOL or Java runtime
environments to accomplish tasks such as manipulating the states of window controls. A rule may use just one component or call several in
sequence to perform more complex tasks. The development environment includes several system components to help speed application
development. This guide describes the system components.
The system components are organized into these categories:

Interface – These components provide a variety of responses to the end user, from creating a pop-up window to creating a warning
message, from changing the color of a field to changing the text of a menu.
DDE (Dynamic Data Exchange) – These components implement a message protocol between two processes; for example, implement a
message protocol to dynamically update information in an application based on changes that another application makes.
Batch – These components manage storage and handle input and output of records to access files in mainframe batch applications.
IMS – These components relate to applications that run in an IMS environment.
BLOB (Binary large object) – These components manipulate large-object files, which can be either text large-object files or binary
large-object files on the mainframe host.

Refer to for examples on how to use several system components together. For information on writing yourSmooth Scrolling with Components
own user components, refer to the .Developing Applications Guide

Interface System Components
Interface system components provide a variety of responses to the end user through the interface. They perform functions such as creating
windows for error and warning messages, changing the color and visibility of push buttons and fields, and properly closing down applications in
the case of a system failure. This topic includes:

Hierarchy of an Interface System Component
Interface Component by Environment
Interface Components
Smooth Scrolling with Components

The examples for each component are snapshots of the relevant portion of the calling rule. To make a component functional, the component must
be attached to the appropriate rule in the hierarchy and the calling rule must be coded, using MAP statements as required, to manipulate the input
and output views of the component. In other words, a component does not stand alone, but must be considered in context of the application and
the calling rule.

Hierarchy of an Interface System Components

An interface system component can be seen in the overall application hierarchy in the Hierarchy window of the Construction Workbench. Such a
component typically contains one input view and one output view. Each view contains one or more fields. See for anComponent hierarchy
example of how a system component appears in the Hierarchy window.

Component hierarchy

Input View

The input view provides input data to the component. In addition to other fields, an input view may own a field named either Window_Long_Name
or View_Long_Name. This field allows you to specify the target window or view on which to perform the action. For example, the component
shown in returns all fields in a specified panel to their non-error condition. To specify the window on which to reset theseComponent hierarchy
fields, type the following code into the calling rule:

map 'name_of_window_to_reset_fields' to WINDOW_LONG_NAME*
 of CLEAR_FIELD_MESSAGES_I
use component Clear_Field_Messages

Some components, such as , do not have an input view. These components do not involve a particular window orGet_User_Workstation_ID
view, and therefore do not require an input view.

Output View

After you use a component, data resulting from the component's execution is stored in the output view. The data is typically contained in the field
Return_Code and other fields. If the component contains sets and values, the value of the Return_Code determines which values (or messages)
are displayed in the panel.

Interface Component by Enviornment

The following environments support different components:

Java Thick Client
Java Thin Client
C Language
C#
3270

See also for a list of the deferred components.Deferred Interface System Components
Some system components are not supported in Java client and thin client environments because similar functionality does not exist on the Java
platform (for example, DDE components). Other components are not supported due to architectural changes necessary to implement them (for
example, Clear_Window_Changes). Note that a subset of the components supported in the C environment are deferred.
Refer to for a complete matrix of supported system components.System Components Support Matrix

3270 Converse Supported Interface Components

The functionality of system components is usually the same, within technological limitations, whether you use them in a CICS or IMS online
application (3270 Converse) or a workstation online application. Descriptions of 3270-supported components explain any differences unique to
the 3270 execution platform; some components behave differently executing on the mainframe.
All the 3270 Converse Components are linked into the load module HPECO10. The object names are listed in 3270 Converse Components -

. The only exception to this is the CGETENV, which is a load module itself. Any system error messages that appear listObject Cross-Reference
the object name of the component if there is an error. Use the following table to identify the component to which the error message relates.

3270 Converse Components - Object Cross-Reference

Component Name System ID Object Name

Clear_Field_Messages CCLRFLD HPECO20

Clear_Window_Changes CCLRPNL HPECO21

Get_Altered_Field CGETALT HPECO27

Get_Current_Date_Time CCURTME HPECO23

Get_Elevator_Position CGETELV HPECO28

Get_First_Visible_Occurrence CGETFST HPECO30

Get_Full_User_Identity CGETUIF HPECO32

Get_Last_Visible_Occurrence CGETLST HPECO31

Get_Listbox_Window_Sizes CLSTWSZ HPECO34

Get_Menu_Mode_By_ID CGETMMI HPECO44

Get_Selected_Field CGETFLD HPECO29

Get_Text_Message CGETMSG HPECO43

Get_User_Workstation_ID CGETUWI HPECO32

HPS_Get_Environment CGETENV CGETENV

Set_Control_Color_By_ID CCTLCID HPECO24

Set_Control_Mode_By_ID CCTLMID HPECO25

Set_Cursor_Field CCURPOS HPECO22

Set_Field_Blink_By_ID CFLDBLK HPECO49

Set_Field_Color CFLDCOL HPECO24

Set_Field_Message CLLDMSG HPECO26

Set_Field_Mode CFLDMOD HPECO25

Set_Field_Numeric_By_ID CFLDNUM HPECO48

Set_Field_Picture CPICSIZ HPECO36

Set_First_Visible_Occurrence CSETFST HPECO40

Set_Last_Visible_Occurrence CSETLST HPECO41

Set_Menu_Mode CMNUMOD HPECO35

Set_Menu_Mode_By_ID CMNMID HPECO35SET

Set_PopUp_Position CPNLPOS HPECO38

Set_Push_Mode CPSHMOD HPECO39

Set_Virtual_Listbox_Size CLSTSIZ HPECO33

Set_Window_Message CPNLMSG HPECO37

Sound_3270_Alarm CSNDALM HPECO60

While the smooth scrolling components HPS_Tbl_Init_Size and HPS_Tbl_Get_Data_State are not supported in 3270 Converse,
the , etc. may be used to accomplish the same function. |Set_Virtual_Listbox_Size

Deferred Interface System Components

For C applications, some components do not execute immediately when a USE COMPONENT statement executes. These components are called
deferred, or buffered, components. Their execution is deferred until the next CONVERSE WINDOW statement executes. These components are
deferred only in C applications. Components in a Java environment are not deferred.

Any deferred component executes on the window that is the object of the CONVERSE statement, which may not be the same window as was
displayed when the component was originally executed. For this reason, in most cases the fields of the input view cannot be validated when a
USE COMPONENT statement executes. Therefore, the Return_Code field of the output view is always set to one (1) indicating success, unless a
system-level error occurs, in which case it is set to zero (0). When the CONVERSE WINDOW statement executes, the contents of the input view
are checked. To display a warning message in case any abnormality is detected at this time, set the MESSAGES setting in the [AE Runtime]
section of the Hps.ini file to "Warning" (case-sensitive) to enable warning messages. For more information about the ini settings, refer to the INI

 .Settings Reference Guide

If an error is detected at this time, a message box indicating the error is displayed.

Several deferred components also have a Window_Long_Name field. If the name mapped to this field is not the name of the next window

conversed, the deferred component does not work.

Refer to for a complete list of system components that are deferred in the C execution environment.System Components Support Matrix

C# does not support deferred components.

Java and C# Support for Deferred Components

While some of these components are supported for Java and C# applications, these components do not execute in the same way as they do for C
applications. In Java and C#, these components act on the current window and not on the next conversed window. This is because there is no
deferred component functionality in Java and C#.

Interface Components

 lists the interface system components and the corresponding System IDs:Component Name and System ID table

Component Name and System ID table

Component Name System ID

Cache_Object CCACHE

Clear_Field_Messages CCLRFLD

Clear_Selected_Fields CCLRSLT

Clear_Window_Changes CCLRPNL

Get_Altered_Field CGETALT

Get_Business_Process_Name CGETBPN

Get_Current_Date_Time CCURTME

Get_Elevator_Position CGETELV

Get_First_Visible_Occurrence CGETFST

Get_Full_User_Identity CGETUIF

Get_Last_Visible_Occurrence CGETLST

Get_Listbox_Window_Sizes CLSTXSZ

Get_Menu_Mode_By_ID CGGETMNI

Get_Selected_Field CGETFLD

Get_Text_Message CGETMSG

Get_User_Workstation_ID CGETUWI

HPS_Event_Post_to_Child CPOSTC

HPS_Event_Post_to_Parent CPOSTP

HPS_Get_Activate CGETACT

HPS_Get_Environment CGETENV

HPS_Get_MinMax CGETMMX

HPS_Get_Window_Handle CWINHD

HPS_Intercept_Events CINTEVT

HPS_Limit_Scroll_Size CLMTSCR

HPS_Set_Activate CSETACT

HPS_Set_Bitmap_File CSETBMP

HPS_Set_Cursor_By_ID CCRSRID

HPS_Set_Help_Topic CSETHLT

HPS_Set_HTML_File CSETHTM

HPS_Set_HTML_Fragment CFRGHTM

HPS_Set_MinMax CSETMMX

HPS_Set_Selected_Field CSETFLD

HPS_Set_Window_Attributes CWINATR

HPS_Tbl_Get_Data_State CTBLDAT

HPS_Tbl_Init_Size CTBLSIZ

Restore_Altered_Fields CCLRALT

Set_CloseDown_Notification CAPPOFF

Set_Control_Color_By_ID CCTLCID

Set_Control_Mode_By_ID CCTLMID

Set_Control_RGBColor_By_ID CSCRGBC

Set_Cursor_Field CCURPOS

Set_Default_Push_Button CDEFBUT

Set_Field_Blink_By_ID CFLDBLK

Set_Field_Color CFLDCOL

Set_Field_Message CFLDMSG

Set_Field_Mode CFLDMOD

Set_Field_Numeric_By_ID CFLDNUM

Set_Field_Picture CPICSIZ

Set_First_Visible_Occurrence CSETFST

Set_Help_File_Name CSETHLP

Set_Item_Text CITMTXT

Set_Last_Visible_Occurrence CSETLST

Set_Menu_Mode CMNUMOD

Set_Menu_Mode_By_ID CMNUMID

Set_PopUp_Position CPNLPOS

Set_Push_Color CPSHCOL

Set_Push_Mode CPSHMOD

Set_Virtual_Listbox_Size CLSTSIZ

Set_Window_Message CPNLMSG

Set_Window_Position CBCKPOS

Set_Window_Timeout CPNLTME

Set_Window_Title CSETTIT

Set_Window_Title_Ex CSETITX

Show_Help_Topic CSHOHLP

Show_Window_Message CIMMERR

Sound_3270_Alarm CSNDALM

Get_Altered_Field

This section presents the purpose, the syntax, the usage, and how the Get_Altered_Field component is supported. See Example:
 for an usage example.Get_Altered_Field

Purpose

Use this component to determine the screen fields the end user changed. You can use this component iteratively to find all the altered screen
fields or call it once to check if a specific field has been altered. If no view name and no field name are specified in the input view, it looks for all
changed fields in every view. If a field name is specified but a view name is not, the component searches for the specified field in any view. If a
view name is specified but a field name is not, the component searches for any changed field within the specified view.

Java Support

This component is supported for thick (Java) clients but not thin (HTML) clients.

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe but it behaves differently executing on the
mainframe than it does on the workstation. A 3270 terminal processes full screens of data, while a workstation processes on a field-by-field basis.
Whenever a 3270 screen is redisplayed, all the fields are reset to an unmodified state. Therefore, if this component is not called within a loop
before redisplaying the window, the notification about subsequent changed fields is lost. Refer to 3270 Converse Supported Interface

 for a list of supported components.Components

Syntax

Here is the syntax of Get_Altered_Field component.
Get_Altered_Field

Name Get_Altered_Field

System
Identifier

CGETALT

Input View
Name

Get_Altered_Field_I

Input View
Field

 View_Long_Name character(30)
The view that includes the field mapped to Field_Long_Name

Input View
Field

 Field_Long_Name character(30)
The name of the field in the hierarchy diagram to which the field in the window is linked

Input View
Field

 Field_Occur integer(15)
Occurrence number of the altered field in an occurring view such as a list box. This field is attached to the system set

, which has the following values: SEARCH_CRITERIA (SSEARCH)

-1 = Return first altered field
0 = Return next altered field
n = Return only an altered field that is the th occurrence in a list boxn

Output View
Name

Get_Altered_Field_O

Output View
Field

View_Long_Name character(30)

Output View
Field

Field_Long_Name character(30)

Output View
Field

 Field_Occur integer(15)
This parameter directs the component to return the first changed field found, the next changed field, or a field with a particular
occurrence number in an occurring view such as a list box.

Output View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 forRETURN_CODES (SRETURN)
Failure.

Usage

The component returns the view name, field name, and field occurrence of the changed screen field to the calling rule when the component is
successful. When no more altered fields are found, the Return_Code field is set to failure. The scope of the altered field search includes edit
fields, combo boxes, multicolumn list boxes, check boxes, and radio buttons.
An iterative call to this component loops through all altered fields unless you clear the altered field flags by using .Restore_Altered_Fields

Example: Get_Altered_Field

This example specifies SELECT_CUSTOMER as the view on which to search for altered fields.

map 'SELECT_CUSTOMER' to VIEW_LONG_NAME of GET_ALTERED_FIELD_I
use component GET_ALTERED_FIELD

Get_Business_Process_Name

This section presents the purpose, the syntax, the usage, and how the Get_Business_Process_Name component is supported. See Example:
 for an usage example.Get_Business_Process_Name

Purpose

Use this component to return the name of the currently active process.

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients.

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of Get_Business_Process_Name component.

Get_Business_Process_Name component syntax

Name Get_Business_Process_Name

System
Identifier

CGETBPN

Input View
Name

There are no user-defined fields for the input view. The component automatically investigates the present process to
determine its name.

Output View
Name

Get_Business_Process_Name_O

Output View
Field

 Business_Process character(8)
For C, this contains the process name specified on the command line when starting the application. For C# and Java, this
contains the system id of the root rule.
Example: } where is the rule implementation name, which ismaster -p {process name} -r {rule id rule id
normally its system id unless changed.

Example: Get_Business_Process_Name

This example maps the current process name to the variable THIS_PROCESS.

map BUSINESS_PROCESS of GET_BUSINESS_PROCESS_NAME_O to THIS_PROCESS
use component GET_BUSINESS_PROCESS_NAME

Get_Current_Date_Time

This section presents the purpose, the syntax, the usage, and how the Get_Current_Date_Time component is supported. See Examples:
 for an usage example.Get_Current_Date_Time

Purpose

Use this component to obtain the current date and time in both integer format and character format.

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients.

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for more information.Interface Components

Syntax

Here is the syntax of Get_Current_Date_Time component.

Get_Current_Date_Time component syntax

Name Get_Current_Date_Time

System Identifier CCURTME

Input View Name This component has no input view.

Output View Name Get_Current_Date_Time_O

Output View Field Current_Time integer(31)
Returned in the format where:+0000hhmmss

hh is hours
mm is minutes
ss is seconds

Output View Field Current_Date integer(31)
Returned in the format where:+00ccyymmdd

cc is century
yy is year
mm is months
dd is days

Output View Field Curr_Dte_Tm_String character(24)
Returned in the format where:day mon dd hh:mm:ss ccyy

day is day of week (Sun, Mon, Tue, Wed, Thu, Fri, Sat)
mon is month (Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec)
dd is days (00--31)
hh is hours (00--24)
mm is minutes (00--59)
ss is seconds (00--59)
cc is century
yy is year (00--99)

Examples: Get_Current_Date_Time

Because no input data is required to use this component, just type into the calling rule:

use component GET_CURRENT_DATE_TIME

In this example, the current date and time are sent to the fields in the output view.

map CURRENT_TIME of GET_CURRENT_DATE_TIME_O to
 TIME of SELECT_CUSTOMER_O
map CURRENT_DATE of GET_CURRENT_DATE_TIME_O to
 DATE of SELECT_CUSTOMER_O
use component GET_CURRENT_DATE_TIME

In this example, the current time is then mapped to a field on the Select_Customer window.

map CURRENT_DATE of GET_CURRENT_DATE_TIME_O to
 DATE of SELECT_CUSTOMER
use component GET_CURRENT_DATE_TIME

Get_Elevator_Position

This section presents the purpose, the syntax, the usage, and how the Get_Elevator_Position component is supported. See Example:
 for an usage example.Get_Elevator_Position

Purpose

Use this component to obtain the occurrence number of the current elevator (scroll) position. The occurrence number is a virtual number if a
virtual list box is defined. This component determines how far and in which direction an end user has scrolled the values in a multicolumn list box
(MCLB). If the view name is invalid, a zero value is returned to the Elevator_Position field of the output view.

You must have conversed the window containing the list box at least once for this component to work.

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients.

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for more information.Interface Components

Syntax

Here is the syntax of Get_Elevator_Position component.

Get_Elevator_Position component syntax

Name Get_Elevator_Position

System Identifier CGETELV

Input View Name Get_Elevator_Position_I

Input View Field View_Long_Name character(30)

Output View Name Get_Elevator_Position_O

Output View Field Elevator_Position integer(15)
Occurrence associated with current elevator position.

Example: Get_Elevator_Position

This example gets the elevator position.

map 'CUSTOMER_CDV'to VIEW_LONG_NAME of GET_ELEVATOR_POSITION_I
use component GET_ELEVATOR_POSITION

map ELEVATOR_POSITION of GET_ELEVATOR_POSITION_O
 to ELEVATOR_POSITION of NC_TABLECOMPONENT_WD of
 NC_TABLECOMPONENT_W

Get_First_Visible_Occurrence

This section presents the purpose, the syntax, the usage, and how the Get_First_Visible_Occurence component is supported. See Example:
 for an usage example.Get_First_Visible_Occurrence

Purpose

Use this component to obtain the occurrence number of the first visible occurrence in an occurring view or a multicolumn list box (MCLB). If the
view name is invalid, or if the view name is not linked to a MCLB, a zero value is returned to the Field_Occur field. This component works only
with MCLBs.

You must have conversed the window containing the multicolumn list box at least once for this component to work.

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients.

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for more information.Interface Components

Syntax

Here is the syntax of Get_First_Visible_Occurrence component.

Get_First_Visible_Occurrence component syntax

Name Get_First_Visible_Occurrence

System Identifier CGETFST

Input View Name Get_First_Visible_Occurrence_I

Input View Field View_Long_Name character(30)

Output View Name Get_First_Visible_Occurrence_O

Output View Field Field_Occur integer(15)
Occurrence number.

Example: Get_First_Visible_Occurrence

This example gets the first occurrence number.

map 'MCLB_OCC' to VIEW_LONG_NAME of GET_FIRST_VISIBLE_OCCURRENCE_I
use component GET_FIRST_VISIBLE_OCCURRENCE
map FIELD_OCCUR of GET_LAST_VISIBLE_OCCURRENCE_O to
 FIELD_OCCUR of NC_TABLECOMPONENT_WD of NC_TABLECOMPONENT_W
map 'CUSTOMER_CDV'to VIEW_LONG_NAME of GET_ELEVATOR_POSITION_I
use component GET_ELEVATOR_POSITION

Get_Full_User_Identity

This section presents the purpose, the syntax, the usage, and how the Get_Full_User_Identity component is supported. See Examples:
 for an usage example.Get_Full_User_Identity

Purpose

Use this component to obtain the workstation identifier and user (log-on) identifier. This component returns as much information as it can find on a
workstation. Thus, if security was not run (if a log-in screen asking for user name and password was not displayed), the user identifier field is
blank. If, in addition, there is no workstation identifier, then that field is blank as well. The value returned for the user identifier is the identifier
entered by a user in the security window when signing on.
For a cooperative-processing application, this component does not work unless CICS or IMS security is activated.

The function of this component is identical to the older component. However, this component hasGet_User_Workstation_ID
longer fields in the output view to provide for future extensions. The older component continues to be supported to
accommodate applications that are being upgraded. New applications should use the Get_Full_User_Identity component.

C Support

In C applications, the current workstation identifier is retrieved from the value of the WORKSTATION_ID setting in the AE Runtime section of the
system initialization file (hps.ini). Before using this component, this setting in the hps.ini file must be assigned a string value.
A user id is only returned if the GET_USERID_FROM_DNA setting in the [AE Runtime] section of hps.ini has been set to TRUE, and security has
been called, i.e. that an authentication exit (DNA_AUTHENT_EXIT of dna.ini) has been called.

C# Support

This component is supported for C# client. The machine host name is retrieved for C# applications.

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients. For Java applications, the current workstation identifier is the
host name of the machine.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. For 3270 Converse applications, this
component returns the user identifier and for the mainframe session. Refer to for morenetname 3270 Converse Supported Interface Components
information.

Syntax

Here is the syntax of Get_Full_User_Identity component.

Get_Full_User_Identity component syntax

Name Get_Full_User_Identity

System Identifier CGETUIF

Input View Name This component does not have an input view.

Output View Name Get_Full_User_Identity_O

Output View Field Workstation_ID_30 character(30)
Identifier of the workstation on which the component is being run.

Output View Field User_ID_30 character(30)
Identifier of the user who has logged on to the workstation on which the component is being run.

Examples: Get_Full_User_Identity

This example maps the workstation identifier to the variable THIS_PC_ID.

map WORKSTATION_ID_30 of GET_FULL_USER_IDENTITY_O to THIS_PC_ID
use component GET_FULL_USER_IDENTITY

This example maps the identifier of the user who logged on to the workstation to the variable USER_NAME.

map USER_ID_30 of GET_FULL_USER_IDENTITY_O to USER_NAME
use component GET_FULL_USER_IDENTITY

Get_Last_Visble_Occurence

This section presents the purpose, the syntax, the usage, and how the Get_Last_Visible_Occurence component is supported. See Example:
 for an usage example.Get_Last_Visible_Occurrence

Purpose

Use this component to obtain the occurrence number of the last visible occurrence of a field in an occurring view or a multicolumn list box
(MCLB). If the view name is invalid, or if the view name is not linked to a MCLB, a zero value is returned to the Field_Occur field.

You must have conversed the window containing the multicolumn list box at least once for this component to work.

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients.

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for more information.Interface Components

Syntax

Here is the syntax of Get_Last_Visible_Occurrence component.

Get_Last_Visible_Occurrence component syntax

Name Get_Last_Visible_Occurrence

System Identifier CGETLST

Java Support Yes

Input View Name Get_Last_Visible_Occurrence_I

Input View Field View_Long_Name character(30)

Output View Name Get_Last_Visible_Occurrence_O

Output View Field Field_Occur integer(15)
Occurrence number.

Example: Get_Last_Visible_Occurrence

This example gets the last occurrence number.

map 'NC_TABLE_SL' to VIEW_LONG_NAME of GET_LAST_VISIBLE_OCCURRENCE_I
use component GET_LAST_VISIBLE_OCCURRENCE
map FIELD_OCCUR of GET_LAST_VISIBLE_OCCURRENCE_O to
 FIELD_OCCUR of NC_TABLECOMPONENT_WD of NC_TABLECOMPONENT_W

Get_Listbox_Window_Sizes

This section presents the purpose, the syntax, the usage, and how the Get_Listbox_Window_Sizes component is supported. See Example:
 for an usage example.Get_Listbox_Window_Sizes

Purpose

Use this component to obtain the number of lines visible in the multicolumn list box (MCLB) window (the number of visible occurrences) and the
total number of scrollable occurrences available in the MCLB view when given the name of a multicolumn list box view. Although the output view
does not contain a Return_Code field, if Visible_Occurs returns a value of 0, the attempt to use the component failed. If the specified view name is
invalid or if the view is not linked to a multicolumn list box, the component fails. This component works only with multicolumn list boxes.

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients.

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for more information.Interface Components

Syntax

Here is the syntax of Get_Listbox_Window_Sizes component.

Get_Listbox_Window_Sizes component

Name Get_Listbox_Window_Sizes

System Identifier CLSTWSZ

Input View Name Get_Listbox_Window_Sizes_I

Input View Field View_Long_Name character(30)

Output View Name Get_Listbox_Window_Sizes_O

Output View Field Visible_Occurs integer(15)
The number of visible occurrences.

Output View Field Scrollable_Occurs integer(15)
The number of occurrences in the view that can be scrolled without setting off an out-of-range condition.

Example: Get_Listbox_Window_Sizes

This example gets the first occurrence number.

map 'NC_TABLE_SL' to VIEW_LONG_NAME of GET_LISTBOX_WINDOW_SIZES_I
use component GET_LISTBOX_WINDOW_SIZES
map VISIBLE_OCCURS of GET_LISTBOX_WINDOW_SIZES_O to
 L_VISIBLE_OCCURS
map SCROLLABLE_OCCURS of GET_LISTBOX_WINDOW_SIZES_O
 to L_SCROLLABLE_OCCURS

Get_Menu_Mode_By_ID

This section presents the purpose, the syntax, the usage, and how the Get_Menu_Mode_By_ID component is supported. Example:
 for an usage example.Get_Menu_Mode_By_ID

Purpose

Use this component to find out the status of either of the two independent properties of a menu choice: whether the menu choice is enabled or
whether the menu choice is checked. With each use of this component you can determine the status of one these two properties. The Enabled
property refers to whether the menu item is enabled (active and selectable) or disabled (inactive and grayed out). The Checked property refers to
whether the menu item is checked (has a check mark next to it) or not (has no check mark next to it). This component is the "get" version of

.Set_Menu_Mode_By_ID
The two properties are independent. A menu choice can be enabled and checked, enabled and unchecked, disabled and checked, or disabled
and unchecked. To find out that status of both properties, you must use two calls — one to find out if it is enabled and one to find out if it is
checked.

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients.

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for more information.Interface Components

Syntax

Here is the syntax of Get_Menu_Mode_By_ID component.

Get_Menu_Mode_By_ID component syntax

Name Get_Menu_Mode_by_ID

System
Identifier

CGETMMI

Input View
Name

Get_Menu_Mode_by_ID_I

Input View Field HPS_Item_ID character(50)
The system identifier (HPSID) of the menu choice

Input View Field HPS_MItem_Attribute integer(15)
The property of the menu choice that you want to check:

0 = Enabled - whether enabled (active) or disabled (grayed out)
1 = Checked - whether it has a check mark next to it or not
This field is attached to the system set .MENU_ITEM_ATTRIBUTES (SMIATTR)

Output View
Name

Get_Menu_Mode_by_ID_O

Output View
Field

 HPS_MItem_State integer(15)
The status of the property specified on the input view. (Only one property can be checked per call of this component.)

0 = For Enabled, this means the menu choice is disabled (grayed out); For Checked this means the menu choice is
not checked.
1 = For Enabled, this means the menu choice is enabled (active); For Checked this means the menu choice has a
check mark next to it.
This field is attached to the system set .MENU_ITEM_STATE (SMIST)

Output View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 forRETURN_CODES (SRETURN)
Failure.

Example: Get_Menu_Mode_By_ID

This part of the example determines whether the choice is enabled. (It does not determine whether the choice is checked.)Menu Item 2

map 'Menu Item 2' to PS_ITEM_ID of GET_MENU_MODE_BY_ID_I
map 0 to HPS_MITEM_ATTRIBUTE of GET_MENU_MODE_BY_ID_I
use component GET_MENU_MODE_BY_ID

This part of the example maps the returned value of the Enabled property status to the variable . In this example, if 0 is returned,MENU_STATE
then is disabled or grayed out; if 1 is returned, it is enabled and active. This does not affect whether or not the menu choice isMenu Item 2
checked.

map HPS_MITEM_STATE of GET_MENU_MODE_BY_ID_O to MENU_STATE
use component GET_MENU_MODE_BY_ID

Get_Selected_Field

This section presents the purpose, the syntax, the usage, and how the Get_Selected_Field component is supported. See Examples:
 for an usage example.Get_Selected_Field

Purpose

Use this component to determine the screen fields users select in a list box. You can use this component iteratively to find all the selected screen
fields. The component returns the location (view name, field name, and occurrence number) of the first, next, or specified selected field. If a view
name is specified, but a field name is not, the component searches for any selected field within that view. Also see .HPS_Set_Selected_Field

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients.

This component is not supported when a blank view name is given.

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for information on other components.Interface Components

For 3270 Converse, this component applies to all fields---not only those in a list box. However, you should use this component only once before a
converse because only one field can be selected in 3270 Converse. For 3270 Converse applications executing on the mainframe, the selected
field is the field containing the cursor when the window was last conversed. The options from the FIELD_OCCUR parameter are not supported.

Syntax

Here is the syntax of Get_Selected_Field component.

Get_Selected_Field component syntax

Name Get_Selected_Field

System
Identifier

CGETFLD

Input View
Name

Get_Selected_Field_I

Input View
Field

 View_Long_Name character(30)
The view that includes the field mapped to Field_Long_Name

Input View
Field

 Field_Long_Name character(30)
The name of the field in the hierarchy diagram to which the field in the window is linked

Input View
Field

 Field_Occur integer(15)
Occurrence number of the altered field. This field is attached to the system set , which has theSEARCH_CRITERIA (SSEARCH)
following values:

-1 = Return first selected field
0 = Return next selected field
n = Return only the selected field that is the th occurrence in a list boxn

Output View
Name

Get_Selected_Field_O

Output View
Field

View_Long_Name character(30)

Output View
Field

Field_Long_Name character(30)

Output View
Field

 Field_Occur integer(15)
This parameter directs the component to return the first selected field found, the next selected field, or a field with a particular
occurrence number in an occurring view such as a list box.
If the virtual size for the table is enabled (with), then the value returned is the virtual index.Set_Virtual_Listbox_Size

Output View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 forRETURN_CODES (SRETURN)
Failure.

Usage

This component returns the view name, field name, and field occurrence of the selected screen field to the calling rule when this component is
successful. When no more selected fields are found, the Return_Code field is set to failure. An iterative call to this component loops through all
selected fields until a selected field is deselected by mouse action or cleared by a call to .Clear_Selected_Fields
The hps.ini parameter LISTBOX_SEL_ORDER governs selection of the fields for this component. This parameter can have one of two values,
either NATURAL or SELECTION_ORDER (the default). If the SELECTION_ORDER value is used, the fields are returned in the order selected. If
the NATURAL value is used, the fields are returned in the order they appear in the multicolumn list box, regardless of the order in which they were
selected.

Except for 3270 Converse, this component applies only to fields in a list box. This is a change from earlier versions of the
product.

Examples: Get_Selected_Field

This example specifies CUSTOMER as the view on which to search for the selected fields.

map 'CUSTOMER' to VIEW_LONG_NAME of GET_SELECTED_FIELD_I

This example specifies CUSTOMER_NAME as the selected field to search.

map 'CUSTOMER_NAME' to FIELD_LONG_NAME of GET_SELECTED_FIELD_I

This example maps the value NEXT_SELECTION of the system set Search_Criteria to the input view, which causes the search to continue to the
next instance of the selected field.

map NEXT_SELECTION in SEARCH_CRITERIA to FIELD_OCCUR of
 GET_SELECTED_FIELD_I

If a selected field is found, this maps the value of the field CUSTOMER_NAME in the occurring view CUSTOMER (the FIELD_OCCUR
occurrence of the view CUSTOMER) to the field CUSTOMER_NAME of the input view CUSTOMER_BILLING_INFO_I.

converse window SELECT_CUSTOMER
use component GET_SELECTED_FIELD
if RETURN_CODE = SUCCESS in RETURN_CODES
 map CUSTOMER_NAME of CUSTOMER (FIELD_OCCUR of
 GET_SELECTED_FIELD_O) to
 CUSTOMER_NAME of CUSTOMER_BILLING_INFO_I
 use rule CUSTOMER_BILLING_INFO
else
 use component SET_WINDOW_MESSAGE

Get_Text_Message

This section presents the purpose, the syntax, the usage, and how the Get_Text_Message component is supported. See Example:
 for an usage example.Get_Text_Message

Purpose

Use this component to read a reference file (a set denoted by the REF extension) to obtain a particular message based on the TEXT code the
input view supplies. The component returns up to four lines of text message.

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients.

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for more information.Interface Components

Syntax

Here is the syntax of Get_Text_Message component.

Get_Text_Message component syntax

Name Get_Text_Message

System Identifier CGETMSG

Input View Name Get_Text_Message_I

Input View Field Message_Set_Name character(8)
The implementation name of the reference file without the REF extension

Input View Field Text_Code integer(15)
A number indicating which message to use from the error set

Output View
Name

Get_Text_Message_O

Output View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 forRETURN_CODES (SRETURN)
Failure.

Output View
Field

 Txt_Arg1 character(35)
First line of text in output message

Output View
Field

 Txt_Arg2 character(35)
Second line of text in output message

Output View
Field

 Txt_Arg3 character(35)
Third line of text in output message

Output View
Field

 Txt_Arg4 character(35)
Fourth line of text in output message

Usage

See the description for either or for information on how place holders (% and @) are used forSet_Field_Message Set_Window_Message
substitution in the reference file. If you use this component to read a reference file that contains one of these place holders, the place holder is
returned in the corresponding Txt_Arg field.
There is an HPS.INI setting SKIP_BLANK_LINES_IN_SET that allows the C client to recognize blank lines in the set text when using this
component. The ini setting is located in the [AE Runtime] section of the HPS.ini file. The default is TRUE. When set to FALSE the component
returns blank lines from the set.

Example: Get_Text_Message

This example specifies the set with the implementation name ERRMSGS as the set from which to retrieve messages.

map 'ERRMSGS' to MESSAGE_SET_NAME of GET_TEXT_MESSAGE_I

This example maps the value CUST_NOT_ON_FILE of the set ERROR_MESSAGES to the input view, specifying the text message
corresponding to that value to be displayed. Note that this must be the set whose implementation name was mapped to Message_Set_Name
above.

map CUST_NOT_ON_FILE of ERROR_MESSAGES to TEXT_CODE of
 GET_TEXT_MESSAGE_I

Get_User_Workstation_ID

This section presents the purpose, the syntax, the usage, and how the Get_Uder_Workstation_ID component is supported. See Examples:
 for an usage example.Get_User_Workstation_ID

Purpose

Use this component to obtain the workstation identifier and user (log-on) identifier.
This component returns as much information as it can find on a workstation. Thus, if security was not run (if a log-in screen asking for user name
and password was not displayed), the user identifier field is blank. If, in addition, there is no workstation identifier, then that field blank as well. The
value returned for the user identifier is the identifier entered by a user in the security window when signing on.
For a cooperative-processing application, this component does not work unless CICS or IMS security is activated.

The function of this component is identical to the newer component. However, the new component hasGet_Full_User_Identity
longer fields in the output view to provide for future extensions. This component continues to be supported to accommodate
applications that are being upgraded. New applications should use Get_Full_User_Identity component.

In C applications, the current workstation identifier is retrieved from the value of the WORKSTATION_ID setting in the AE Runtime section of the
system initialization file (hps.ini). Before using this component, this setting in the hps.ini file must be assigned a string value. The user identifier is
retrieved from the value typed in when security was run.

Java Support

This component is not supported for either thick (Java) or thin (HTML) clients.

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for more information. For 3270 Converse applications, this component returns the user identifier and for theInterface Components netname

mainframe session.

Syntax

Here is the syntax of Get_User_Workstation_ID component.

Get_User_Workstation_ID component syntax

Name Get_User_Workstation_ID

System Identifier CGETUWI

Input View Name This component does not have an input view.

Output View Name Get_User_Workstation_ID_O

Output View Field Workstation_ID character(16)
Identifier of the workstation on which the component is being run

Output View Field User_Identity character(7)
Identifier of the user who has logged on to the workstation on which the component is being run

Examples: Get_User_Workstation_ID

This example maps the workstation ID to the variable .SELECT_THIS_PC

map WORKSTATION_ID of GET_USER_WORKSTATION_ID_O to SELECT_THIS_PC
 use component GET_USER_WORKSTATION_ID

This example maps the identifier of the user who logged on to the workstation to the variable .USER_NAME

map USER_IDENTITY of GET_USER_WORKSTATION_ID_O to USER_NAME

HPS_Event_Post_to_Child

This section presents the purpose, the syntax, the usage, and how the HPS_Event_Post_to_Child component is supported. See Example:
 for an usage example.HPS_Event_Post_to_Child

Purpose

Use this component, in a parent (primary) rule, to post an event to a child rule (or multiple child rules). Use this component with event-driven
processing and modeless windows. Specify the child (secondary) rule by the combination of Event_Dest and Event_Qualifier.

The use of this component is discussed in detail in .Developing Applications Guide

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients.

C# Support

This component is not supported for C# client.

Syntax

Here is the syntax of HPS_Event_Post_to_Child component.

HPS_Event_Post_to_Child component syntax

Name HPS_Event_Post_to_Child

System
Identifier

CPOSTC

Input View
Name

HPS_Event_Post_to_Child_I

Input View
Field

 Event_Name character(30)
Name of event to post

Input View
Field

 Event_Dest character(30)
Name of the child rule receiving the event

Input View
Field

 Event_Qualifier character(30)
Optional identifier used to distinguish different instances of the same rule

Input View
Field

 Event_View character(30)
Optional name of work view being sent, which (if specified) must be connected to both the sending and receiving rules and
cannot be the name of the pre-defined system view HPS_EVENT_VIEW

Input View
Field

 Event_Param character(256)
Additional information

Output
View Name

HPS_Event_Post_to_Child_O

Output
View Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 forRETURN_CODES (SRETURN)
Failure.

Example: HPS_Event_Post_to_Child

This example posts an event to a child rule.

map 'Query and focus' to EVENT_NAME of HPS_EVENT_POST_TO_CHILD_I
map 'OWNERSHIP_QRY_DIS' to EVENT_DEST of HPS_EVENT_POST_TO_CHILD_I
use component HPS_EVENT_POST_TO_CHILD

To receive the event on the child, use either a converse loop, a proc for ConverseEvent or a proc for PostEvent. Refer to the Developing
 and the for more information on using these procedures.Applications Guide ObjectSpeak Reference Guide

HPS_Event_Post_to_Parent

This section presents the purpose, the syntax, the usage, and how the HPS_Event_Post_to_Parent component is supported. See Example:
 for an usage example.HPS_Event_Post_to_Parent

Purpose

Use this component, in a child (secondary) rule, to post an event to its parent (primary) rule. This component is used with event-driven processing
and modeless windows. The parent rule is the one that did the DETACH.

The use of this component is discussed in detail in .Developing Applications Guide

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients.

C# Support

This component is not supported for C# client.

Syntax

Here is the syntax of HPS_Event_Post_to_Parent component.

HPS_Event_Post_to_Parent component syntax

Name HPS_Event_Post_to_Parent

System
Identifier

CPOSTP

Input View
Name

HPS_Event_Post_to_Parent_I

Input View
Field

 Event_Name character(30)
Name of event to post

Input View
Field

 Event_View character(30)
The name of the work view being sent. This must be connected to both the sending and receiving rules and cannot be the name
of the pre-defined system view HPS_EVENT_VIEW.

Input View
Field

 Event_Param character(256)
Additional information

Output View
Name

HPS_Event_Post_to_Parent_O

Output View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 forRETURN_CODES (SRETURN)
Failure.

Example: HPS_Event_Post_to_Parent

This example posts an event to a parent rule.

map 'Query and focus' to EVENT_NAME of HPS_EVENT_POST_TO_PARENT_I
map 'OWNERSHIP_QRY_DIS' to EVENT_VIEW of HPS_EVENT_POST_TO_PARENT_I
use component HPS_EVENT_POST_TO_PARENT

To receive the event on the parent, use either a converse loop, a proc for ConverseEvent or a proc for PostEvent. Refer to the Developing
 and the for more information on using these procedures.Applications Guide ObjectSpeak Reference Guide

HPS_Get_Activate

This section presents the purpose, the syntax, the usage, and how the HPS_Get_Activate component is supported. See Example:
 for an usage example.HPS_Get_Activate

Purpose

Use this component to determine if this is the active process. When the window of this process is active, the process is active.

Java Support

This component is supported for thick (Java) clients but not thin (HTML) clients.

C# Support

This component is not supported for C# client.

Syntax

Here is the syntax of HPS_Get_Activate component.

HPS_Get_Activate component syntax

Name HPS_Get_Activate

System Identifier CGETACT

Input View Name This component does not have an input view.

Output View
Name

HPS_Get_Activate_O

Output View
Field

 HPS_Active_State integer(15)
This field is attached to the system set , which has the following values: HPS_ACTIVE_STATES (SACSTAT)
1 = Active
0 = Inactive

Output View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 forRETURN_CODES (SRETURN)
Failure.

Example: HPS_Get_Activate

This example shows that if the value in ACTIVE_WINDOW is 1, then the window of this process is currently active.

map HPS_ACTIVE_STATE of HPS_GET_ACTIVATE_O to ACTIVE_WINDOW
use component HPS_GET_ACTIVATE

HPS_Get_Environment

This section presents the purpose, the syntax, the usage, and how the HPS_Get_Environment component is supported. See Example:
 for an usage example.HPS_Get_Environment

Purpose

Use this component to obtain the execution environment.

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients.

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for more information.Interface Components

OpenCOBOL for Unix and Java Batch Support

This component is supported for generation of OpenCOBOL for OpenCOBOL for Unix and Java Batch. It sets EXECMODE of the output view to
"HP-UX" upon return.

Syntax

Here is the syntax of HPS_Get_Environment component.

HPS_Get_Environment component syntax

Name HPS_Get_Environment

System Identifier CGETENV

Input View Name This component has no input view.

Output View Name HPS_Get_Environment_O

Output View Field Execmode character(6)
The execution environment, with possible values of:

AIX
BATCH (on mainframe)
CICS (on mainframe)
JVM (for Java client/server)
HP-UX
HTML (for thin client)
IMS (on mainframe)
NCR
PC DOS (Windows)
SUNOS
UNKNOW
WINNT

Example: HPS_Get_Environment

This example shows that the value in EXEC_ENVIRONMENT indicates the execution environment.

map EXECMODE of HPS_GET_ENVIRONMENT_O to EXEC_ENVIRONMENT
use component HPS_GET_ENVIRONMENT

HPS_Get_MinMax

This section presents the purpose, the syntax, the usage, and how the HPS_Get_MinMax component is supported. See Example:
 for an usage example.HPS_Get_MinMax

Purpose

Use this component to obtain the state (minimized, maximized, or normal) of the window of this process.

Java Support

This component is not supported for either thick (Java) or thin (HTML) clients.

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of HPS_Get_MinMax component.

HPS_Get_MinMax component syntax

Name HPS_Get_MinMax

System Identifier CGETMMX

Input View Name This component does not have an input view.

Output View
Name

HPS_Get_MinMax_O

Output View
Field

 HPS_Window_State integer(15)
This field is attached to the system set , which has the following values:HPS_WINDOW_STATES (SWSTATE)

0 = Minimized
1 = Maximized
2 = Normal

Output View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 forRETURN_CODES (SRETURN)
Failure.

Example: HPS_Get_MinMax

In this example, the value in WINDOW_SIZE indicates whether the window of this process is minimized, maximized, or normal.

map HPS_WINDOW_STATE of HPS_GET_MINMAX_O to WINDOW_SIZE
use component HPS_GET_MINMAX

HPS_Get_Window_Handle

This section presents the purpose, the syntax, the usage, and how the HPS_Get_Window_Handle component is supported. See Examples:
 for an usage example.HPS_Get_Window_Handle

Purpose

Use this component to return the system window handle for a client runtime window or one of the objects on the window. This is an immediate
component that returns the window handle for a client runtime window when the input field HPS_Item_ID is blank. To retrieve the window handle
for a specific control, enter the system identifier (HPS ID) of an object in the input field HPS_Item_ID.
The component is only supported for the client runtime on the Windows workstation with a rule that converses windows. We do not recommend
using the window handle to alter client runtime applications.

Java Support

This component is not supported for either thick (Java) or thin (HTML) clients.

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of HPS_Get_Window_Handle component.

HPS_Get_Window_Handle component syntax

Name HPS_Get_Window_Handle

System Identifier {CWINHD}}

Input View Name HPS_Get_Window_Handle_I

Input View Field HPS_Item_ID character(50)
The system identifier (HPS ID) of a control on the panel.

Output View
Name

HPS_Get_Window_Handle_O

Output View
Field

 Window_Handle integer(31)
The system window handle.

Output View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 forRETURN_CODES (SRETURN)
Failure.

Examples: HPS_Get_Window_Handle

In this example, the value returned is the system window handle for a client runtime window.

map '' to HPS_ITEM_ID of HPS_GET_WINDOW_HANDLE_I
use component HPS_GET_WINDOW_HANDLE

In this example, the value returned is the system window handle for an object on the client runtime window with the system identifier (HPS ID) of
EDIT_HPS_ID.

map 'EDIT_HPS_ID' to HPS_ITEM_ID of HPS_GET_WINDOW_HANDLE_I
use component HPS_GET_WINDOW_HANDLE

HPS_Intercept_Events

This section presents the purpose, the syntax, the usage, and how the HPS_Intercept_Events component is supported. See Example:
 for an usage example.HPS_Intercept_Events

Purpose

Use this component to re-route an event from a detached rule to a child modal rule (and its window) in the detaching process rather than to the
root rule (and its window). This component re-routes external events to the calling rule instead of the root rule of the detaching process. It
continues to intercept events until the rule is exited.

Java Support

This component is not supported for either thick (Java) or thin (HTML) clients.

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of HPS_Intercept_Events component.

HPS_Intercept_Events component syntax

Name HPS_Intercept_Events

System Identifier CINTEVT

Input View Name This component does not have an input view.

Output View
Name

HPS_Intercept_Events_O

Output View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 forRETURN_CODES (SRETURN)
Failure.

Example: HPS_Intercept_Events

In this example, the calling rule now intercepts posted events. You can check the Return_Code field to make sure the call was successful.

use component HPS_Intercept_Events

HPS_Limit_Scroll_Size

This section presents the purpose, the syntax, the usage, and how the HPS_Limit_Scroll_Size component is supported. See Examples:
 for an usage example.HPS_Limit_Scroll_Size

Purpose

Use this component to decrease the scrollable area of a combo box or list box. The component cannot be used to enlarge an object's scrollable
area, nor does it change the physical size of the list box or combo box. For example, a list box could have 10 visible rows and 20 possible
scrollable rows. If the component were used to decrease the scrollable rows to 5, the list box would still display 10 rows, but only the first 5 would
contain data, and the vertical scrollbar would be disabled.
In C, this is a .deferred component

Java Support

This component is not supported for either thick (Java) or thin (HTML) clients.

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of HPS_Limit_Scroll_Size component.

HPS_Limit_Scroll_Size component syntax

Name HPS_Limit_Scroll_Size

System
Identifier

CLMTSCR

Input
View
Name

HPS_Limit_Scroll_Size_I (System ID: CLMTSCRI)

Input
View
Field

 HPS_Item_ID character(50)
The system identifier (HPSID) of the combo box or list box

Input
View
Field

 Number_Of_Records integer(15)
The number of scrollable records in the combo box or list box.character()

Output
View
Name

HPS_Limit_Scroll_Size_O (System ID: CLMTSCRO)

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Usage

This component may be used to limit dynamically the scrollable size of a single-column list box. This is useful if a list box occurs, for example, 100
times, but only the first 15 occurrences are populated with data. The user can execute this component with the number of records equal to 15,
and it is possible to scroll through the first fifteen rows of the list box.

If the component is executed with the number of records equal to -1, the scrollable size is made equal to the number of repository occurrences.
The scrollable size may be made less than or equal to the number of repository occurrences, but not greater than this number.

This component is intended to provide smooth scrolling support for list boxes.not

Examples: HPS_Limit_Scroll_Size

This example limits the scrolling space in the list box associated with the combo box.

map COMBOBOX to HPS_ITEM_ID
map 10 to NUMBER_OF_RECORDS
use component HPS_LIMIT_SCROLL_SIZE

This example limits the scrollable size of the list box specified by LIST_3 to 20.

map 20 to NUMBER_OF_RECORDS of HPS_LIMIT_SCROLL_SIZE_I
map 'LIST_3' to HPS_ITEM_ID of HPS_LIMIT_SCROLL_SIZE_I
use component HPS_LIMIT_SCROLL_SIZE

HPS_Set_Activate

This section presents the purpose, the syntax, the usage, and how the HPS_Set_Activate component is supported. See Example:
 for an usage example.HPS_Set_Activate

Purpose

Use this component, when called by a rule, to make active the next window conversed within the process. That is, it brings that window to the top
of all other windows and gives it the focus. When used with an HPS_Active_State of Inactive, this component causes the next window conversed
to come to the top in an inactive state. If the window conversed appears on top of the active window, it drops back behind the active window.
In C, this is a .deferred component

Java Support

This component is supported for thick (Java) clients but not thin (HTML) clients.
In the Java client, this component acts on the current window and not on the next conversed window. This is because there is no deferred
component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of HPS_Set_Activate component.

HPS_Set_Activate component

Name HPS_Set_Activate

System
Identifier

CSETACT

Input
View
Name

HPS_Set_Activate_I

Input
View
Field

 HPS_Active_State integer(15)
This field is attached to the system set , which has the following values: HPS_ACTIVE_STATES (SACSTAT)
1 = Active
0 = Inactive

Output
View
Name

HPS_Set_Activate_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Example: HPS_Set_Activate

In this example, the next window conversed becomes the active window.

map 1 to HPS_ACTIVE_STATE of HPS_SET_ACTIVATE_I
use component HPS_SET_ACTIVATE

HPS_Set_Bitmap_File

This section presents the purpose, the syntax, the usage, and how the HPS_Set_Bitmap_File component is supported. See Example:
 for an usage example.HPS_Set_Bitmap_File

Purpose

Use this component, when called by a rule, to change the bitmap file associated with a bitmap entity on a window. This component allows bitmaps

specified at design time (with Window Painter) to be changed dynamically at run time.
In C, this is a .deferred component

Java Support

This component is supported for thick (Java) clients but not thin (HTML) clients.
In the Java client, this component acts on the current window and not on the next conversed window. This is because there is no deferred
component functionality in Java. Refer to for more information. The bitmap file should be placedJava and C# Support for Deferred Components
into the directory included in the classpath.

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of HPS_Set_Bitmap_File component.

HPS_Set_Bitmap_File component

Name HPS_Set_Bitmap_File

System
Identifier

CSETBMP

Input
View
Name

HPS_Set_Bitmap_File_I

Input
View
Field

 HPS_Bitmap_Name character(50)
The name of the bitmap file (BMP) containing the bitmap to be displayed. The bitmap file must be in the directory specified by the
BITMAP_DIR variable in the AE Runtime section of the system initialization file (hps.ini), or if the bitmap file exists in a different
directory, it must be fully qualified.

Input
View
Field

 HPS_Item_ID character(50)
The system identifier (HPSID) of the bitmap entity that is to be changed dynamically

Output
View
Name

HPS_Set_Bitmap_File_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Usage

If you pass a null bitmap file name to the component, it passes a return code of 1 to the rule, and the previous bitmap is redrawn when the window
is conversed.
If you pass an invalid bitmap file name, the component passes a return code of 1 and does not display a bitmap when the window is conversed.

Example: HPS_Set_Bitmap_File

This example has a bitmap file, tools.bmp, associated with the bitmap entity whose identifier is 'ID00102'. The bitmap file replaces whatever file
was previously associated with the bitmap entity.

map 'Tools.bmp' to HPS_BITMAP_NAME of HPS_SET_BITMAP_FILE_I
map 'ID00102' to HPS_ITEM_ID of HPS_SET_BITMAP_FILE_I
use component HPS_SET_BITMAP_FILE

HPS_Set_Cursor_By_ID

This section presents the purpose, the syntax, the usage, and how the HPS_Set_Cursor_By_ID component is supported. See Examples:
 for an usage example.HPS_Set_Cursor_By_ID

Purpose

Use this component to place the focus on a particular Window Painter object (that is, run-time control) based on its system identifier.
In C, this is a .deferred component

Java Support

This component is supported for thick (Java) clients but not thin (HTML) clients.
In the Java client, this component acts on the current window and not on the next conversed window. This is because there is no deferred
component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of HPS_Set_Cursor_By_ID component.

HPS_Set_Cursor_By_ID component syntax

Name HPS_Set_Cursor_By_ID

System
Identifier

CCRSRID

Input
View
Name

HPS_Set_Cursor_By_ID_I (System ID: CCRSRIDI)

Input
View
Field

 HPS_Item_ID character(50)
The system identifier (HPSID) of the field where cursor should be placed or the system identifier of an object on the window

Input
View
Field

Field_Occur integer(15)

Output
View
Name

HPS_Set_Cursor_By_ID_O (System ID: CCRSRIDO)

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Usage

This deferred component is used to position the cursor in a specific editable or unprotected object when the window is re-conversed. The field
selected is highlighted, enabling a user to enter text immediately and overwrite any text already in the field. This component works with the edit
field, multi-line edit field, combo box, list box, checkbox, radio button and push button objects, as well as the columns of a multicolumn list box
(MCLB). The component cannot be used to select a protected field or object.
The component requires the system identifier (HPSID) of the object that is to be selected.
The optional FIELD OCCUR value can be used to position the cursor on different rows of a list box or multicolumn list box object. The default
value of FIELD_OCCUR is 0.

Examples: HPS_Set_Cursor_By_ID

This example sets the focus to the push button whose system identifier (HPSID) is EXITPUSH.

map 'EXITPUSH' to HPS_ITEM_ID of HPS_SET_CURSOR_BY_ID_I
use component HPS_SET_CURSOR_BY_ID

This example sets the cursor in an edit field.

map EDITFIELD to HPS_ITEM_ID
use component HPS_SET_CURSOR_BY_ID

HPS_Set_Help_Topic

This section presents the purpose, the syntax, the usage, and how the HPS_Set_Help_Topic component is supported. See Example:
 for an usage example.HPS_Set_Help_Topic

Purpose

Use this component to set a default help topic for all objects in a window. Normally, when an end user selects help for an object within a window,
you use the component to display the help text associated with the object's system identifier (HPSID). This component allowsShow_Help_Topic
you to override the system identifier and display the same default help topic no matter which object in the window that help is called from. The
keyword specified in the HELP_KEYWORD field must be in the same help file set by the last use of SET_HELP_FILE_NAME.

In C, this is a .deferred component

Use this component only with the native GUI help files associated with your application. Do not use this component if you are
using built-in help features of AppBuilder.

Java Support

This component is supported for thick (Java) clients but not thin (HTML) clients.
In the Java client, this component acts on the current window and not on the next conversed window. This is because there is no deferred
component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of HPS_Set_Help_Topic component.

HPS_Set_Help_Topic component syntax

Name HPS_Set_Help_Topic

System
Identifier

CSETHLT

Input
View
Name

Set_Help_Topic_I

Input
View
Field

Window_Long_Name character(30)

Input
View
Field

 Help_Keyword character(50)
Keyword of topic to be displayed.

Output
View
Name

Set_Help_Topic_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Example: HPS_Set_Help_Topic

If CUSTOMER_DETAILS is the next window conversed, any help called references the KEYWORD topic. (If CUSTOMER_DETAILS is not the
next window conversed, the component has no effect).

1.

map 'CUSTOMER_DETAILS' to WINDOW_LONG_NAME of HPS_SET_HELP_TOPIC_I
map 'KEYWORD' to HELP_KEYWORD of HPS_SET_HELP_TOPIC_I
use component HPS_SET_HELP_TOPIC

HPS_Set_HTML_File

This section presents the purpose, the syntax, the usage, and how the HPS_Set_HTML_File component is supported. See Example:
 for an usage example.HPS_Set_HTML_File

Purpose

This component merges the specified HTML file with the window content and it is re-displayed when the event procedure is completed. This
HTML file cannot be a complete page---that is, it cannot contain HTML, HEAD, or BODY tags. You can insert additional pieces of HTML code to
be displayed at run time. For example, by displaying dynamically generated HTML, your Web program can display error messages stored in a
database.

Java Support

This component is supported for thin (HTML) clients but not thick (Java) clients.

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of HPS_Set_HTML_File component.

HPS_Set_HTML_File component syntax

Name HPS_Set_HTML_File

System
Identifier

CSETHTM

Input View
Name

HPS_Set_HTML_File_I

Input View
Field

 HPS_HTML_File_Name character(260)
The name of the file containing the HTML fragment to be displayed at run time, up to 260 characters. Using a forward slash, "/", for
the file and directory separator ensures that your code is portable across platforms.

Input View
Field

 HPS_HTML_Macro character(30)
The name of the macro, up to 30 characters.
When the following string is found in the HTML file, it is replaced with the contents of the file specified in HPS_HTML_File_Name:
<LVEL_DYNAMIC name="macroname">

Output
View
Name

HPS_Set_HTML_File_O

Output
View Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 forRETURN_CODES (SRETURN)
Failure.

Usage

To use this component, first use the Repository Migration tool in the Repository Administration tool to import and HPS_Set_HTML_File
. For more information on Repository Administration and migrating files, refer to the HPS_Set_HTML_Fragment Personal and Workgroup

 .Repository Administration Guide

Example: HPS_Set_HTML_File

This example uses a window, Window1, that displays dynamically generated HTML at run time. Also refer to the procedure in
.HPS_Set_HTML_Fragment

Edit HTML for the window Window1, insert the following HTML comment where you want the dynamically generated HTML to appear at

1.

2.
3.
4.
5.

run time:

<LVEL_DYNAMIC name="macroname">

where the macroname is the name used in the input view of the system component.

Save the HTML file for the Web page for Window1, close the editor, and commit the changes to the repository.
Use the component in the display rule.
Prepare your application, including the window Window1.
At run time, the HTML tag, LVEL_DYNAMIC is replaced with the HTML fragment corresponding to .macroname

Make sure that you can insert the dynamically generated HTML where you have indicated. Call the component each time the window is displayed,
because returning control to the rule resets the HTML file names.

If you make any changes in Window Painter and then regenerate the HTML (with right-click HTML>Regenerate HTML), it
overwrites any changes you have already made in your HTML editor. Selecting this option removes the HTML comment tags
used by the component.

In the rule displaying window Window1, use this component as shown in the following code:

map 'macroname' to HPS_HTML_MACRO of HPS_SET_HTML_FILE_I
map 'filename' to HPS_HTML_FILE_NAME of HPS_SET_HTML_FILE_I
use component HPS_SET_HTML_FILE

filename can be either:

An existing file that you refer to. Note, existing files can be stored in the repository as a component folder attached to the window.
Attached files are prepared with the window to the subdirectory.includes
A temporary file, created with user-written components, that contains the HTML fragment. Remember that your application should delete
the temporary file after using it.

At run time, the HTML comment tag is replaced with the HTML fragment in the corresponding file.
Remember to do the following:

Correctly specify the path for the file containing the HTML fragment.
Enclose and in quotation marks in the rule.macroname filename
Make sure the HTML file is a fragment rather than a complete page. That is, it cannot contain <HTML>, <HEAD>, or <BODY> tags.
Make sure you associate a file with the macro. The macro has no effect if you do not associate a file with it.
Remember the names and locations of the files, because you need to reinsert the macros if you later edit the window in Window Painter
and regenerate the HTML code.
Make sure your application deletes any temporary files it creates.

HPS_Set_HTML_Fragment

This section presents the purpose, the syntax, the usage, and how the HPS_Set_HTML_Fragment component is supported. See Example:
 for an usage example.HPS_Set_HTML_Fragment

Purpose

Use this component to display a dynamically generated HTML fragment (additional HTML code) stored as a character string within the rule that
uses the component.

Java Support

This component is supported for thin (HTML) clients but not thick (Java) clients.

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of HPS_Set_HTML_Fragment component.
HPS_Set_HTML_Fragment component syntax

1.

2.
3.
4.
5.

Name HPS_Set_HTML_Fragment

System
Identifier

CFRGHTM

Input
View
Name

HPS_Set_HTML_Fragment_I

Input
View
Field

 HPS_HTML_Macro character(30)
The name of the macro, up to 30 characters.
When the following string is found in the HTML file, it is replaced with the contents of the file specified in HPS_HTML_File_Name:
<LVEL_DYNAMIC name="macroname">

Input
View
Field

HPS_HTML_Fragment character(4000)

Input
View
Field

HPS_HTML_Fragment_Length integer(31)

Input
View
Field

 HPS_HTML_Fragment_Append integer(15)
Use this to append more and display more than the 4,000 characters allowed in HPS_HTML_Fragment field. If APPEND=1, each
new fragment is added to the end of the string. If APPEND=0, the fragment displayed is replaced each time the component is called.
(The APPEND function does not apply if you use a different macroname to call the component.)

Output
View
Name

HPS_Set_HTML_Fragment_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure.RETURN_CODES (SRETURN)

Usage

To use this component, first use the Migration Import tool in Freeway Explorer to import and .HPS_Set_HTML_File HPS_Set_HTML_Fragment
For more information on Freeway Explorer and migrating files, refer to the .Personal and Workgroup Repository Administration Guide
Use this component to incorporate additional HTML fragments at run time.

Example: HPS_Set_HTML_Fragment

This example uses a window, Window1, that displays dynamically generated HTML at run time. Also refer to the procedure in
.HPS_Set_HTML_File

Edit HTML for the window Window1, insert the following HTML comment where you want the dynamically generated HTML to appear at
run time:

<LVEL_DYNAMIC name="macroname">

where the macroname is the name used in the input view of the system component.

Save the HTML file for the Web page for Window1, close the editor, and commit the changes to the repository.
Use the component in the display rule.
Prepare your application, including the window Window1.
At run time, the HTML tag, LVEL_DYNAMIC is replaced with the HTML fragment corresponding to .macroname

Make sure that you can insert the dynamically generated HTML where you have indicated. Call the component each time the window is displayed,
because returning control to the rule resets the HTML file names.

If you make any changes in Window Painter and then regenerate the HTML (with right-click HTML>Regenerate HTML), it
overwrites any changes you have already made in your HTML editor. Selecting this option removes the HTML comment tags
used by the component.

In the rule conversing window Window1, use this component as shown in the following code:

map 'macroname' to HPS_HTML_MACRO of HPS_SET_HTML_FRAGMENT_I
map 'This is the character string to be displayed'
 to HPS_HTML_FRAGMENT of HPS_SET_HTML_FRAGMENT_I
map 40 to HPS_HTML_FRAGMENT_LENGTH of HPS_SET_HTML_FRAGMENT_I
map 0 to HPS_HTML_FRAGMENT_APPEND of HPS_SET_HTML_FRAGMENT_I
use component HPS_SET_HTML_FRAGMENT

At run time, the HTML comment tag is replaced with the character string mapped to the field HPS_HTML_Fragment.

In the rule, enclose the macroname and the character string mapped to the HTML fragment in quotation marks. If you call this component more
than once using the same macroname, the field HPS_HTML_Fragment_Append can be used to display more than 4,000 characters. If
APPEND=1, each new fragment is added to the end of the string. If APPEND=0, the fragment displayed is replaced each time the component is
called. (The APPEND function does not apply if you use a different macroname to call the component.)

HPS_Set_MinMax

This section presents the purpose, the syntax, the usage, and how the HPS_Set_MinMax component is supported. See Example:
 for an usage example.HPS_Set_MinMax

Purpose

Use this component to minimize, maximize, or restore to normal the currently visible windows of this process. Minimize shows only one icon for all
windows in this process. Normal restores windows to their original sizes and positions. Maximize maximizes the window as long as "Maximize
box" is set to TRUE on the window property.
When this component is used in C environment, it doesn't minimizes, maximizes or restores the window until the next converse.
In C, this is a .deferred component

Java Support

This component is supported for thick (Java) clients but not thin (HTML) clients.
With the Java client, this component works only in the current window. For HPS_Window_State input view field, the value of 1 (Maximize) does
not work in JDK 1.3.1.

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of HPS_Set_MinMax component.

HPS_Set_MinMax component syntax

Name HPS_Set_MinMax

System
Identifier

CSETMMX

Input
View
Name

HPS_Set_MinMax_I

Input
View
Field

 HPS_Window_State integer(15)
This field is attached to the system set , which has the following values: 0 = Minimize, 1 =HPS_WINDOW_STATES (SWSTATE)
Maximize, 2 = Normal.

Output
View
Name

HPS_Set_MinMax_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Example: HPS_Set_MinMax

This minimizes the currently visible windows of the active process.

map 0 to HPS_WINDOW_STATE of HPS_SET_MINMAX_I
use component HPS_SET_MINMAX

HPS_Set_Selected_Field

This section presents the purpose, the syntax, the usage, and how the HPS_Set_Selected_Field component is supported. See Example:
 for an usage example.HPS_Set_Selected_Field

Purpose

Use this component to select multiple rows or cells in either a list box or a multicolumn list box (MCLB) according to the selection type. For
MCLBs, this component selects the entire rows or cells within the specified column, depending on the value of MCLB's Row Select property.

In C, this is a .deferred component

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients, except the cell selection in HPS_Listbox_Cell_ID input view
field is not supported.

In the Java client, this component acts on the current window and not on the next conversed window. This is because there is no deferred
component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of HPS_Set_Selected_Field component.

HPS_Set_Selected_Field component syntax

Name HPS_Set_Selected_Field

System
Identifier

CSETFLD

Input
View
Name

HPS_Set_Selected_Field_I

Input
View
Field

 HPS_Item_ID character(50)
The system identifier (HPSID) of the list box, MCLB or MCLB column.

Input
View
Field

 HPS_Listbox_Cell_ID character(50)
The system identifier (HPSID) of the MCLB column. You must specify this setting for MCLBs only when the Row Select property is
set to FALSE, and the HPS_Item_ID contains the MCLB's HPSID rather than the column's HPSID. This setting is ignored for list
boxes and MCLBs with the Row Select property set to TRUE.

Input
View
Field

 HPS_Field_Occur_Start integer(15)
First virtual occurrence number in range. Value must be greater than zero.

Input
View
Field

 HPS_Field_Occur_End integer(15)
Final virtual occurrence number in range and is not used for single row selection.

Output
View
Name

HPS_Set_Selected_Field_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Usage

The HPS_Item_ID field must contain the system identifier (HPSID) of the list box, MCLB or MCLB column. For MCLBs with the Row Select
property set to FALSE, which allows individual cells to be selected, if the HPS_Item_ID field specifies the HPSID of an MCLB, the
HPS_Listbox_Cell_ID field must contain the HPSID of a column within the MCLB. Alternatively, you may directly indicate the appropriate column
by specifying it's HPSID in the HPS_Item_ID field. For MCLBs with the Row Select property set to TRUE, the HPS_Listbox_Cell_ID field is
ignored, and specifying a column's HPSID in the HPS_Item_ID field is equivalent to specifying the containing MCLB's HPSID.

For list boxes and MCLBs with the Selection Type property set to SINGLE or EXTENDED, the newly selected rows or cells replace any existing
selection. For Selection Type of MULTIPLE, the new selection is added to any existing selection, thereby allowing non-contiguous selection with
multiple calls to the component.

This component causes the identified fields to be selected as if you had clicked on them with the mouse. The selected fields appear in reverse
video. You can then use the component to obtain the name and occurrence number of the fields and process them.Get_Selected_Field

HPS_SET_SELECTED_FIELD summarizes how occurrences are selected according to the Selection Type of the list box or MCLB, field
occurrence values, and the USE_OLD_SET_SELECTED_FIELD setting in the [AE Runtime] section of the Hps.ini file. In order for the selection to
be valid under the default setting of the HPS_SET_SELECTED_FIELD component, that is USE_OLD_SET_SELECTED_FIELD=FALSE, the
following conditions must be met:

HPS_Field_Occur_Start must be greater than zero but less than or equal to database/virtual size.
HPS_Field_Occur_End must be zero or greater than or equal to start, but less than or equal to database/virtual size.
For selection type, HPS_Field_Occur_End must equal HPS_Field_Occur_Start unless HPS_Field_Occur_End is zero.Single
If HPS_Field_Occur_End is zero, then for any selection type, the single row specified by HPS_Field_Occur_Start is selected, thus
changing the selection type does not affect the rule behavior in this respect.

For list boxes and MCLBs with the Selection Type property set to MULTIPLE or EXTENDED, a range of rows or cells within a column may be
selected.

A warning message, Cmp239w, may be displayed to report range specification errors by specifying "Warnings" for the MESSAGES setting in the
[AE Runtime] section of the Hps.ini file. Refer to the for more information about the ini settings. Refer to the INI Settings Reference Guide

 for more information about warning and error messages.Messages Reference Guide

HPS_SET_SELECTED_FIELD

Selection
Type

Start End Occurrences Selected

 C Client with
USE_OLD_...=TRUE

Java Client C Client with
USE_OLD_...=FALSE

C# Client

Single 0 0 1 - - -

 0 > Start 1 - - -

 n 0 n n n n

 n < Start n n - n

 n = Start n n n n

 n > Start n n - n

 n >
maximum

n - - -

 >
maximum

0 maximum - - -

 >
maximum

< Start maximum - - -

 >
maximum

= Start maximum - - -

 >
maximum

> Start maximum - - -

Multiple 0 0 - - - -

 0 > Start 1 to End 1 to End - 1 to end

 n 0 - - n -

 n < Start - - - -

 n = Start n n n n

 n > Start n to End n to End n to End n to end

 n >
maximum

n to maximum n to
maximum

- n to
maximum

 >
maximum

0 - - - -

 >
maximum

< Start - - - -

 >
maximum

= Start - - - -

 >
maximum

> Start - - - -

Extended 0 0 - - - -

 0 > Start End 1 to End - 1 to end

 n 0 - - n -

 n < Start - - - -

 n = Start n n n n

 n > Start End n to End n to End n to end

 n >
maximum

maximum n to
maximum

- n to
maximum

 >
maximum

0 - - - -

 >
maximum

< Start - - - -

 >
maximum

= Start - - - -

 >
maximum

> Start - - - -

USE_OLD_... in the heading refers to the USE_OLD_SET_SELECTED_FIELD setting in the Hps.ini file.
n = integer value greater than 0 but less than or equal to the range set for the list box or MCLB
maximum = current virtual limit of the list box or MCLB
'-' indicates that no occurrence is selected, and the previously selected occurrences, if any, remain as selected.

The occurrences selection for Java client may change in the future release. Selection for Java client does not depend on the
USE_OLD_SET_SELECTED_FIELD setting.

Example: HPS_Set_Selected_Field

This example selects rows 1 through 5 of the list box with the system identifier of LISTBOX.

map 'LISTBOX' to HPS_ITEM_ID of HPS_SET_SELECTED_FIELD_I
map 1 to HPS_FIELD_OCCUR_START of HPS_SET_SELECTED_FIELD_I
map 5 to HPS_FIELD_OCCUR_END of HPS_SET_SELECTED_FIELD_I
use component HPS_SET_SELECTED_FIELD

HPS_Set_Window_Attributes

This section presents the purpose, the syntax, the usage, and how the HPS_Set_Window_Attribute component is supported. See Example:
 for an usage example.HPS_Set_Window_Attributes

Purpose

Use this component to determine whether a panel is visible or invisible. As is the case with all deferred components, the return code from the
component is 1 (Success).always
In C, this is a .deferred component

Java Support

This component is not supported for either thick (Java) or thin (HTML) clients.

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of HPS_Set_Window_Attributes component.

HPS_Set_Window_Attributes component syntax

Name HPS_Set_Window_Attributes

System
Identifier

CWINATR

Input
View
Name

HPS_Set_Window_Attributes_I

Input
View
Field

 Window_Long_Name character(30)
The window name of the panel.

Input
View
Field

 HPS_Window_Mode integer(15)
The window display style being set by this component.
0 = invisible, 1 = visible

Output
View
Name

HPS_Set_Window_Attributes_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Usage

Remember these restrictions:

If an invalid window name is passed to the component, no error message is displayed.
If no window name is given, an error window is displayed.
If an invalid value is entered into HPS_Window_Mode, an error window is displayed.

The error messages listed above can be suppressed by not setting the value MESSAGES=Errors in the AE Runtime section of the system
initialization file (hps.ini).

Example: HPS_Set_Window_Attributes

This example makes a window invisible.

map 'WINDOW NAME' to WINDOW_LONG_NAME of HPS_SET_WINDOW_ATTRIBUTES_I
map 1 to HPS_WINDOW_MODE of HPS_SET_WINDOW_ATTRIBUTES_I
use component HPS_SET_WINDOW_ATTRIBUTES

HPS_Tbl_Get_Data_State

This section presents the purpose, the syntax, the usage, and how the HPS_Tbl_Get_Data_State component is supported. See Example:
 for an usage example.HPS_Tbl_Get_Data_State

Purpose

Use this component, with , to implement smooth scrolling for a multicolumn list box (MCLB). Smooth scrolling allows you toHPS_Tbl_Init_Size
fetch data from a database in small increments to populate a MCLB view each time a user scrolls the MCLB beyond the bounds of its
view---rather than fetching at once all the data the MCLB might ever contain.

Java Support

This component is not supported for either thick (Java) or thin (HTML) clients.

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of HPS_Tbl_Get_Data_State component.

HPS_Tbl_Get_Data_State component syntax

Name HPS_Tbl_Get_Data_State

System Identifier CTBLDAT

Input View Name HPS_Tbl_Get_Data_State_I

Input View Field HPS_Item_ID character(50)
The system identifier (HPSID) of the multicolumn list box

Output View
Name

HPS_Tbl_Get_Data_State_O

Output View
Field

 Elevator_Pos integer(15)
Virtual occurrence number of the first visible row

Output View
Field

 HPS_Virtual_Start_Pos integer(15)
First occurrence of the data source (usually a database) from which data should be mapped to the MCLB view

Output View
Field

 HPS_Virtual_End_Pos integer(15)
Last occurrence of the data source (usually a database) from which data should be mapped to the MCLB view

Output View
Field

 HPS_View_Start_Pos integer(15)
First occurrence of the MCLB view to which data should be mapped

Output View
Field

 HPS_View_End_Pos integer(15)
Last occurrence of the MCLB view to which data should be mapped

Output View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 forRETURN_CODES (SRETURN)
Failure.

Usage

Whenever an end user scrolls beyond the occurrences in the MCLB view, the system generates an HPS_LB_OUTRANGE event which you can
test for. When an HPS_LB_OUTRANGE event occurs, you can use this component to determine which instances to fetch from a database and
which occurrences to map to in the MCLB view.

Event Information

When a user scrolls outside an MCLB view, the system generates a system event and returns the following information in the pre-defined system
view HPS_EVENT_VIEW:

Information returned in the pre-defined system view HPS_EVENT_VIEW

Field Value

EVENT_NAME 'HPS_LB_OUTRANGE'

EVENT_QUALIFIER 'UP' (if the user was scrolling up)
'DOWN' (if the user was scrolling down)

This component works only with multicolumn list boxes. If you want to implement smooth scrolling for a single-column list box, you can use a
multicolumn list box instead with a single, non-editable column.

Example: HPS_Tbl_Get_Data_State

This example uses the entities summarized in this table, where the Rules Language source code for the rules are given below.

Descriptions of entities

Entity Name Entity Type Description

SMOOTH Rule Converses window SMOOTH_WIN and invokes rule SMOOTH_FETCH

SMOOTH_WIN Window Contains the MCLB, SMOOTH_MCLB

SMOOTH_WIN_VIEW View View for window, SMOOTH_WIN

SMOOTH_MCLB MCLB MCLB in window SMOOTH_WINDOW

SMOOTH_MCLB_VIEW MCLB View for MCLB, SMOOTH_MCLB

SMOOTH_FETCH Rule Fetches data from database for MCLB

SMOOTH_FETCH_IO View Input/Output view for SMOOTH_FETCH

RULE SMOOTH

> initialize component with the system identifier of the MCLB <
map 'SMOOTH_MCLB' to HPS_ITEM_ID of HPS_TBL_INIT_SIZE_I
map 1000 to VIRTUAL_SIZE of HPS_TBL_INIT_SIZE_I
use component HPS_TBL_INIT_SIZE

do
 CONVERSE WINDOW SMOOTH_WIN NOWAIT
while EVENT_SOURCE of HPS_EVENT_VIEW <> 'Exit'
caseof EVENT_SOURCE of HPS_EVENT_VIEW
 case 'SMOOTH MCLB'
 if EVENT_NAME = 'HPS_LB_OUTRANGE'
 > map the MCLB ID and view into the fetch rule's input view<
 map 'SMOOTH_MCLB' to HPS_ITEM_ID of SMOOTH_FETCH_IO
 map MCLB_VIEW of SMOOTH_WIN_VIEW to MCLB_VIEW
 of SMOOTH_FETCH_IO

 > fetch some data <
 use rule SMOOTH_FETCH

 > map the data back into the MCLB view <
 map MCLB_VIEW of SMOOTH_FETCH_IO to MCLB_VIEW of SMOOTH_WIN_VIEW
 endif
 endcase
enddo

.6 RULE SMOOTH_FETCH

> initialize component with the system identifier of the MCLB <
map HPS_ITEM_ID of SMOOTH_FETCH_IO to HPS_ITEM_ID of HPS_TBL_GET_DATA_STATE_I
use component HPS_TBL_GET_DATA_STATE

*> Use information returned by HPS_TBL_GET_DATA_STATE
 to fetch data from database and map to MCLB view<*

*> Fetch data from database starting at occurrence VIRTUAL_START_POS
 of HPS_TBL_GET_DATA_STATE_O and ending at VIRTUAL_END_POS
 of HPS_TBL_GET_DATA_STATE_O <*
 (insert SQL statements)

*> Map the data to MCLB_VIEW of SMOOTH_FETCH_IO,
 starting at position VIEW_START_POS of HPS_TBL_GET_DATA_STATE_O
 and ending at VIEW_END_POS of HPS_TBL_GET_DATA_STATE_O <*
 (insert map statements)

HPS_Tbl_Init_Size

This section presents the purpose, the syntax, the usage, and how the HPS_Tbl_Init_Size component is supported. See Example:
 for an usage example.HPS_Tbl_Init_Size

Purpose

Use this component to inform the system of the virtual size of a multicolumn list box (MCLB). The virtual size is the maximum number of
occurrences that can (with scrolling) be displayed in the MCLB---usually the number of occurrences that can be retrieved from a database. The
system uses this information to correctly position the elevator within the MCLB scroll bar.
This component is intended to be called only once per set of data. Reset the MCLB state at the time of the component call.
In C, this is a .deferred component

Java Support

This component is not supported for either thick (Java) or thin (HTML) clients.

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of HPS_Tbl_Init_Size component.

HPS_Tbl_Init_Size component syntax

Name HPS_Tbl_Init_Size

System
Identifier

CTBLSIZ

Input
View
Name

HPS_Tbl_Init_Size_I

Input
View
Field

 HPS_Item_ID character(50)
The system identifier (HPSID) of the MCLB

Input
View
Field

 Virtual_Size integer(15)
Virtual size of the MCLB (the maximum number of occurrences that can, with scrolling, be displayed in the MCLB)

Input
View
Field

 HPS_Back_Buffer integer(15)
This is not used.

Output
View
Name

HPS_Tbl_Init_Size_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Usage

This component works only with multicolumn list boxes. If you want to implement smooth scrolling for a single-column list box, you can use a
multicolumn list box instead with a single, non-editable column.
You use this component when the virtual size is so large that it is impractical to make the MCLB view large enough to contain all the occurrences
(and to do a single fetch to populate the view before displaying the MCLB). By using this component in conjunction with

 , you can make the view smaller than the number of occurrences that can potentially be displayed in the MCLB, andHPS_Tbl_Get_Data_State
then do additional fetches whenever the user scrolls beyond the bounds of the view.
With HPS_TBL_INIT_SIZE, you can only specify the overall data range (plus the back buffer amount, but that's a minor detail).
Runtime then prompts you, by generating HPS_LB_OUTRANGE events, to provide the data it requires for the current physical range. You are
required to call HPS_TBL_GET_DATA_STATE to determine the data that runtime wants and you can not override this - you MUST populate the
MCLB view with the range of data that runtime tells you.
When you call HPS_TBL_INIT_SIZE, runtime resets the scroll position to row 1 and asks you data from row 1 (this is existing behavior and not
related to my fix). This is the only time that the rules code can affect the range of data that should be contained within the view. All subsequent
changes to the range of data that should be in the view, notified to you be the HPS_LB_OUTRANGE events, are solely driven by the user and
their attempts to scroll outside the current range in the view - runtime will calculate the new range of data required and you MUST honour that
request.
Thus the basis for my saying that HPS_TBL_INIT_SIZE should be called only once for any given set of data.
Compare with SET_VIRTUAL_LISTBOX_SIZE in which the application completely drives the subset of data currently in the view. In response of
HPS_LB_OUTRANGE events generated when the user attempts to scroll outside the current range in the view, the application is completely
responsible for determining the new range of data that should be populated in the view and MUST then tell runtime how the new view contents
map to the full range of data by setting the ELEVATOR_POSITION field appropriately.
Thus SET_VIRTUAL_LISTBOX_SIZE is intended to be called multiple times for any given set of data.

Virtual Listbox Size

There is an important distinction between the size of an MCLB, the size of its view, and the virtual size of the MCLB.

The MCLB contains the instances of the occurring field presented to the end user. For example, an MCLB can contain 10 occurrences
that are displayed when a window is conversed.
The MCLB view contains the instances of the occurring field that can be presented to the end user without an HPS_LB_OUTRANGE
condition being generated.
For example, the MCLB view for an MCLB containing 10 occurrences can itself contain 100 occurrences. As long as the end user does
not scroll past these 100 occurrences, the system handles the scrolling and no HPS_LB_OUTRANGE condition is returned.
If the MCLB view is large enough to accommodate all the instances that can potentially be displayed in the MCLB, then the system
handles scrolling without your having to do anything in Rules Language code beyond initially mapping the instances to the MCLB view.
The virtual size is the maximum number of instances of the occurring field that are potentially available to the end user. For example, if an
MCLB contains 10 occurrences and its view 100 occurrences, the virtual size might be 1000 occurrences if there are 1000 occurrences
that might be fetched for display in the MCLB. Whenever an end user scrolls beyond the 100 occurrences in the view, the system
generates an HPS_LB_OUTRANGE event which you can test for. When an HPS_LB_OUTRANGE event occurs, you can use
HPS_Tbl_Get_Data_State to determine which instances to fetch from a database and which occurrences in the MCLB view to map to.

Event Information

When this component is used, the out range event is not generated if the number of rows being set falls within the physical size of the MCLB. If
the virtual size being set is greater than the physical size, a system event is generated and the HPS_EVENT_VIEW is populated as follows:

HPS_EVENT_VIEW populated

Field Value

EVENT_NAME 'HPS_LB_OUTRANGE'

EVENT_QUALIFIER 'INIT'

Example: HPS_Tbl_Init_Size

See the examples under .HPS_Tbl_Get_Data_State

Restore_Altered_Fields

This section presents the purpose, the syntax, the usage, and how the Restored_Altered_Fields component is supported. See Example:
 for an usage example.Restore_Altered_Fields

Purpose

Use this component to clear altered field flags. An iterative call to loops through altered fields unless you clear the altered fieldGet_Altered_Field
flags by using this component. Use of this component does not change the value in a field; it just resets its status to unaltered.

Java Support

This component is supported for thick (Java) clients but not thin (HTML) clients.

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of Restore_Altered_Fields component.

Restore_Altered_Fields component syntax

Name Restore_Altered_Fields

System Identifier CCLRALT

Input View Name Restore_Altered_Fields_I

Input View Field Window_Long_Name character(30)

Output View
Name

Restore_Altered_Fields_O

Output View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 forRETURN_CODES (SRETURN)
Failure.

Example: Restore_Altered_Fields

This example specifies SELECT_CUSTOMER as the window on which to restore altered fields.

map 'SELECT_CUSTOMER' to WINDOW_LONG_NAME of RESTORE_ALTERED FIELDS_I
use component RESTORE_ALTERED_FIELDS

Set_CloseDown_Notification

This section presents the purpose, the syntax, the usage, and how the Set_CloseDown_Notification component is supported. See Examples:
 for an usage example.Set_CloseDown_Notification

Purpose

Use this component to set the value of a return code, allowing the application to react to close-down conditions, and enables the choice onClose
the system menu if it has been disabled.

Java Support

This component is supported for thick (Java) clients but not thin (HTML) clients. For the Window_Long_Name input view field, the value of
asterisk (*) is not supported in Java.

Syntax

Here is the syntax of Set_CloseDown_Notification component.

Set_CloseDown_Notification component syntax

Name Set_CloseDown_Notification

System Identifier CAPPOFF

Input View Name Set_CloseDown_Notification_I

Input View Field Window_Long_Name character(30)
Can be set to asterisk (*) to create a global Return_Code for all windows in the application.

Input View Field Notify_Return_Code character(50)

Output View
Name

Set_CloseDown_Notification_O

Output View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 forRETURN_CODES (SRETURN)
Failure.

Usage

If the user closes the application by double-clicking the window's system menu symbol, the rule receives the Notify_Return_Code specified in this
component. The information contained in the Notify_Return_Code provides the application with an opportunity to react to the close-down
condition.
This information appears either in the WINDOW_RETCODE field or the EVENT_SOURCE field of the pre-defined system view
HPS_EVENT_VIEW, depending on which mechanism the application is using. If nothing is provided in the Notify_Return_Code field, the Close
choice is disabled.
Using an asterisk (*) in the Window_Long_Name field to create a global Return_Code affects only windows that are conversed subsequently or
that are currently visible. It does not affect windows that are open but invisible (for example a window that is invisible because it was conversed by
a rule that uses another rule that has conversed a window that is currently visible).

Examples: Set_CloseDown_Notification

In this example, the Exit is the value of the Close text property for the window.

map 'Customer Details' to WINDOW_LONG_NAME of SET_CLOSEDOWN_NOTIFICATION_I

In this example, the system menu choice for the next window conversed is enabled.Close

map 'Exit' to NOTIFY_RETURN_CODE of SET_CLOSEDOWN_NOTIFICATION_I
use component SET_CLOSEDOWN_NOTIFICATION

Set_Control_Color_By_ID

This section presents the purpose, the syntax, the usage, and how the Set_Control_Color_By_ID component is supported. See Example:
 for an usage example.Set_Control_Color_By_ID

Purpose

Use this component to dynamically modify the color property of certain objects. You can use this component to set the color of the background,
text, or border of an edit field, multiline edit field, protected field, push button, radio button, check box, list box, group box, combo box, static text,
or multicolumn list box (whole box only, not individual cells).
In C, this is a .deferred component

Because of a Windows restriction, in C you cannot modify the border, text, or background color of push buttons or the border
color of other objects in applications to be executed in Microsoft Windows.

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients. For a thin client, there is no way to set a separate color for a
single MCLB column only for the whole MCLB. For the Field_Attr input view field, the reset value 12 is not supported.

In the Java client and thin client, this component acts on the current window and not on the next conversed window. This is because there is no
deferred component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for information on other supported components.Interface Components

For 3270 Converse, setting the background color causes the field to be displayed in reverse-video (black text on a colored background).

2 = Border
10 = Reset background to original color
11 = Reset text to original color
12 = Reset border to original color

3270 Converse supports modification of an individual cell in a list box. The input view of a 3270 Converse component contains an INTEGER 15
field for specifying the individual cell. Specify an occurrence number of 0 (zero) to modify the entire list box or column.

Syntax

Here is the syntax of Set_Control_Color_By_ID component.

Set_Control_Color_By_ID component syntax

Name Set_Control_Color_By_ID

System
Identifier

CCTLCID

Input
View
Name

Set_Control_Color_By_ID_I

Input
View
Field

 HPS_Item_ID character(50)
The system identifier (HPSID) of the object

Input
View
Field

 Field_Attr integer(15)
Property to be colored. This field is attached to the system set , which has the followingWINDOW_OBJECT_ATTRIBUTES (SATTR)
values:
0 = Background
1 = Text
2 = Border
10 = Resets background to color originally set in Window Painter
11 = Resets text to color originally set in Window Painter
12 = Resets border to color originally set in Window Painter
The value in the Attr_Color field is ignored when you reset the color.

Input
View
Field

 Attr_Color integer(15)
Color to make the selected property:
0 = White, 1 = Yellow, 2 = Blue
3 = Red, 4 = Not supported, 5 = Not supported
6 = Green, 7 = Magenta, 8 = Black
9 = Aqua
This field is attached to the system set .WINDOW_OBJECT_COLORS (SCOLORS)

Output
View
Name

Set_Control_Color_By_ID_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Example: Set_Control_Color_By_ID

In this example, the background color of the object with the system identifier of Exit is set to red in the next window conversed.

map 'Exit' to HPS_ITEM_ID of SET_CONTROL_COLOR_BY_ID_I
map 0 to FIELD_ATTR of SET_CONTROL_COLOR_BY_ID_I
map 3 to ATTR_COLOR of SET_CONTROL_COLOR_BY_ID_I
use component SET_CONTROL_COLOR_BY_ID

Set_Control_Mode_By_ID

This section presents the purpose, the syntax, the usage, and how the Set_Control_Mode_By_ID component is supported. See Example:
 for an usage example.Set_Control_Mode_By_ID

Purpose

Use this component to set the mode of certain objects. An object can be in one of three modes: invisible (not displayed), disabled (displayed but
not changeable), or enabled (displayed and changeable). You can use this component to change the mode of an edit field, protected field, static
text, combo box, check box, list box, chart, radio button, push button, ellipse, rectangle, or bitmap. You can use this component to disable a hot
spot. You can also enable or disable individual columns in a multicolumn list box if HPS_Listbox_Cell_ID is specified.
In C, this is a .deferred component

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients; however, the value 3 for the Field_Mode input view field is not
supported in Java, and for columns of a multicolumn listbox (MCLB), the value 0 is not supported for the Field_Mode input view field.

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for more information.Interface Components

3270 Converse supports modification of an individual cell in a list box. The input view of a 3270 Converse component contains an INTEGER 15
field for specifying the individual cell. Specify an occurrence number of 0 (zero) to modify the entire list box or column.

Syntax

Here is the syntax of Set_Control_Mode_By_ID component.

Set_Control_Mode_By_ID component syntax

Name Set_Control_Mode_By_ID

System
Identifier

CCTLMID

Input
View
Name

Set_Control_Mode_By_ID_I

Input
View
Field

 HPS_Item_ID character(50)
The system identifier (HPSID) of the object

Input
View
Field

 HPS_Listbox_Cell_ID character(50)
The system identifier (HPSID) of multicolumn list box cell

Input
View
Field

 Field_Mode integer(15)
This field is attached to the system set , which has the following values: WINDOW_OBJECT_MODES (SMODE)
0 = Invisible, disabled
1 = Visible, disabled
2 = Visible, enabled
3 = For mainframe: Invisible, enabled (3270 Converse only)
3= For C: Visible, read-only

Output
View
Name

Set_Control_Mode_By_ID_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Usage

For C Runtime, if a field was created as protected in Window Painter it can be changed to editable at runtime unless the
ALLOW_CHANGE_PROTECTED_FIELDS ini setting is changed to FALSE. This ini setting defaults to TRUE.

Example: Set_Control_Mode_By_ID

In this example, the object with the system identifier of Save is disabled in the next window conversed.

map 'Save' to HPS_ITEM_ID of SET_CONTROL_MODE_BY_ID_I
map 1 to FIELD_MODE of SET_CONTROL_MODE_BY_ID_I
use component SET_CONTROL_MODE_BY_ID

Set_Control_RGBColor_By_ID

This section presents the purpose, the syntax, the usage, and how the Set_Control_RGBColor_By_ID component is supported. See Example:
 for an usage example.Set_Control_RGBColor_By_ID

Purpose

Use this component to dynamically modify the color property of certain objects. You can use this component to set the color of the background,
text, or border of an edit field, multiline edit field, protected field, push button, radio button, check box, list box, group box, combo box, static text,
or multicolumn list box (whole box only, not individual cells).

Note
Because of a Windows restriction, you cannot modify the border, text, or background color of push buttons or the border color of
other objects in applications to be executed in Microsoft Windows.

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients. For a thin client, there is no way to set a separate color for a
single MCLB column only for the whole MCLB. For the Field_Attr input view field, the reset value 12 is not supported.

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of Set_Control_RGBColor_By_ID component.

Set_Control_RGBColor_By_ID component syntax

Name Set_Control_RGBColor_By_ID

System Identifier CSCRGBC

Input View Name Set_Control_RGBColor_By_ID_I

Input View Field HPS_Item_ID character(50)
The system identifier (HPSID) of the object

Input View Field Field_Attr integer(15)
Property to be colored. This field is attached to the system set WINDOW_OBJECT_ATTRIBUTES, which has the following
values:
0 = Background
1 = Text
2 = Border
10 = Resets background to color originally set in Window Painter
11 = Resets text to color originally set in Window Painter
12 = Resets border to color originally set in Window Painter
The values in the following color fields are ignored when you reset the color.

Input View Field Red_Color integer(15)
Value for the red component of the color (0--255).

Input View Field Green_Color integer(15)
Value for the green component of the color (0--255).

Input View Field Blue_Color integer(15)
Value for the blue component of the color (0--255).

Output View
Name

Set_Control_RGBColor_By_ID_O

Output View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 forRETURN_CODES (SRETURN)
Failure.

Example: Set_Control_RGBColor_By_ID

This example sets to red the background of the object with the system identifier of Exit.

map 'Exit' to HPS_ITEM_ID of SET_CONTROL_RGBCOLOR_BY_ID_I
map 0 to FIELD_ATTR of SET_CONTROL_RGBCOLOR_BY_ID_I
map 255 to RED_COLOR of SET_CONTROL_RGBCOLOR_BY_ID_I
map 0 to GREEN_COLOR of SET_CONTROL_RGBCOLOR_BY_ID_I
map 0 to BLUE_COLOR of SET_CONTROL_RGBCOLOR_BY_ID_I
use component SET_CONTROL_RGBCOLOR_BY_ID

Set_Cursor_Field

This section presents the purpose, the syntax, the usage, and how the Set_Cursor_Field component is supported. See Example:
 for an usage example.Set_Cursor_Field

Purpose

Use this component to determine the field in which the cursor appears when the window is reconversed. This allows you to override the default
cursor positioning. A field selected with this component is highlighted. Thus, a user can immediately begin to enter text, overwriting any text
already in the field.
A field name and a view name must be provided and must match a field on the currently conversed window.
Specify an occurrence number of zero if the field is not in a list box or if you want to position the cursor on the first occurrence of the field.

This component does not support list boxes in an IBM AIX environment. You must therefore specify zero as the occurrence
number for applications running in AIX.

Java Support

This component is supported for thick (Java) clients but not thin (HTML) clients.

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported

 for more information. 3270 Converse does not highlight the field selected with this component.Interface Components

Syntax

Here is the syntax of Set_Cursor_Field component.

Set_Cursor_Field component syntax

Name Set_Cursor_Field

System Identifier CCURPOS

Input View Name Set_Cursor_Field_I

Input View Field Field_Long_Name character(30)
The name of the field in the hierarchy diagram to which the field in the window is linked

Input View Field View_Long_Name character(30)
The view that includes the field mapped to FIELD_LONG_NAME

Input View Field Listbox_Occur integer(15)
Occurrence number of field within a list box (ignored if not a list box field)

Output View
Name

Set_Cursor_Field_O

Output View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 forRETURN_CODES (SRETURN)
Failure.

Example: Set_Cursor_Field

This example sets the cursor on the field FIELD_1.

map 'FIELD_1' to FIELD_LONG_NAME of SET_CURSOR_FIELD_I
map 'VIEW_1' to VIEW_LONG_NAME of SET_CURSOR_FIELD_I
use component of SET_CURSOR_FIELD

Set_Default_Push_Button

This section presents the purpose, the syntax, the usage, and how the Set_Default_Push_Button component is supported. See Example:
 for an usage example.Set_Default_Push_Button

Purpose

Use this component to set the button with a specified system identifier as the default push button.

Java Support

This component is supported for thick (Java) clients but not thin (HTML) clients.

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of Set_Default_Push_Button component.

Set_Default_Push_Button component

Name Set_Default_Push_Button

System Identifier CDEFBUT

Input View Name Set_Default_Push_Button_I

Input View Field Pushbutton_ID character(50)

Output View
Name

Set_Default_Push_Button_O

Output View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 forRETURN_CODES (SRETURN)
Failure.

Example: Set_Default_Push_Button

This example sets the button to the button with the system identifier of Pushbutton_ID.

map 'SEARCH' to PUSHBUTTON_ID of SET_DEFAULT_PUSH_BUTTON_I
use component SET_DEFAULT_PUSH_BUTTON

Set_Field_Blink_By_ID

This section presents the purpose, the syntax, the usage, and how the Set_Field_Blink_By_ID component is supported. See Examples:
 for an usage example.Set_Field_Blink_By_ID

Purpose

Use this component to dynamically modify a highlighting property of a field. You can use this component to set an edit field, protected field or list
box to be displayed as blinking in the current color or to return it to normal non-blinking. Returning to normal non-blinking may also be
accomplished by using the component or the component.Set_Field_Color Clear_Window_Changes

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for more information.Interface Components

Blinking fields only display on 3270 devices that support extended data streams; on other 3270 devices, the change is accepted but the data is
not displayed as blinking.

This component is only valid in the 3270 Converse environment.

Java Support

This component is not supported for either thick (Java) or thin (HTML) clients.

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of Set_Field_Blink_By_ID component.

Set_Field_Blink_By_ID component syntax

Name Set_Field_Blink_By_ID

System
Identifier

CFLDBLK

Input View
Name

Set_Field_Blink_By_ID_I

Input View
Field

 Window_Long_Name character(30)
The name of the window that contains the field to be modified. This field must be set to the current window name, i.e. the
window conversed by the calling rule.

Input View
Field

 HPS_Item_ID character(50)
The system identifier (HPSID) of the object.

Input View
Field

 HPS_Listbox_Cell_ID character(50)
The system identifier (HPSID) of the multicolumn list box cell.

Input View
Field

 Field_Occur integer(15)
The occurrence number of the record in the list box to be affected, if the item is a list box. Specify an occurrence number of
zero to modify all occurrences.

Input View
Field

 Field_Blink_State integer(15)
Sets the item to blinking or normal. 0 = Normal, 1 = Blinking.

Output View
Name

Set_Field_Blink_By_ID_O

Output View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 forRETURN_CODES (SRETURN)
Failure.

Examples: Set_Field_Blink_By_ID

For an edit field, which has a system identifier 'CUSTOMER_LAST_NAME', to be blinking, the component should be used in the following way.

map 'CUSTOMER_LAST_NAME' to HPS_ITEM_ID of SET_FIELD_BLINK_BY_ID_I
map 'CUSTOMER_DTL_DIS' to WINDOW_LONG_NAME of SET_FIELD_BLINK_BY_ID_I
map 1 to FIELD_BLINK_STATE of SET_FIELD_BLINK_BY_ID_I
use component set_field_blink_by_id

For an MCLB, this component is used to make the 5th row of the Customer_Last_Name_Col column to blink.

map 'CUSTOMER_LAST_NAME_COLL' to HPS_LISTBOX_CELL_ID of SET_FIELD_BLINK_BY_ID_I
map 'CUSTOMER_LST_DIS' to WINDOW_LONG_NAME of SET_FIELD_BLINK_BY_ID_I
map 5 to FIELD_OCCUR of SET_FIELD_BLINK_BY_ID_I
map 1 to FIELD_BLINK_STATE of SET_FIELD_BLINK_BY_ID_I
use component set_field_blink_by_id

Set_Field_Color

This section presents the purpose, the syntax, the usage, and how the Set_Field_Color component is supported. See Examples: Set_Field_Color
for an usage example.

Purpose

Use this component to dynamically modify a color property of a field. You can use this component to set the color of the background, text, or
border of an edit field, protected field, check box, radio button, or list box. If no field name is given, this component sets all fields for the given
view. You can also change the color of a whole multicolumn list box, but not individual cells within it.
In C, this is a .deferred component

Because of a Windows restriction, you cannot change the border, text, or background color of push buttons or the border color
of other objects in applications to be executed in Microsoft Windows.

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients. For the Field_Attr input view field, the reset value 12 is not
supported.
In the Java client and thin client, this component acts on the current window and not on the next conversed window. This is because there is no
deferred component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for information on other components.Interface Components

For 3270 Converse applications executing on the mainframe, this component lets you modify text color only; any value specified in Field_Attr is

ignored. Colors displayed on the 3270 terminal device do not map exactly to colors displayed on the workstation. The component has no effect on
3270 terminal devices that do not support color. Both a field and a view must be specified; otherwise the Return_Code is set to failure.
For 3270 Converse applications, you can use the keywords *EDIT, *TEXT and *ALL in the Field_Long_Name field of the input view. *EDIT
modifies all edit fields within the specified view. *TEXT modifies all the output text fields within the specified view, except text literal fields. *ALL
modifies all fields within the specified view, except text literal fields. You can use *ALL in conjunction with a nonzero occurrence number to
change an entire row in a list box. The occurrence numbers that can be used are:

2 = Border
10 = Reset background to original color
11 = Reset text to original color
12 = Reset border to original color

Syntax

Here is the syntax of Set_Field_Color component.

Set_Field_Color component syntax

Name Set_Field_Color

System
Identifier

CFLDCOL

Input
View
Name

Set_Field_Color_I

Input
View
Field

 View_Long_Name character(30)
The view that includes the field mapped to Field_Long_Name. You must enter a value in this field when changing the color of a
multicolumn list box. This field is optional for other objects.

Input
View
Field

 Field_Long_Name character(30)
The name of the field in the hierarchy diagram to which the field in the window is linked

Input
View
Field

 Field_Attr integer(15)
Property to be colored. This field is attached to the system set , which has the followingWINDOW_OBJECT_ATTRIBUTES (SATTR)
values:

0 = Background, 1 = Text, 2 = Border
10 = Resets background to color originally set in Window Painter
11 = Resets text to color originally set in Window Painter
12 = Resets border to color originally set in Window Painter
The value in the Attr_Color field is ignored when you reset the color.

Input
View
Field

 Attr_Color integer(15)
Color to make the selected property. This field is attached to the system set , which hasWINDOW_OBJECT_COLORS (SCOLORS)
the following values:
0 = White, 1 = Yellow, 2 = Blue
3 = Red, 4 = Not supported, 5 = Not supported
6 = Green, 7 = Magenta, 8 = Black
9 = Aqua

Input
View
Field

 Field_Occur integer(15)
On the mainframe, this is the occurrence number of the record in the list box to be affected. Specify an occurrence number of zero to
modify all occurrences. On the workstation, you can change the whole list box, but you cannot change individual occurrences within
it. You can ignore this field when working on a workstation.

Output
View
Name

Set_Field_Color_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Examples: Set_Field_Color

This example specifies SELECT_CUSTOMER as the view that owns the field whose color is to be set.

map 'SELECT_CUSTOMER' to VIEW_LONG_NAME of SET_FIELD_COLOR_I

use component SET_FIELD_COLOR
This example sets the scope of the component to include all fields in the view SELECT_CUSTOMER.

map ' ' to FIELD_LONG_NAME of SET_FIELD_COLOR_I
use component SET_FIELD_COLOR

This example specifies that the target of the SET_FIELD_COLOR component is the border of all the fields in the view SELECT_CUSTOMER.

map 2 to FIELD_ATTR of SET_FIELD_COLOR_I
use component SET_FIELD_COLOR

This example converts to black the border of all the fields in the view SELECT_CUSTOMER.

map 8 to ATTR_COLOR of SET_FIELD_COLOR_I
use component SET_FIELD_COLOR

Set_Field_Message

This section presents the purpose, the syntax, the usage, and how the Set_Field_Message component is supported. See Examples:
 for an usage example.Set_Field_Message

Purpose

Use this component to mark an edit field that is in error and displays an error message. When the window is invoked, the background of the field
specified turns red and the error message, determined by the component, appears in a window next to the field. This window is modeless and
remains visible until the user selects A field can display only one message at a time.OK.
In C, this is a .deferred component

This component applies only to unprotected edit fields. On the Windows workstation, this excludes fields in list boxes. This is a
change from earlier versions of the product.

Java Support

This component is supported for thick (Java) clients but not thin (HTML) clients.

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for more information.Interface Components

3270 Converse highlights fields in error with inverse video red on 3270 terminal devices that support color and a high-intensity display on 3270
devices that do not support color. The cursor is placed on the field in error.

The message that the parameters set in the input view specifies is edited with the text arguments and displayed on line 22 of the 3270 device. If it
is longer than 79 characters, the message is displayed in a scrollable pop-up message as close to the field as possible without overlaying it. Any
message text that cannot be displayed is replaced by periods.

This component can manage up to 32 kilobytes of message text data for all the messages of a set. Because it displays messages longer than 79
characters in a bordered pop-up message, only 72 bytes of message text data per line can be displayed on the 3270 terminal device. Be careful
when creating message text because the insertion of arguments can cause the line to be truncated.

Syntax

Here is the syntax of Set_Field_Message component.

Set_Field_Message component syntax

Name Set_Field_Message

System
Identifier

CFLDMSG

Input
View
Name

Set_Field_Message_I

Input
View
Field

 Text_Code integer(15)
A number indicating which message is to be used from the error set. This field specifies the error message within the set to be
displayed.

Input
View
Field

 Text_Arg1 character(18)
First text input in error message.

Input
View
Field

 Text_Arg2 character(18)
Second text input in error message.

Input
View
Field

 Text_Arg3 character(18)
Third text input in error message.

Input
View
Field

 Field_Long_Name character(30)
The name of the field in the hierarchy diagram to which the field in the window is linked. This field specifies the field in error. The
View_Long_Name field specifies the name of the owning view.

Input
View
Field

 View_Long_Name character(30)
The view that includes the field mapped to Field_Long_Name.

Input
View
Field

 Field_Occur integer(15)
Occurrence number. This field specifies an instance of an occurring view.

Input
View
Field

 Message_Set_Name character(8)
The implementation name of the reference file without the REF extension. This field specifies the implementation name of the set
that contains the error message.

Output
View
Name

Set_Field_Message_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Usage

You can construct up to three customized inputs by giving values to Text_Arg1, Text_Arg2, and Text_Arg3. These strings are then inserted into
the generic error message selected from the error message set. The percent character (%) serves as a place holder in the messages for the
Text_Arg inputs. Thus %1 is the place holder for Text_Arg1, %2 for Text_Arg2, and %3 for Text_Arg3. The at sign character (@) is also
recognized as a place holder when converting older applications, but should not be used when designing new applications. For example, the
message

%1, try another automobile type. The one you chose does not exist.

can be customized by mapping a field containing the user's name into Text_Arg1. Thus, the user name appears in the "%1" position.

Examples: Set_Field_Message

This example specifies the set with the implementation name ERRMSGS as the set from which to retrieve messages.

map 'ERRMSGS' to MESSAGE_SET_NAME of SET_FIELD_MESSAGE_I
use component SET_FIELD_MESSAGE

This example specifies that the message corresponding to the value RECORD_NOT_FOUND in the set Error_Messages is to be displayed. Note
that this must be the set whose implementation name was mapped to MESSAGE_SET_NAME above.

map RECORD_NOT_FOUND in ERROR_MESSAGES to TEXT_CODE of SET_FIELD_MESSAGE_I
use component SET_FIELD_MESSAGE

This example specifies RESERVATION_NUMBER as the field on which to set the message.

map 'RESERVATION_NUMBER' to FIELD_LONG_NAME of SET_FIELD_MESSAGE_I
use component SET_FIELD_MESSAGE

This example specifies RESERVATION as the view on which to set the message.

map 'RESERVATION' to VIEW_LONG_NAME of SET_FIELD_MESSAGE_I
use component SET_FIELD_MESSAGE

Set_Field_Mode

This section presents the purpose, the syntax, the usage, and how the Set_Field_Mode component is supported. See Examples: Set_Field_Mode
for an usage example.

Purpose

Use this component to change the display properties and edit mode of a field. For example, an input field can be disabled for further input or the
field can be made invisible. Text fields can be made invisible only; enabling and disabling text fields are irrelevant. Edit fields can be made
invisible and also be disabled for input. After edit fields are disabled, they can be re-enabled for input. This change is for the entire object, both the
field itself and the data within it.
In C, this is a .deferred component

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients.
In the Java client and thin client, this component acts on the current window and not on the next conversed window. This is because there is no
deferred component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for more information.Interface Components

Syntax

Here is the syntax of Set_Field_Mode component.

Set_Field_Mode component syntax

Name Set_Field_Mode

System
Identifier

CFLDMOD

Input
View
Name

Set_Field_Mode_I

Input
View
Field

 View_Long_Name character(30)
The view that includes the field mapped to Field_Long_Name.

Input
View
Field

 Field_Long_Name character(30)
The name of the field in the hierarchy diagram to which the field in the window is linked.

Input
View
Field

 Field_Mode integer(15)
This field is attached to the set , which has the following values: WINDOW_OBJECT_MODES (SMODE)
0 = Invisible, disabled
1 = Visible, disabled
2 = Visible, enabled
3 = For mainframe: Invisible, enabled (3270 Converse only)
3= For C: Visible, read-only

Input
View
Field

 Field_Occur integer(15)
On the mainframe, this is the occurrence number of the record in a list box to be affected. Specify an occurrence number of zero to
modify all occurrences. On the workstation, you can change the whole list box but cannot change individual occurrences within it.
You can ignore this field when working on a workstation.

Output
View
Name

Set_Field_Mode_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Usage

You cannot use this component to make a protected field into an editable one because they are two distinct objects. However, for C Runtime,
even if a field was created as protected in Window Painter it can be changed to editable at runtime unless the
ALLOW_CHANGE_PROTECTED_FIELDS ini setting is changed to FALSE. This ini setting defaults to TRUE.

If the Field_Long_Name contains the value *TEXT, all output text fields are subject to the mode change, regardless of the contents of
VIEW_LONG_NAME. Text literal fields, however, remain unaffected. If the field name parameter contains the value *EDIT, all editable fields and
combo boxes are subject to the mode change. By specifying both a view and field name, the mode of any object that has a field name associated
with it can be changed. This includes check boxes, radio buttons, multiline edit fields, edit fields, combo boxes, list boxes, and individual columns
(but not specific cells) of multicolumn list boxes.

Examples: Set_Field_Mode

This example sets the scope for the component to include all editable fields in the window.

map '*EDIT' to FIELD_LONG_NAME of SET_FIELD_MODE_I
use component SET_FIELD_MODE

This example sets all editable fields in all views to invisible.

map INVISIBLE in WINDOW_OBJECT_MODES to FIELD_MODE OF SET_FIELD_MODE_I
use component SET_FIELD_MODE

Set_Field_Numeric_By_ID

This section presents the purpose, the syntax, the usage, and how the Set_Field_Numeric_By_ID component is supported. See Examples:
 for an usage example.Set_Field_Numeric_By_ID

Purpose

Use this component to dynamically modify the entry property of a field. You can use this component to set an edit field or list box edit field to
accept only numeric input or only alphanumeric input. This is a feature of the 3270 device that causes the keyboard to lock if non-numeric
characters are entered when in numeric mode.

This component is only valid in the 3270 Converse environment and functions for all 3270 devices that support the numeric lock
feature.

Java Support

This component is not supported for either thick (Java) or thin (HTML) clients.

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for more information.Interface Components

Syntax

Here is the syntax of Set_Field_Numeric_By_ID component.

Set_Field_Numeric_By_ID component syntax

Name Set_Field_Numeric_By_ID

System
Identifier

CFLDNUM

Input View
Name

Set_Field_Numeric_By_ID_I

Input View
Field

 Window_Long_Name character(30)
The name of the window that contains the field to be modified. This field must be set to the current window name, that is, the
window conversed by the calling rule.

Input View
Field

 HPS_Item_ID character(50)
The system identifier (HPSID) of the object.

Input View
Field

 HPS_Listbox_Cell_ID character(50)
The system identifier (HPSID) of the multicolumn list box cell

Input View
Field

 Field_Occur integer(15)
The occurrence number of the record in the list box to be affected, if the item is a list box. Specify an occurrence number of
zero to modify all occurrences.

Input View
Field

 Field_Attribute integer(15)
The property to set for the selected field. 0 = Alphanumeric, 1 = Numeric

Output View
Name

Set_Field_Numeric_By_ID_O

Output View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 forRETURN_CODES (SRETURN)
Failure.

Examples: Set_Field_Numeric_By_ID

For an edit field, which has a system identifier CUSTOMER_ID, to be made alphanumeric, the component can be used in the following way.

map 'CUSTOMER_ID' to HPS_ITEM_ID of SET_FIELD_NUMERIC_BY_ID_I
map 'CUSTOMER_DTL_DIS' to WINDOW_LONG_NAME of SET_FIELD_NUMERIC_BY_ID_I
map 0 to FIELD_ATTRIBUTE of SET_FIELD_NUMERIC_BY_ID_I
use component SET_FIELD_NUMERIC_BY_ID

For an MCLB, this component is used to make the CUSTOMER_ID column numeric.

map 'CUSTOMER_ID_COL' to HPS_LISTBOX_CELL_ID of SET_FIELD_NUMERIC_BY_ID_I
map 'CUSTOMER_LST_DIS' to WINDOW_LONG_NAME of SET_FIELD_NUMERIC_BY_ID_I
map 1 to FIELD_ATTRIBUTE of SET_FIELD_NUMERIC_BY_ID_I
use component SET_FIELD_NUMERIC_BY_ID

Set_Field_Picture

This section presents the purpose, the syntax, the usage, and how the Set_Field_Picture component is supported. See Example:
 for an usage example.Set_Field_Picture

Purpose

Use this component to dynamically set the display picture of a field and scale for the next converse, including edit fields, protected fields, list
boxes, or multicolumn list boxes (MCLBs). A blank picture string is ignored. This component supports only the modification of numeric picture
strings. The date and time picture string can be modified only if the field is declared as a date or time field.
In C, this is a deferred component.

Note
This component functions only on a field that already has a display picture defined.

Java Support

This component is supported for thick (Java) clients but not thin (HTML) clients. The Java client does not support the Scale_Percent property
(input view field).
In the Java client, this component acts on the current window and not on the next conversed window. This is because there is no deferred
component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for more information. The date and time picture cannot be modified in a 3270 use of this component.Interface Components

Syntax

Here is the syntax of Set_Field_Picture component.

Set_Field_Picture component syntax

Name Set_Field_Picture

System
Identifier

CPICSIZ

Input
View
Name

Set_Field_Picture_I

Input
View
Field

 View_Long_Name character(30)
The view that includes the field mapped to Field_Long_Name.

Input
View
Field

 Field_Long_Name character(30)
The name of the field in the hierarchy diagram to which the field in the window is linked.

Input
View
Field

 Picture_Name character(30)
Picture string, such as SZZZ.99.

Input
View
Field

 Scale_Percent integer(15)
Set the number of digits to be displayed to the right of the decimal point. This property is not supported in a Java client.

Output
View
Name

Set_Field_Picture_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Example: Set_Field_Picture

This example sets the display picture for the numeric field FIELD_1.

map 'FIELD_1' to FIELD_LONG_NAME of SET_FIELD_PICTURE_I
map 'VIEW_1' to VIEW_LONG_NAME of SET_FIELD_PICTURE_I
map '99999.99' to PICTURE_NAME of SET_FIELD_PICTURE_I
map 2 to SCALE_PERCENT of SET_FIELD_PICTURE_I
use component of SET_FIELD_PICTURE

Set_First_Visible_Occurrence

This section presents the purpose, the syntax, the usage, and how the Set_First_Visible_Occurence component is supported. See Example:
 for an usage example.Set_First_Visible_Occurrence

Purpose

Use this component to set a specific occurrence of an occurring view that is the first occurrence displayed in the window. For
SET_FIRST_VISIBLE_OCCURRENCE, the value of FIELD_OCCUR must be within the virtual range. If the value of FIELD_OCCUR exceeds the
maximal/min_value, FIELD_OCCUR is set to maximal/min_value. The maximum/minimum possible value is calculated as follows:

max_value = virtual_end - visible_occur + 1
min_value = virtual_start

After invoking this component, the specified field becomes the first visible occurrence when the window is reconversed.

In C, this is a .deferred component

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients.

In the Java client, this component acts on the current window and not on the next conversed window. This is because there is no deferred
component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for more information on other components.Interface Components

For 3270 Converse applications executing on the mainframe, the Return_Code is set to 0 (Failure) if the specified occurrence number is not
presently available or invalid; the component does not use the occurrence number closest to the one specified.

3270 Converse repositions a list box so that the maximum number of occurrences are displayed. For example, if a list box size is 25, and the
number of visible occurrences is 12, then if the first visible occurrence is set to 18, occurrences 14 through 25 are displayed.

Syntax

Here is the syntax of Set_First_Visible_Occurrence component.
Set_First_Visible_Occurrence component

Name Set_First_Visible_Occurrence

System
Identifier

CSETFST

Input
View
Name

Set_First_Visible_Occurrence_I

Input
View
Field

View_Long_Name character(30)

Input
View
Field

 Field_Occur integer(15)
Occurrence number

Output
View
Name

Set_First_Visible_Occurrence_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Usage

The occurrence number must be chosen from the occurrences available in the scrollable area. The range of occurrences in the scrollable area is
determined by the elevator position and number of records as set by the component. If an unavailable occurrenceSet_Virtual_Listbox_Size
number is chosen, the number closest to the specified number is used. You can use this component only on occurring views or multicolumn list
boxes (MCLBs).

If a virtual list box has been defined, the field occurrence used as input must also be a virtual occurrence number.

If both this component and the component are used, the component last executed overrides any prior actions.Set_Last_Visible_Occurrence

Example: Set_First_Visible_Occurrence

This example sets the first visible occurrence:

map 'NC_TABLE_SL' to VIEW_LONG_NAME of SET_FIRST_VISIBLE_OCCURRENCE_I
map 4 to FIELD_OCCUR of SET_FIRST_VISIBLE_OCCURRENCE_I
use component SET_FIRST_VISIBLE_OCCURRENCE

Set_Help_File_Name

This section presents the purpose, the syntax, the usage, and how the Set_Help_File_Name component is supported. See Example:
 for an usage example.Set_Help_File_Name

Purpose

Use this component to specify the name of the online help file for an application. Once the help file name is set, the SHOW_HELP_TOPIC
component can be used to display help for the required keyword, and context-sensitive help can be invoked depending on the embedded system
identifiers in the help file.

In C, this is a .deferred component

The setting must be added to the AE Runtime section of the system initialization file (hps.ini).GUI_HELP_DIR=

Use this component to link only the native GUI Help files with the application. Do not use this component if you are using the
built-in help features of AppBuilder.

Java Support

This component is supported for thick (Java) clients but not thin (HTML) clients.
In the Java client, this component acts on the current window and not on the next conversed window. This is because there is no deferred
component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of Set_Help_File_Name component.

Set_Help_File_Name component syntax

Name Set_Help_File_Name

System
Identifier

CSETHLP

Input
View
Name

Set_Help_File_Name_I

Input
View
Field

 Help_File_Name character(50)
When this component executes, the contents of the input view are checked. If an error is detected at this time, a message box is
displayed that indicates the error.

Output
View
Name

Set_Help_File_Name_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSEdeferred components
WINDOW statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is
displayed that indicates the error.

Example: Set_Help_File_Name

This example specifies AEHLPEX.HLP as the Help file to be used in this application.

map 'AEHLPEX.HLP' to HELP_FILE_NAME of SET_HELP_FILE_NAME_I
use component SET_HELP_FILE_NAME

Set_Item_Text

This section presents the purpose, the syntax, the usage, and how the Set_Item_Text component is supported. See forExample: Set_Item_Text
an usage example.

Purpose

Use this component to change the text of a push button, radio button, group box, check box, static text, or menu choice. Because this component
does not change the size of the object, you are responsible for making sure the new text fits.
In C, this is a .deferred component

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients.
In the Java client and thin client, this component acts on the current window and not on the next conversed window. This is because there is no
deferred component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of Set_Item_Text component.

Set_Item_Text component syntax

Name Set_Item_Text

System
Identifier

{CITMTXT}}

Input
View
Name

Set_Item_Text_I

Input
View
Field

 HPS_Item_ID character(50)
The system identifier (HPSID) of the panel object

Input
View
Field

 HPS_Item_Text character(50)
New text to be displayed. You can pass a mnemonic indicator, an ampersand (&) for Windows, as part of the text. At execution, the
character after the indicator is underlined and functions as a menu choice mnemonic.

Output
View
Name

Set_Item_Text_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Example: Set_Item_Text

In this example the text on the menu choice with the system identifier of Pulldown 1 is changed to in the next window conversed.Replace

map 'Pulldown 1' to HPS_ITEM_ID of SET_ITEM_TEXT_I
map '&Replace' to HPS_ITEM_TEXT of SET_ITEM_TEXT_I
use component SET_ITEM_TEXT

Set_Last_Visible_Occurrence

This section presents the purpose, the syntax, the usage, and how the Set_Last_Visible_Occurrence component is supported. See Example:
 for an usage example.Set_Last_Visible_Occurrence

Purpose

Use this component to set a specific occurrence of an occurring view to be the last occurrence displayed in the window. For
SET_LAST_VISIBLE_OCCURRENCE, if the value of FIELD_OCCUR exceeds the max_value/min_value, FIELD_OCCUR is set to
max_value/min_value. The maximum/minimum possible value is calculated as follows:

max_value = virtual_end
min_value = virtual_start + visible_occur \-1

Where virtual_start, virtual_end are the start, end index of current virtual range.

After invoking this component, the specified field becomes the last visible occurrence when the window is reconversed.

In C, this is a .deferred component

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients.

In the Java client and thin client, this component acts on the current window and not on the next conversed window. This is because there is no
deferred component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for information on other components.Interface Components

For 3270 Converse applications executing on the mainframe, the Return_Code is set to failure if the specified occurrence number is not presently
available or invalid; the component does not use the occurrence number closest to the one specified.

3270 Converse repositions a list box so that the maximum number of occurrences are displayed. For example, if a list box size is 25, and the
number of visible occurrences is 12, then if the last visible occurrence is set to 8, occurrences 1through 12 are displayed.

Syntax

Here is the syntax of Set_Last_Visible_Occurrence component.

Set_Last_Visible_Occurrence component syntax

Name Set_Last_Visible_Occurrence

System
Identifier

CSETLST

Input
View
Name

Set_Last_Visible_Occurrence_I

Input
View
Field

View_Long_Name character(30)

Input
View
Field

 Field_Occur integer(15)
Occurrence number

Output
View
Name

Set_Last_Visible_Occurrence_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Usage

The occurrence number must be chosen from the occurrences available in the scrollable area. The range of occurrences in the scrollable area is
determined by the elevator position and number of records as set by the component. If an occurrence number notSet_Virtual_Listbox_Size
presently available is chosen, the number closest to that specified is used. You can use this component only on occurring views or multicolumn
list boxes (MCLBs).

If a virtual list box has been defined, the field occurrence used as input must also be a virtual occurrence number.

If both this component and the component are used, the component last executed overrides any prior actions.Set_First_Visible_Occurrence

Example: Set_Last_Visible_Occurrence

This example sets an occurrence.

map 'NC_TABLE_SL' to VIEW_LONG_NAME of SET_LAST_VISIBLE_OCCURRENCE_I
map 15 to FIELD_OCCUR of SET_LAST_VISIBLE_OCCURRENCE_I
use component SET_LAST_VISIBLE_OCCURRENCE

Set_Menu_Mode

This section presents the purpose, the syntax, the usage, and how the Set_Menu_Mode component is supported. See Example:
 for an usage example.Set_Menu_Mode

Purpose

Use this component to enable or disable a particular menu choice. When a menu choice is active, its items are displayed in black letters.
However, a menu choice displayed with gray letters (dimmed) is inactive, preventing the user from selecting it. This component acts like a toggle,
so that a second call reverses the state set by the first call.

In C, this is a .deferred component

For more functionality, you may use . To determine the status (whether a menu choice is enabled or disabled), you maySet_Menu_Mode_By_ID
use .Get_Menu_Mode_By_ID

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients.

In the Java client and thin client, this component acts on the current window and not on the next conversed window. This is because there is no
deferred component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for more information.Interface Components

On color 3270 terminals, enabled menu choices are displayed with white text and disabled menu choices with blue text. On monochrome 3270
terminals, enabled menu choices are highlighted.

Syntax

Here is the syntax of Set_Menu_Mode component.

Set_Menu_Mode component

Name Set_Menu_Mode

System
Identifier

CMNUMOD

Input
View
Name

Set_Menu_Mode_I

Input
View
Field

 Menu_Name character(50)
Name of menu

Input
View
Field

 Pulldown_Name character(30)
Name of menu choice

Output
View
Name

Set_Menu_Mode_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Usage

If the named menu has no pull-down menus, set Menu_Name blank and set Pulldown_Name to the name of the menu choice. This causes the
menu to be displayed on a menu bar in the appropriate mode.

On the workstation, when a window is conversed after displaying a window, all menu choices are re-enabled. You must call this
component again to disable a menu choice.

Unlike most other component fields, the Menu_Name and Pulldown_Name are case sensitive. If either of these names contain a mnemonic
marker (& or ~) or a function key, do not include it when mapping the name into the appropriate field.

Example: Set_Menu_Mode

In this example, the mode of the choice under the menu is toggled. In C, this is toggled in the next window conversed. In Java, this actsExit File
on the current window.

map 'File' to MENU_NAME of SET_MENU_MODE_I
map 'Exit' to PULLDOWN_NAME of SET_MENU_MODE_I
use component SET_MENU_MODE

If the menu choice was originally enabled, it is now disabled. If it was disabled, it is now enabled.Exit

Set_Menu_Mode_By_ID

This section presents the purpose, the syntax, the usage, and how the Set_Menu_Mode_By_ID component is supported. See Example:
 for an usage example.Set_Menu_Mode_By_ID

Purpose

Use this component to set the status of either of the two independent properties of a menu choice: whether the menu choice is enabled or
whether the menu choice is checked. With each use of this component you can set the status of one these two properties. The Enabled property
refers to whether the menu item is enabled (active and selectable) or disabled (inactive and grayed out). The Checked property refers to whether
the menu item is checked (has a check mark next to it) or not (has no check mark next to it).

This component is the "set" version of . If you set Enabled to 1, the item becomes active; if set to 0, it becomes inactive.Get_Menu_Mode_By_ID
If you set Checked to 1, a check mark is placed next to the item; if set to 0, any check mark is removed. Only one property can be changed at a
time. To change both, use the component twice, using a different value for the HPS_MItem_Attribute field each time.

This component is similar to but has more functionality; it can set the check mark as well as the enabled status. It is also moreSet_Menu_Mode
efficient because it uses the system identifier (HPSID) of the menu item rather than its name.

In C, this is a .deferred components

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients.

In the Java client and thin client, this component acts on the current window and not on the next conversed window. This is because there is no
deferred component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for more information.Interface Components

Syntax

Here is the syntax of Set_Menu_Mode_By_ID component.

Set_Menu_Mode_By_ID component syntax

Name Set_Menu_Mode_By_ID

System
Identifier

CMNUMID

Input
View
Name

Set_Menu_Mode_By_ID_I

Input
View
Field

 HPS_Item_ID character(50)
The system identifier (HPSID) of the menu item

Input
View
Field

 HPS_MItem_Attribute integer(15)
The property of the menu choice you want to set:

0 = Enabled - whether enabled (active) or disabled (grayed out)
1 = Checked - whether it has a check mark next to it or not
This field is attached to the system set . (This is not supported by 3270 Converse.)MENU_ITEM_ATTRIBUTES (SMIATTR)

Input
View
Field

 HPS_MItem_State integer(15)
The status of the property specified on the input view. (Only one property can be set per call of this component.)

0 = For Enabled, this means the menu choice is disabled (grayed out); For Checked this means the menu choice is not
checked.
1 = For Enabled, this means the menu choice is enabled (active); For Checked this means the menu choice has a check
mark next to it.
This field is attached to the system set .MENU_ITEM_STATE (SMIST)

Output
View
Name

Set_Menu_Mode_By_ID_O

Output
View
Field

{ Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Example: Set_Menu_Mode_By_ID

In this example, the choice in the menu is disabled. For C, this is in the next window conversed. This does not change whether the menuSave
choice is checked or not.

map 'Save' to HPS_ITEM_ID of SET_MENU_MODE_BY_ID_I
map 0 to HPS_MITEM_ATTRIBUTE of SET_MENU_MODE_BY_ID_I
map 0 to HPS_MITEM_STATE of SET_MENU_MODE_BY_ID_I
use component SET_MENU_MODE_BY_ID

The first map statement selects the menu choice (Save). The second map statement selects the Enable property. The third map statement sets
that Enable property to off or disabled, which disables the menu choice.

Set_PopUp_Position

This section presents the purpose, the syntax, the usage, and how the Set_PopUp_Position component is supported. See Example:
 for an usage example.Set_Popup_Position

Purpose

Use this component to change the position of a pop-up such as an error message. The component sets the starting position of the pop-up either

in absolute coordinates (with the starting position calculated from the top left corner of the screen) or relative either to the active window or to the
client space.

In C, this is a .deferred component

Refer to for a description of the component that typically uses this component to position the message relative to theSet_Window_Message
window.

Java Support

This component is supported for thick (Java) clients but not thin (HTML) clients.

In the Java client, this component acts on the current window and not on the next conversed window. This is because there is no deferred
component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for more information.Interface Components

For 3270 terminals, the absolute and relative positions are identical. State the values for Top_Position and Left_Position in workstation graphic
pixel coordinates. The component translates the graphic pixel values into 3270 row-column coordinates based on a display of 24 rows, 18 pixels
high, and 80 columns, 8 pixels wide. Row and column coordinates map to pixel coordinates in even multiples of row and column grid sizes.
Absolute pixel coordinates of (50, 16), map to row-column coordinates of (3, 2), where 18 divides into 50 three times after rounding up to an
integer, and 8 divides evenly into 16 twice. The component positions the upper left of the pop-up message in the third row, second column of the
terminal display.

The values the Top_Position and Left_Position fields can vary depending on the value in the Poptype field. If the Poptype field is set to 1 or 3, the
value in the Top_Position field can range from +0 to +336 and Left_Position can range from +0 to +640. If the Poptype field is set to 2, the value in
the Top_Position field can range from -336 to +336 and Left_Position can range from -640 to +640. However, if the requested location places the
pop-up message outside the terminal screen area, an error condition is encountered, and the Return_Code field in the output view is set to zero
(failure).

Syntax

Here is the syntax of Set_PopUp_Position component.

Set_PopUp_Position component syntax

Name Set_PopUp_Position

System
Identifier

CPNLPOS

Input
View
Name

Set_PopUp_Position_I

Input
View
Field

 Poptype integer(15)
This field is attached to the system set , which has the following values: WINDOW_POSITIONS (SPOPPNL)
1 = Absolute coordinates (0, 0 is the top left of the screen)
2 = Relative to the entire window
3 = Relative to the client area (the panel area inside the window)

Input
View
Field

 Top_Position integer(15)
Top position (positive or negative allowed)

Input
View
Field

 Left_Position integer(15)
Left position (positive or negative allowed)

Output
View
Name

Set_PopUp_Position_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Usage

The values in the Top_Position and the Left_Position fields of the input view represent workstation graphic pixel coordinates. The Top_Position
field of the input view sets the position of the top of the pop-up message. The Left_Position field of the input view sets the position of the left side
of the pop-up message.

On a workstation, Top_Position and Left_Position can contain any value. The actual position of the window depends on the resolution of the
monitor. There is no restriction on the window's position; it can appear outside the visible portion of the window.

Example: Set_Popup_Position

This example repositions the pop-up to the top left corner of the screen.

map 1 to POPTYPE of SET_POPUP_POSITION_I
map 0 to TOP_POSITION of SET_POPUP_POSITION_I
map 0 to LEFT_POSITION of SET_POPUP_POSITION_I
use component SET_POPUP_POSITION

Set_Push_Color

This section presents the purpose, the syntax, the usage, and how the Set_Push_Color component is supported. See See Examples:
 for an usage example.Set_Push_Color

Purpose

Use this component to set the color of the background, text, or border of push buttons. The push button text set in the PUSH_TEXT field identifies
the target push button.

In C, this is a .deferred omponent

Unlike most other component fields, the PUSH_TEXT field is case sensitive. You must enter text exactly as it appears on the push button.
However, do not include any mnemonic indicators (& or ~) or function key names. For example, if the field appears as Help F1, type Help into this
field.

Because of a Windows restriction, use of this component is ignored in applications executed in Microsoft Windows.

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients. For the Field_Attr input view field, the reset value 12 is not
supported.

In the Java client and thin client, this component acts on the current window and not on the next conversed window. This is because there is no
deferred component functionality in Java. Refer to for more information.See Java and C# Support for Deferred Components

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of Set_Push_Color component.

 | |Set_Push_Color component syntax

Name Set_Push_Color

System
Identifier

CPSHCOL

Input
View
Name

Set_Push_Color_I

Input
View
Field

 Push_Text character(30)
Push-button text (not system identifier).

Input
View
Field

 Push_Attr integer(15)
Push-button property to be colored. This field is attached to the system set , whichSee WINDOW_OBJECT_ATTRIBUTES (SATTR)
has the following values:

0 = Background, 1 = Text, 2 = Border
10 = Resets background to color originally set in Window Painter
11 = Resets text to color originally set in Window Painter
12 = Resets border to color originally set in Window Painter
The value in the Attr_Color field is ignored when you reset the color.

Input
View
Field

 Attr_Color integer(15)
Color to make the selected property. This field is attached to the system set , whichSee WINDOW_OBJECT_COLORS (SCOLORS)
has the following values:
0 = White, 1 = Yellow, 2 = Blue
3 = Red, 4 = Not supported, 5 = Not supported
6 = Green, 7 = Magenta, 8 = Black
9 = Aqua

Output
View
Name

Set_Push_Color_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 forSee RETURN_CODES (SRETURN)
Failure.
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Examples: Set_Push_Color

This example specifies the push button named as the target of the color change.Continue

map 'Continue' to PUSH_TEXT of SET_PUSH_COLOR_I
use component SET_PUSH_COLOR

This example maps the value TEXT in the system set WINDOW_OBJECT_ATTRIBUTES to the input view of the component, specifying the text
of the push button as the target of the color change.Continue

map TEXT in WINDOW_OBJECT_ATTRIBUTES to PUSH_ATTR of SET_PUSH_COLOR_I
use component SET_PUSH_COLOR

This example maps the value BLUE in the system set WINDOW_OBJECT_COLORS to the input view of the component, specifying that the text
of the push button to be displayed in blue.Continue

map BLUE in WINDOW_OBJECT_COLORS to ATTR_COLOR of SET_PUSH_COLOR_I
use component SET_PUSH_COLOR

Set_Push_Mode

This section presents the purpose, the syntax, the usage, and how the Set_Push_Mode component is supported. See Examples:
 for an usage example.Set_Push_Mode

Purpose

Use this component to change the mode of a push button. The specified push button can be made either visible and enabled, visible and
disabled, or invisible. The output Return_Code is set to 1 for success and 0 for failure. The push button text set in the Push_Text field identifies

the target push button.

In C, this is a .deferred component

Unlike most other component fields, the Push_Text field is case sensitive. You must enter text exactly as it appears on the push
button. However, do not include any mnemonic indicators (& or ~) or function key names. For example, if the field appears as
Help F1, type Help into this field.

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients.

In the Java client and thin client, this component acts on the current window and not on the next conversed window. This is because there is no
deferred component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe.
Refer to for more information.3270 Converse Supported Interface Components

As push buttons are implemented on the 3270 terminal device as function keys, the message INVALID FUNCTION REQUEST is displayed when
the 3270 end user selects a disabled push button.

Syntax

Here is the syntax of Set_Push_Mode component.

Set_Push_Mode component syntax

Name Set_Push_Mode

System
Identifier

CPSHMOD

Input View
Name

Set_Push_Mode_I

Input View Field {{Push_Text character(30)}
Push button text (not system identifier).

Input View Field Push_Mode integer(15)
Push button mode. This field is attached to the system set , which has the followingWINDOW_OBJECT_MODES (SMODE)
values:
0 = Invisible, disabled
1 = Visible, disabled
2 = Visible, enabled
3 = For mainframe: Invisible, enabled (3270 Converse only)
3 = For Java and C: Visible, read-only

Output View
Name

Set_Push_Mode_O

Output View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 forRETURN_CODES (SRETURN)
Failure.
In C, this is a deferred component, so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE
WINDOW statement
executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Examples: Set_Push_Mode

This example specifies the push button named as the target of the mode change.Continue

map 'Continue' to PUSH_TEXT of SET_PUSH_MODE_I
use component SET_PUSH_MODE

This example maps the value INVISIBLE in the system set WINDOW_OBJECT_MODES to the input view of the component, specifying the
Continue push button to be made invisible.

map INVISIBLE in WINDOW_OBJECT_MODES to PUSH_MODE of SET_PUSH_MODE_I
use component SET_PUSH_MODE

Set_Virtual_Listbox_Size

This section presents the purpose, the syntax, the usage, and how the Set_Virtual_Listbox_Size component is supported. See Example:
 for an usage example.Set_Virtual_Listbox_Size

Purpose

Use this component only with a multicolumn list box to define a virtual list box to implement smooth scrolling. To implement smooth scrolling for a
single-column list box, use a multicolumn list box with a single, non-editable column.

The SET_VIRTUAL_LISTBOX_SIZE component is intended to be called repeatedly when scrolling through a single set of data. Do not reset
anything about the multicolumn list box state at the time of the component call.

In C, this is a .deferred component

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients.

In the Java client and thin client, this component acts on the current window and not on the next conversed window. This is because there is no
deferred component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for more information.Interface Components

The 3270 Converse implementation of this system component requires the system to allocate internal storage when any action is performed on a
field within the virtual list box. To minimize the amount of storage allocated, this system component fails when the application attempts to create a
virtual list box larger than the initial size. Therefore, your ability to increase the virtual list box size may be limited in 3270 Converse.

Syntax

Here is the syntax of Set_Virtual_Listbox_Size component.

Set_Virtual_Listbox_Size component syntax

Name Set_Virtual_Listbox_Size

System
Identifier

CLSTSIZ

Input
View
Name

Set_Virtual_Listbox_Size_I

Input
View
Field

 View_Long_Name character(30)
Specifies the view that defines the virtual list box

Input
View
Field

 Number_Of_Records integer(15)
Defines the size of the virtual list box

Input
View
Field

 Elevator_Position integer(15)
The virtual number of the first list box view occurrence

Output
View
Name

Set_Virtual_Listbox_Size_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Virtual Listbox Size

There is an important distinction between the size of the list box, the list box view, and the virtual list box. The physical list box contains the
instances of the occurring field presented to the end user. The list box view data structure contains the instances of the occurring field that can be
presented to the end user without returning an OUT OF RANGE condition to the invoking rule. The virtual list box construct contains the instances
of the occurring field that are virtually available to the end user.

For example, the physical list box can be defined to contain 10 occurrences, the list box view data structure to contain 100 occurrences, and the
virtual list box to contain 1,000 occurrences. The virtual list box usually defines the number of field occurrences that can be retrieved from the
database. If no virtual list box is defined, the component assumes that the list box view data structure defines the bounds of the list box.

Virtual Elevator Position

In addition to setting the size of the virtual list box, the this component also sets the virtual elevator position. This virtual elevator position refers to
the virtual occurrence number of the data that reside in the first occurrence of the list box view data structure. For example, the virtual elevator
position is set to 350 if the first occurrence of the list box view data structure contains the data that represent the 350th occurrence of the virtual
list box. You must reset the virtual elevator position each time the data contained in the list box view data structure changes. To set the virtual
elevator position, populate the Elevator_Position parameter of the Set_Virtual_Listbox_Size_I input view with the correct value.

After you define a virtual list box with this component, all field occurrences input to or output from list box converse components are in virtual
occurrence values.

Example: Set_Virtual_Listbox_Size

This example sets a virtual listbox size.

map 'NC_TABLE_SL' to VIEW_LONG_NAME of SET_VIRTUAL_LISTBOX_SIZE_I
map ELEVATOR_POSITION of NC_TABLECOMPONENT_WD of NC_TABLECOMPONENT_W
 to ELEVATOR_POSITION of SET_VIRTUAL_LISTBOX_SIZE_I
map NUMBER_OF_RECORDS of NC_TABLECOMPONENT_WD of NC_TABLECOMPONENT_W
 to NUMBER_OF_RECORDS of SET_VIRTUAL_LISTBOX_SIZE_I
use component SET_VIRTUAL_LISTBOX_SIZE

Set_Window_Message

This section presents the purpose, the syntax, the usage, and how the Set_Window_Message component is supported. See Examples:
 for an usage example.Set_Window_Message

Purpose

Use this component to display an error message in a window (similar to). However, this component does not highlight aSet_Field_Message
specific field that is in error. When the window is invoked, the error message is displayed in a window. This window is modeless and remains
visible until the user selects the push button. A window can display only one message at a time.OK

In C, this is a .deferred component

Refer to for the component that you can use to position the message.Set_PopUp_Position

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients. In the Java client and thin client, this component acts on the
current window and not on the next conversed window. This is because there is no deferred component functionality in Java. Refer to Java and

 for more information. Also, the message window is modal in Java, so the user must explicitly close thisC# Support for Deferred Components
window to go back to the calling window.

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for information on other components.Interface Components

For 3270 Converse applications executing on the mainframe, the message specified by the parameters set in the input view is edited with the text
arguments and displayed on line 22 of the 3270 device, or if it is longer than 79 characters, in a scrollable pop-up message displayed at the
bottom of the screen, expanding upward as more lines are needed.

Any message text that cannot be displayed is replaced by periods on the display. This component can manage up to 32K bytes of message text
data for all the messages of a set. Because it displays messages longer than 79 characters in a bordered pop-up message, only 72 bytes of
message text data per line can be displayed on the 3270 terminal device. Be careful when creating message text, because the insertion of
arguments can cause the line to be truncated. The 3270 Converse version of the component does not use OK_BUTTON_YN.

Syntax

Here is the syntax of Set_Window_Message component.

Set_Window_Message component syntax

Name Set_Window_Message

System
Identifier

CPNLMSG

Input
View
Name

Set_Window_Message_I

Input
View
Field

 Window_Long_Name character(30)
This field is required to specify the window where the message is displayed.

Input
View
Field

 Text_Arg1 character(18)
First text input in error message.

Input
View
Field

 Text_Arg2 character(18)
Second text input in error message.

Input
View
Field

 Text_Arg3 character(18)
Third text input in error message.

Input
View
Field

 Message_Set_Name character(8)
The implementation name of the reference file without the REF extension. This field specifies the implementation name of the set
that contains the error message.

Input
View
Field

 Text_Code integer(15)
A number indicating which message is to be used from the error set. This field specifies the error message within the set to be
displayed.

Input
View
Field

 OK_Button_YN integer(15)
This field is attached to the set . You do not need to supply any value in this field when you use thisOK_YES_NO (SOKYNO)
component.

Output
View
Name

Set_Window_Message_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Usage

You can construct up to three customized inputs by giving values to Text_Arg1, Text_Arg2, and Text_Arg3. These strings are then inserted into
the generic error message selected from the error message set. The percent character (%) serves as a place holder in the messages for the
Text_Arg inputs. Thus %1 is the place holder for Text_Arg1, %2 for Text_Arg2, and %3 for Text_Arg3. The at sign character (@) is also
recognized as a place holder when converting older applications, but do not use it when designing new applications. For example, the message

%1, please try another automobile type. The one you chose does not exist.

can be customized by mapping a field containing the user's name into Text_Arg1. Thus, the user's name appears in the "%1" position.

Examples: Set_Window_Message

This example specifies PASSENGER_INQUIRY as the window where the message is to be displayed.

map 'PASSENGER_INQUIRY' to WINDOW_LONG_NAME of SET_WINDOW_MESSAGE_I
use component SET_WINDOW_MESSAGE

This example specifies the set with the implementation name ERRMSGS as the set from which to retrieve the messages to be displayed.

map 'ERRMSGS' to MESSAGE_SET_NAME of SET_WINDOW_MESSAGE_I
use component SET_WINDOW_MESSAGE

This example specifies the message corresponding to the value NOT_ON_FILE in the set ERROR_MESSAGES is to be displayed. Note that this
must be the set whose implementation name was mapped to MESSAGE_SET_NAME above. The value mapped is the symbol on the Set

 Value relationship, which you can view in the project hierarchy.contains

caseof WINDOW_RETCODE of CUSTOMER_INQUIRY
 case 'SEARCH'
 use rule RETRIEVE_CUSTOMER_RECORD
 if RETURN_CODE <> SUCCESS in RETURN_CODES
 map NOT_ON_FILE in ERROR_MESSAGES to TEXT_CODE of SET_WINDOW_MESSAGE_I
use component SET_WINDOW_MESSAGE

This example specifies the value in the field CUSTOMER_LAST_NAME is to be displayed along with the error message.

map CUSTOMER_LAST_NAME of CUSTOMER to TEXT_ARG1 of SET_WINDOW_MESSAGE_I
use component SET_WINDOW_MESSAGE

Set_Window_Position

This section presents the purpose, the syntax, the usage, and how the Set_Window_Position component is supported. See Example:
 for an usage example.Set_Window_Position

Purpose

Use this component to set the position of a non-nested window. The screen coordinates 0,0 indicate the upper left corner of the screen. Each unit
is one pixel.

In C, this is a .deferred component

On a workstation, Top_Position and Left_Position can contain any value. The actual position of the window depends on the resolution of the
monitor. There is no restriction on the window’s position; it can appear outside the visible portion of the window.

Java Support

This component is not supported for either thick (Java) or thin (HTML) clients.

In the Java client, this component acts on the current window and not on the next conversed window. This is because there is no deferred
component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of Set_Window_Position component.

Set_Window_Position component syntax

Name Set_Window_Position

System
Identifier

CBCKPOS

Input View
Name

Set_Window_Position_I

Input View Field Top_Position integer(15)
Top coordinate for window (positive and negative allowed)

Input View Field Left_Position integer(15)
Left coordinate for window (positive and negative allowed)

Output View
Name

Set_Window_Position_O

Output View
Field

{{Return_Code integer(15) }}
This field is attached to the system set ,which has the following values: 1 for Success, 0 forRETURN_CODES (SRETURN)
Failure.
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSEdeferred component
WINDOW statement
executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Example: Set_Window_Position

This example sets the upper left corner of the next window conversed to be 10 pixels down from the top of the screen, and 10 pixels to the right of
the left side of the screen.

map 10 to TOP_POSITION of SET_WINDOW_POSITION_I
map 10 to LEFT_POSITION of SET_WINDOW_POSITION_I
use component SET_WINDOW_POSITION

Set_Window_Timeout

This section presents the purpose, the syntax, the usage, and how the Set_Window_Timeout component is supported. See Example:
 for an usage example.Set_Window_Timeout

Purpose

Use this component to return control to a rule if a window it has conversed does not receive user input within a specified time period.

If there is no activity on the window for the duration specified in the Number_Of_Seconds field, a TIMEOUT return code is sent to the rule.
Number_Of_Seconds can be a maximum of 65,525 seconds (approximately 18.2 hours). Any value greater than this or less than 0 causes the
component request to fail. A Number_Of_Seconds value of 0 clears any previous settings for a TIMEOUT.

In C, this is a .deferred component

If a foreground panel is visible and receives a TIMEOUT code, control is passed to the nested rule. When you return to the rule
that called the nested rule, WINDOW_RETCODE of the pre-defined system view HPS_EVENT_VIEW is not set automatically.
You must set the output view of the nested rule and test it in the calling rule.

Java Support

This component is not supported for either thick (Java) or thin (HTML) clients.

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of Set_Window_Timeout component.

Set_Window_Timeout component syntax

Name Set_Window_TimeOut

System
Identifier

CPNLTME

Input
View
Name

Set_Window_TimeOut_I

Input
View
Field

Window_Long_Name character(30)

Input
View
Field

 Number_Of_Seconds integer(31)
Number of seconds after which window is to time out

Output
View
Name

Set_Window_TimeOut_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Example: Set_Window_Timeout

In this example, if CUSTOMER_DETAILS is the next window conversed, and if no activity occurs within 5 seconds, control returns to the calling
rule along with the HPS_WIN_TIMEOUT event. (If CUSTOMER_DETAILS is not the next window to be conversed, the component has no effect.)

map 5 to NUMBER_OF_SECONDS of SET_WINDOW_TIMEOUT_I
map 'Customer Details' to WINDOW_LONG_NAME of SET_WINDOW_TIMEOUT_I
use component SET_WINDOW_TIMEOUT

Set_Window_Title

This section presents the purpose, the syntax, the usage, and how the Set_Window_Title component is supported. See Example:
 for an usage example.Set_Window_Title

Purpose

Use this component to set the title (that is, the caption) of a window. With this component, you can create a panel title different than the panel
name.

In C, this is a .deferred component

If you leave the Title_Length field blank, or if you enter a 0, the component displays the full 50 characters of the Caption_Text
field.

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients.

In the Java client and thin client, this component acts on the current window and not on the next conversed window. This is because there is no
deferred component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

You must have a value in the window title (caption) for this component to work in a thin (HTML) client.

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of Set_Window_Title component.

Set_Window_Title component syntax

Name Set_Window_Title

System
Identifier

CSETTIT

Input
View
Name

Set_Window_Title_I

Input
View
Field

 Caption_Text character(50)
Text of the title or caption for the window.

Input
View
Field

 Title_Length integer(15)
Length of the title or caption for the window.

Output
View
Name

Set_Window_Title_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Example: Set_Window_Title

This example changes the title of the next window conversed to Customer Details.

map 'Customer Details' to CAPTION_TEXT of SET_WINDOW_TITLE_I
map 0 to TITLE_LENGTH of SET_WINDOW_TITLE_I
use component SET_WINDOW_TITLE

Set_Window_Title_Ex

This section presents the purpose, the syntax, the usage, and how the Set_Window_Title_Ex component is supported. See Example:
 for an usage example.Set_Window_Title_Ex

Purpose

Use this component to set a very long title (that is, the caption) of a window. With this component, you can create a panel title different than the
panel name. This component is an extension to component.Set_Window_Title

In C, this is a .deferred component

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients.
In the Java client and thin client, this component acts on the current window and not on the next conversed window. This is because there is no
deferred component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

You must have a value in the window title (caption) for this component to work in a thin (HTML) client.

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of Set_Window_Title_Ex component.

Set_Window_Title_Ex component syntax

Name Set_Window_Title_Ex

System
Identifier

CSETTIT

Input
View
Name

Set_Window_Title_Ex_I

Input
View
Field

 Caption character(1000)
Caption or title for window

Input
View
Field

 Caption_Length integer(15)
Length of caption or title for window.
If you leave the Caption_Length field blank, or if you enter a 0, the component displays the full 50 characters of the Caption field.

Output
View
Name

Set_Window_Title_Ex_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

This example changes the title of the next window conversed to Customer Details.Example: Set_Window_Title_Ex

map 'Customer Details' to CAPTION of SET_WINDOW_TITLE_EX_I
map 0 to CAPTION_LENGTH of SET_WINDOW_TITLE_EX_I
use component SET_WINDOW_TITLE_EX

Show_Help_Topic

This section presents the purpose, the syntax, the usage, and how the Show_Help_Topic component is supported. See Example:
 for an usage example.Show_Help_Topic

Purpose

Use this component with to create a help facility for your application. This component displays the help window for the keySet_Help_File_Name
word specified and is functional only when the help file name associated with the application has been specified with the Set_Help_File_Name
component.

In C, this is a .deferred component

You can use this component only with the native GUI help file that is already linked with the application.

Java Support

This component is supported for thick (Java) clients but not thin (HTML) clients.
In the Java client, this component acts on the current window and not on the next conversed window. This is because there is no deferred
component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of Show_Help_Topic component.

Show_Help_Topic component syntax

Name Show_Help_Topic

System
Identifier

CSHOHLP

Input
View
Name

Show_Help_Topic_I

Input
View
Field

 Help_Keyword character(50)
Keyword of topic to be displayed

Output
View
Name

Show_Help_Topic_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Example: Show_Help_Topic

This example maps BUTTON0 as the keyword for the help facility. BUTTON0 is also the system identifier (HPSID) of the push button.

converse window AETUTOR_PUSHBUTTON_OO
caseof WINDOW_RETCODE of AETUTOR_PUSHBUTTON_OO
 case 'BUTTON0'
 map 'BUTTON0' to HELP_KEYWORD of SHOW_HELP_TOPIC_I
use component SHOW_HELP_TOPIC

Show_Window_Message

This section presents the purpose, the syntax, the usage, and how the Show_Window_Message component is supported. See Example:
 for an usage example.Show_Window_Message

Purpose

Use this component to display a particular message when a window is conversed. This component displays a pop-up message when it may be
impossible to use a rule to converse the window. For example, you may want to display the prompt "Wait a moment please" while fetching data
from the mainframe. The message disappears the next time the window is conversed. Also see .Set_Window_Message

Java Support

This component is not supported for either thick (Java) or thin (HTML) clients.

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of Show_Window_Message component.

Show_Window_Message component syntax

Name Show_Window_Message

System
Identifier

CIMMERR

Input View
Name

Show_Window_Message_I

Input View
Field

 Window_Long_Name character(30)
This field is required to specify the window where the message is displayed.

Input View
Field

 Text_Arg1 character(18)
First text input in error message.

Input View
Field

 Text_Arg2 character(18)
Second text input in error message.

Input View
Field

 Text_Arg3 character(18)
Third text input in error message.

Input View
Field

 Message_Set_Name character(8)
The implementation name of the reference file without the REF extension. This field specifies the implementation name of the
set that contains the error message.

Input View
Field

 Text_Code integer(15)
A number indicating which message is to be used from the error set. This field specifies the error message within the set to be
displayed.

Input View
Field

 OK_Button_YN integer(15)
This field is attached to the system set . You do not need to supply any value in this field when youOK_YES_NO (SOKYNO)
use this component.

Output View
Name

Show_Window_Message_O

Output View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 forRETURN_CODES (SRETURN)
Failure.

Usage

You use this component the same as , except, of course, for the name of the component.Set_Window_Message

You can construct up to three customized inputs by giving values to Text_Arg1, Text_Arg2, and Text_Arg3. These strings are then inserted into
the generic error message selected from the error message set. The percent character (%) serves as a place holder in the messages for the
Text_Arg inputs. Thus %1 is the place holder for Text_Arg1, %2 for Text_Arg2, and %3 for Text_Arg3. The at sign character (@) is also
recognized as a place holder when converting older applications, but do not use it when designing new applications. For example, the message

%1, please try another automobile type. The one you chose does not exist.

can be customized by mapping a field containing the user's name into Text_Arg1. Thus, the user's name appears in the "%1" position.

Example: Show_Window_Message

This example shows a window message.

map WARNING_ERROR_MSG in CUSTOMER_ERROR_WD to TEXT_CODE of SHOW_WINDOW_MESSAGE_I
map 'ZADZQYK' to MESSAGE_SET_NAME of SHOW_WINDOW_MESSAGE_I
map 'Invalid ' to TEXT_ARG1 of SHOW_WINDOW_MESSAGE_I
map 'desc.txt' to TEXT_ARG2 of SHOW_WINDOW_MESSAGE_I
map 'DISPLAY_ERROR_MSG' to WINDOW_LONG_NAME of SHOW_WINDOW_MESSAGE_I
map YES in OK_YES_NO to OK_BUTTON_YN of SHOW_WINDOW_MESSAGE_I
use component SHOW_WINDOW_MESSAGE

Sound_3270_Alarm

This section presents the purpose, the syntax, the usage, and how the Sound_3270_Alarm component is supported. See Example:
 for an usage example.Sound_3270_Alarm

Purpose

Use this component to cause the audible alarm on the 3270 device to beep when the next window is conversed. The default is to not sound the
alarm unless there is an error or warning that has been detected by the 3270 Converse runtime code.

This component is only valid in the 3270 Converse environment and functions for all 3270 devices that support the alarm
feature.

Java Support

This component is not supported for either thick (Java) or thin (HTML) clients.

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for more information.Interface Components

Syntax

Here is the syntax of Sound_3270_Alarm component.

Sound_3270_Alarm component syntax

Name Sound_3270_Alarm

System Identifier CSNDALM

Input View Name This component does not have an input view.

Output View Name This component does not have an output view.

See the examples under for more details.Set_Window_Message

Example: Sound_3270_Alarm

This example sounds the alarm.

use component Sound_3270_Alarm

Cache_Object

This section presents the purpose, the syntax, the usage, and how the Cache_Object component is supported. See forExample: Cache_Object

an usage example.

Purpose

Use this component to preload rules or user components (or both) into the cache at execution time. The size of the cache is controlled by the
RULE_BUFFERS setting in the AE Runtime section of the system initialization file (hps.ini). The setting defaults to 40 on all platforms.

Java Support

This component is not supported for either thick (Java) or thin (HTML) clients.

C# Support

This component is not supported for C# client.

Syntax

Here is the syntax of Cache_Object component.

Cache_Object component syntax

Name Cache_Object

System Identifier CCACHE

Input View Name Cache_Object_I

Input View Field Object_Name character(100)
The implementation name of the rule or user component, which will normally default to its system id.

Input View Field Object_Type integer(15)
The type of object being cached.

0 = AppBuilder rule DLL (dynamic link library)
1 = AppBuilder user component DLL

Input View Field Permanent integer(15)
Determines if the object is placed in the cache permanently or temporarily.

0 = Temporary
1 = Permanent

Output View
Name

Cache_Object_O

Output View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 forRETURN_CODES (SRETURN)
Failure.

Usage

Rules and user components can be added to the cache permanently or temporarily. If you try to load more objects into the cache than it can hold,
the component dynamically increases the size of the cache. The cache does not dynamically grow for the rule DLLs (dynamic link libraries) that
are loaded using the USE RULE statements. Rules loaded this way are considered to be temporary members of the cache. If a temporary object
is the least-used object in the cache, it is removed when the cache is full. Temporary objects are also removed from the cache if room is needed
for a permanent object. Objects that have been put into the cache permanently remain there until the application is closed.
Although the code for caching a component can be put into any rule, it is probably best to put it at the beginning of the root Windows workstation
rule, so that all of the loading is done when the application is started.
Remember these restrictions when caching objects:

If you increase the size of the cache and increase the value of RULE_BUFFERS, your application uses more memory as more and more
objects are stored in the cache.
If you are using a user component that allocates global memory, this component must be permanently cached.

Example: Cache_Object

In this example, the rule DLL is permanently cached.

map 'ZAYYES' to Object_Name of Cache_Object_I
map 0 to Object_Type of Cache_Object_I
map 1 to Permanent of Cache_Object_I
use component Cache_Object

Clear_Field_Messages

This section presents the purpose, the syntax, the usage, and how the Clear_Field_Messages component is supported. See Example:
 for an usage example.Clear_Field_Messages

Purpose

Use this component to reset the fields in a given panel to a non-error condition. Specifically, this component removes the highlighting from any
fields in error and clears any error messages that the component has displayed.Set_Field_Message
In C, this is a .deferred component

Java Support

This component is supported for thick (Java) clients but not thin (HTML) clients and supports only edit fields.
In the Java client, this component acts on the current window and not on the next conversed window. This is because there is no deferred
component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for more information.Interface Components

Syntax

Here is the syntax of Clear_Field_Message component.

Clear_Field_Message component syntax

Name Clear_Field_Messages

System
Identifier

CCLRFLD

Input
View
Name

Clear_Field_Messages_I

Input
View
Field

Window_Long_Name character(30)

Output
View
Name

Clear_Field_Messages_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs. When the CONVERSEdeferred components
WINDOW statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is
displayed that indicates the error.

Return V_CLEAR_FIELD_MESSAGES

Related Components

Use this component with .Set_Field_Message

Example: Clear_Field_Messages

This example specifies GET_CUSTOMER_ID_FROM_NAME as the window on which to reset the fields.

map 'GET_CUSTOMER_ID_FROM_NAME' to
Window_Long_Name of Clear_Field_Messages_I
use component Clear_Field_Messages

Clear_Selected_Fields

This section presents the purpose, the syntax, the usage, and how the Clear_Field_Fields component is supported. See Example:
 for an usage example.Clear_Selected_Fields

Purpose

Use this component to deselect the fields in the list boxes and tables of a given window. If the user has selected any fields from the panel, after
using this component and conversing the window, none of the fields in the window remain selected.
In C, this is a .deferred component

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients.
In the Java client and thin client, this component acts on the current window and not on the next conversed window. This is because there is no
deferred component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

C# Support

This component is supported for C# client.

Syntax

Here is the syntax of Clear_Selected_Fiekds component.

Clear_Selected_Fiekds component syntax

Name Clear_Selected_Fields

System
Identifier

CCLRSLT

Input
View
Name

Clear_Selected_Fields_I

Input
View
Field

Window_Long_Name character(30)

Output
View
Name

Clear_Selected_Fields_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs.When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

You can deselect fields only in list boxes with this component.

Example: Clear_Selected_Fields

This example specifies SELECT_CUSTOMER as the window on which to clear selected fields.

map 'SELECT_CUSTOMER' to WINDOW_LONG_NAME of CLEAR_SELECTED_FIELDS_I
use component CLEAR_SELECTED_FIELDS

Clear_Window_Changes

This section presents the purpose, the syntax, the usage, and how the Clear_Window_Changes component is supported. See Example:
 for an usage example.Clear_Window_Changes

Purpose

Use this component to reset the status of window objects to the status they had when the window was originally created. For example, if you use
 to change the text color of a field to catch a user's attention, this component returns the field to its previous color and resets theSet_Field_Color

window to its original position.
In C, this is a .deferred component

Java Support

This component is supported for both thick (Java) clients and thin (HTML) clients. This component must be enabled in the appbuilder.ini file for it
to work in a Java environment. Refer to the for instructions on using the Management Console to edit an INIConfiguring Communications Guide
file. Refer to for other specific differences in the Java environment.Environment Details
In the Java client and thin client, this component acts on the current window and not on the next conversed window. This is because there is no
deferred component functionality in Java. Refer to for more information.Java and C# Support for Deferred Components

C# Support

This component is supported for C# client.

3270 Converse Support

This component is supported in a CICS or IMS online application (3270 Converse) on the mainframe. Refer to 3270 Converse Supported
 for more information.Interface Components

Environment Details

Depending on which environment (C, C#, or Java), different sets of properties may be reset. The properties of objects in a window (typically
defined using Window Painter and modifiable in the properties panel) are summarized in . InObject properties reset by Clear_Window_Changes
Java, Position and Size are only reset for the window object itself and not for the objects in that window.

Object properties reset by Clear_Window_Changes

Property of Object C (Windows) Client Java Client andHTML Thin Client

Background Color Yes Yes

Border Color Yes No

Checked (menu items) Yes Yes

Close Text (Window) Yes No

Editable Yes Yes

Enable/Disable Yes Yes

Field Altered Status Yes Yes

Field Error Status Yes Yes

Field Picture Yes No

Font No No

Foreground Color Yes Yes

Link Yes No

MCLB Scroll Position Yes Yes

Position Yes No, except for window object

Selection (ComboBox, ListBox and Table(MCLB)) Yes Yes

ShortHelp No No

Size Yes No, except for window object

Text Yes No

Visible Yes Yes

Virtual MCLB Size Yes Yes

If you use other components that affect the properties of Window objects at execution time (for example, HPS_Limit_Scroll_Size) and then run the
Clear_Window_Changes component, Clear_Window_Changes resets the Window object properties.

Syntax

Here is the syntax of Clear_Window_Changes component.

Clear_Window_Changes component syntax

Name Clear_Window_Changes

System
Identifier

CCLRPNL

Input
View
Name

Clear_Window_Changes_I

Input
View
Field

Window_Long_Name character(30)

Output
View
Name

Clear_Window_Changes_O

Output
View
Field

 Return_Code integer(15)
This field is attached to the system set , which has the following values: 1 for Success, 0 for Failure. RETURN_CODES (SRETURN)
In C, this is a , so Return_Code is set to 1 unless a system-level error occurs.When the CONVERSE WINDOWdeferred component
statement executes, the contents of the input view are checked. If an error is detected at this time, a message box is displayed that
indicates the error.

Example: Clear_Window_Changes

This example specifies SELECT_CUSTOMER as the window on which to clear changes.

map 'SELECT_CUSTOMER' to WINDOW_LONG_NAME of CLEAR_WINDOW_CHANGES_I
use component CLEAR_WINDOW_CHANGES

Smooth Scrolling with Components

Using the elevator and scrolling arrows in list boxes should be transparent to end users. Several of the interface system components are used
together to provide this smooth scrolling. Use the smooth scrolling components only with multicolumn list boxes (MCLBs). To implement smooth
scrolling for single-column list box, use a MCLB object and make it a single, non-editable column. The following are two examples:

Smooth Scrolling: Converse Rules Example
Smooth Scrolling: Event-Driven Rules Example

For more information on smooth scrolling, refer to the DataRequired event and the Table object in the .ObjectSpeak Reference Guide
The examples in this topic demonstrate how to use these system components for smooth scrolling:

Get_Elevator_Position
Get_Listbox_Window_Sizes
Set_First_Visible_Occurrence
Set_Virtual_Listbox_Size

Smooth Scrolling: Converse Rules Example

This example shows an MCLB smooth scrolling for converse rules (C-RULES). This example has a List Window Display Rule
(AB_SMOOTH_SCROLL_DIS) and a Fetch Rule (AB_MERULE_SQL_FET). Refer to .Fetch Rule Used in Examples

>-------- Smooth Scrolling Example for Converse Rules --------<
* *
* This example shows how to smooth scroll the MCLB (or table) *
* for CONVERSE RULES(C-RULES). *
* *
* Rule: AB_SMOOTH_SCROLL_DIS - List window display rule *
* Child rule :AB_MERULE_SQL_FET - Fetch rule *
* *
* This displays the rule information from the *
* personal repository database table (MERULE). *
--<

dcl
 L_BACK_BUFFER_AMT smallint;
 L_FIRST_VISIBLE_OCC smallint;
 L_FIRST_SCROLL_OCC smallint;
enddcl

>initialize the variables<
perform InitializeProc

>Get the first block of data and display<
perform GetNextBlock

> Converse loop <
do while EVENT_SOURCE of HPS_EVENT_VIEW <> 'EXIT'

 > Converse the window <
 converse window AB_SMOOTH_SCROLL

 caseof EVENT_NAME of HPS_EVENT_VIEW
 case 'HPS_LB_OUTRANGE'

 use component GET_ELEVATOR_POSITION

 map ELEVATOR_POSITION of GET_ELEVATOR_POSITION_O
 to L_FIRST_VISIBLE_OCC
 map (L_FIRST_VISIBLE_OCC - L_BACK_BUFFER_AMT)
 to L_FIRST_SCROLL_OCC

 *> Calculate starting point for fetch making sure it
 doesn't begin with an invalid record number<*

 > Lower boundary condition <
 if L_FIRST_SCROLL_OCC < 1
 map 1 to L_FIRST_SCROLL_OCC
 endif

 > Upper boundary condition <
 if L_FIRST_SCROLL_OCC > (AB_NUM_OF_RECS of
 AB_MERULE_SQL_FET_O - SCROLLABLE_OCCURS of
 GET_LISTBOX_WINDOW_SIZES_O + 1)

 map (AB_NUM_OF_RECS of AB_MERULE_SQL_FET_O -
 SCROLLABLE_OCCURS of GET_LISTBOX_WINDOW_SIZES_O +1)
 to L_FIRST_SCROLL_OCC
 endif

 >Get Next Block of data and display<
 perform GetNextBlock

 case 'HPS_LB_BOTTOM'

 > Reset current elevator position <
 map (AB_NUM_OF_RECS of AB_MERULE_SQL_FET_O -
 L_FIRST_VISIBLE_OCC + 1)
 to L_FIRST_SCROLL_OCC

 endcase

enddo

>---
* 1. Fetch Next block of data from the database and map to
* MCLB occurring view
* 2. Sets the new virtual mclb sizes
* 3. Sets the first visible row to be shown
---<
proc GetNextBlock

 *> The First scrollable occurrence is passed to the fetch rule as
 starting point for retrieving data. <*
 map L_FIRST_SCROLL_OCC
 to AB_ELEV_POS of AB_MERULE_SQL_FET_I

 use rule AB_MERULE_SQL_FET

 map AB_MERULE_D of AB_MERULE_SQL_FET_O
 to AB_SMOOTH_SCROLL_OCC of AB_SMOOTH_SCROLL_W

 > Set Virtual List Box Size <
 map AB_NUM_OF_RECS of AB_MERULE_SQL_FET_O
 to NUMBER_OF_RECORDS of SET_VIRTUAL_LISTBOX_SIZE_I
 map L_FIRST_SCROLL_OCC to ELEVATOR_POSITION of
 SET_VIRTUAL_LISTBOX_SIZE_I

 use component SET_VIRTUAL_LISTBOX_SIZE

 > Set First Visible Occurrence <
 map L_FIRST_VISIBLE_OCC
 to FIELD_OCCUR of SET_FIRST_VISIBLE_OCCURRENCE_I

 use component SET_FIRST_VISIBLE_OCCURRENCE

endproc

>--
* This proc is called first to initialize the
* component views and local variables
--<
proc InitializeProc

 >--- initialize listbox component input views --<
 map 'AB_SMOOTH_SCROLL_OCC'
 to VIEW_LONG_NAME of SET_VIRTUAL_LISTBOX_SIZE_I
 map 'AB_SMOOTH_SCROLL_OCC'
 to VIEW_LONG_NAME of SET_FIRST_VISIBLE_OCCURRENCE_I
 map 'AB_SMOOTH_SCROLL_OCC'
 to VIEW_LONG_NAME of GET_LISTBOX_WINDOW_SIZES_I
 map 'AB_SMOOTH_SCROLL_OCC'
 to VIEW_LONG_NAME of GET_ELEVATOR_POSITION_I

 >----- initialize elevator position ---------<
 map 1 to L_FIRST_VISIBLE_OCC
 map 1 to L_FIRST_SCROLL_OCC

 converse window AB_SMOOTH_SCROLL nowait

 *> After first converse find out number of list lines and compute
 back buffer -- the number of record back from first visible record
 to include in the view. This is so if the user goes back a little
 and does not have to fetch data outside of his view. <*
 use component GET_LISTBOX_WINDOW_SIZES

 *> The following algorithm can calculate the back buffer
 amount. Note: the amount of back buffer may not exceed the
 occurrences
 <*
 map (SCROLLABLE_OCCURS of GET_LISTBOX_WINDOW_SIZES_O
 - VISIBLE_OCCURS of GET_LISTBOX_WINDOW_SIZES_O) / 2
 to L_BACK_BUFFER_AMT

endproc

>---------- End Smooth Scrolling for Converse Rules --------<

Smooth Scrolling: Event-Driven Rules Example

This example shows an MCLB smooth scrolling for event-driven rules (Java client and thin HTML client). This example has a list window display
rule (AB_SMOOTH_SCROLL_ED_DIS) and uses the same fetch rule (AB_MERULE_SQL_FET) as the previous example. Refer to Fetch Rule

.Used in Examples

>------ Smooth Scrolling Example for Event-Driven Rules ------<
* *
* This example shows how to smooth scroll the MCLB (or table) *
* for event driven rules (JAVA/HTML-RULES). *
* *
* Rule: AB_SMOOTH_SCROLL_ED_DIS - List window display rule *
* *
* This displays the rule information from the *
* personal repository database table (MERULE). *
--<
*
* The following entries in appbuilder.ini are required:
* [DB]
* DB_ACCESS=LOCAL
* DBMS_PREFIX=jdbc:db2:
* JDBC_DRIVER=COM.ibm.db2.jdbc.app.DB2Driver
* DBNAME=SDCFS_LR
* USERID=HPSFWY
* PASSWORD=<password>
*
--<

dcl
 BackBufferAmt smallint;
 FirstVisibleOcc smallint;
 FirstScrollOcc smallint;
enddcl

//---
// Fetch the database for next block of data and
// map it to the occurring view of MCLB.
//---
proc GetNextBlock(fromIndex smallint)
 //fetch next block from the index from index
 map fromIndex
 to AB_ELEV_POS of AB_MERULE_SQL_FET_I
 use rule AB_MERULE_SQL_FET

 //map to occuring view of mclb
 map AB_MERULE_D of AB_MERULE_SQL_FET_O
 to AB_SMOOTH_SCROLL_ED_OCC of AB_SMOOTH_SCROLL_ED_W
endproc

//---
// Update the MCLB Virtual Sizes
// and First visible row.
//---
proc UpdateMCLBDisplay
 //set virtual listbox size
 MERULE_MCLB.setVirtualListBoxSize(FirstScrollOcc,
 AB_NUM_OF_RECS of
 AB_MERULE_SQL_FET_O)
 //Sets First Visible Row
 MERULE_MCLB.setFirstVisibleRow(FirstVisibleOcc)
endproc

//---

// This Procedure gets called when a window is initialized
// the first time before it is shown.
// Here:
// 1. Initialize the local variables
// 2. Fetch and map first block of data
// 3. Update the MCLB size and display
//---
proc InitEventProc for initialize object AB_SMOOTH_SCROLL_ED
(e object pointer to InitializeEvent)

 //initialize elevator positions
 map 1 to FirstVisibleOcc
 map 1 to FirstScrollOcc

 //Compute back buffer -- the number of record back from first
 // visible record to include in the view. This is so if the
 // user goes back a little he doesn't have to fetch data
 //outside of his view.
 map (MERULE_MCLB.ScrollableOccurs - MERULE_MCLB.VisibleOccurs) / 2
 to BackBufferAmt

 //Fetch next block of data and map
 GetNextBlock(FirstScrollOcc)

 //update the MCLB Display
 UpdateMCLBDisplay
endproc

//---
// This procedure is called every time user scrolls pass
// the current virtual limit.
// Here:
// 1. Calculate first scrollable occurrence
// 2. Calculate first visible occurrence
// 3. Fetch and map the next block of data
// 4. Update the MCLB size and display
//---
proc DataEventProc for DataRequired object MERULE_MCLB
(e object pointer to DataRequiredEvent)
 if e.TypeString = 'OutOfRange'
 //get the current elevator positin
 map e.TopVirtualRow to FirstVisibleOcc
 map (FirstVisibleOcc - BackBufferAmt) to FirstScrollOcc

 //Calculate starting point for fetch making sure it
 //doesn't begin with an invalid record number
 //Lower boundary condition
 if FirstScrollOcc < 1
 map 1 to FirstScrollOcc
 endif

 // Upper boundary condition
 if FirstScrollOcc > (AB_NUM_OF_RECS of
 AB_MERULE_SQL_FET_O - MERULE_MCLB.ScrollableOccurs + 1)

 map (AB_NUM_OF_RECS of AB_MERULE_SQL_FET_O -
 MERULE_MCLB.ScrollableOccurs + 1)
 to FirstScrollOcc
 endif

 //fetch next block and map to mclb occ view
 GetNextBlock(FirstScrollOcc)

 //update virtual listbox sizes
 UpdateMCLBDisplay
 endif
endproc

//---
// Click Event Procedure for the push button EXIT

// Terminate the window here
//---
proc ExitProc for Click object EXIT
(e object pointer to ClickEvent)
 AB_SMOOTH_SCROLL_ED.terminate
endproc

>------- End Smooth Scrolling for Event-Driven Rules -----<

Fetch Rule Used in Examples

>--
* Rule : AB_MERULE_SQL_FET - fetch rule *
* This rule uses Personal Repository table MERULE. *
* Create a user named HPSFWY and give full permission to *
* your Personal Repository database. *
--<

dcl
 L_COUNT smallint;
 L_ROWCOUNT smallint;
 L_OCCURSIZE smallint;
 L_SEARCH_FIELD like AB_SEARCH_NAME;
enddcl

> map input data to local variables <
map AB_SEARCH_NAME of AB_MERULE_SEARCH_KEY of AB_MERULE_SQL_FET_I
to L_SEARCH_FIELD
map occurs(AB_MERULE_D)
to L_OCCURSIZE

*>--
* Calculate the number of records meeting search criteria.
* This necessary to set virtual listbox size
--<
sql asis
 select count(*)
 into :L_ROWCOUNT
 from HPSFWY.MERULE A
 where A.NAME > :L_SEARCH_FIELD
 and A.LATEST = 'X'
 and A.DELETION = ' '
endsql

> map number of records to fetch out put view <
map L_ROWCOUNT
to AB_NUM_OF_RECS of AB_MERULE_SQL_FET_O

> Selects all records meeting search criteria into cursor <
sql asis
 declare MERULE1 cursor for
 select A.SHORTNAME,
 A.NAME,
 A.REMOTEMAINTENANCED,
 A.REMOTEMAINTAINEDBY,
 A.PROJECT
 from HPSFWY.MERULE A
 where A.NAME > :L_SEARCH_FIELD
 and A.LATEST = 'X'
 and A.DELETION = ' '
 order by A.NAME
endsql

sql asis
 open MERULE1
endsql

> if cursor fails, return failure<
if SQLCODE of SQLCA <> 0
 map FAILURE in RETURN_CODES
 to AB_RET_CODE of AB_MERULE_SQL_FET_O
 return

endif

*> The window display rule passed the elevator position to the fetch
rule. All record positions selected before the elevator position
should be discarded. <*
do from 1 to (AB_ELEV_POS of AB_MERULE_SQL_FET_I - 1)
 sql asis
 fetch MERULE1
 into :AB_MERULE_DATA.AB_MERULE_SHORTNAME,
 :AB_MERULE_DATA.AB_MERULE_NAME,
 :AB_MERULE_DATA.AB_MERULE_REM_MAINT_DT,
 :AB_MERULE_DATA.AB_MERULE_REM_MAINT_BY,
 :AB_MERULE_DATA.AB_MERULE_PROJECT
 endsql
enddo

> Fill the occuring view <
do from 1 to L_OCCURSIZE index L_COUNT
 sql asis
 fetch MERULE1
 into :AB_MERULE_DATA.AB_MERULE_SHORTNAME,
 :AB_MERULE_DATA.AB_MERULE_NAME,
 :AB_MERULE_DATA.AB_MERULE_REM_MAINT_DT,
 :AB_MERULE_DATA.AB_MERULE_REM_MAINT_BY,
 :AB_MERULE_DATA.AB_MERULE_PROJECT
 endsql

 while SQLCODE of SQLCA = 0
 map AB_MERULE_DATA
 to AB_MERULE_D of AB_MERULE_SQL_FET_O(L_COUNT)
enddo

map SQLCODE of SQLCA
to AB_RET_CODE of AB_MERULE_SQL_FET_O

sql asis
 close MERULE1
endsql

>------------ End of Fetch Rule for Examples -----------<

DDE System Components
Dynamic Data Exchange (DDE) components are for C Language applications only. DDE is a message protocol for data exchange between two
processes. DDE client components (DDECs) hide the complexities of the DDE protocol from the developer. The system supports DDECs for
DOS/Windows but not for AIX or mainframe-based applications.

 summarizes the supported DDE client components.DDE client components

DDE client components

Component DDE message Description

DDE_ADVISE WM_DDE_ADVISE Create a permanent channel

DDE_EXECUTE WM_DDE_EXECUTE Request server to execute a command

DDE_INITIATE WM_DDE_INITIATE Initialize a session

DDE_POKE WM_DDE_POKE Send data to an item

DDE_REQUEST WM_DDE_REQUEST Request data for an item

DDE_TERMINATE WM_DDE_TERMINATE Terminate a session

DDE_UNADVISE WM_DDE_UNADVISE Break channel created by DDE_ADVISE

DDE_ADVISE

This section presents the purpose, the syntax, and an usage example for the DDE_ADVISE component. See .Example: DDE_ADVISE

Purpose

This component creates a "hot link" for an item. It requests that the server/topic sends updates on a given item whenever data changes. The "hot
link" remains active until the server connection is terminated or until a is issued on the item. Updates to the item are placed inDDE_UNADVISE
the view pointed to by the VIEW_LONG_NAME and VIEW_QUALIFIER.

Syntax

Here is the syntax of DDE_ADVISE component.

DDE_ADVISE component syntax

Name DDE_ADVISE

System Identifier CDDEADV

Type IMMEDIATE

Input View Name DDE_ADVISE_I

Input View Field SERVER_HANDLE integer(31)
Server/topic handle of DDE link

Input View Field VIEW_LONG_NAME character(30)
Root view to be updated

Input View Field VIEW_QUALIFIER character(256)
Path for the root view as shown in its data link

 SERVER_ITEM character(50)
The server to which data is sent

Output View Name DDE_ADVISE_O

Output View Field RETURN_CODE integer(15)
This field is attached to the system set ,RETURN_CODES (SRETURN)

which has the following values: 1 for Success, 0 for Failure.

Example: DDE_ADVISE

AE_DDE_HANDLE is a user-defined field containing the handle to a server/topic saved from the use of DDE_INITIATE. AE_DDE_DEMO is the
name of the root view and AE_DDE_DEMO_DATA[0] the name of the subview with its first occurrence. The data link these two views specify
points to the location in the application hierarchy that accepts the data. The string "R1C1:R5C2" represents the Excel items to which the "hot link"
is established. Any changes to those items are reflected automatically in the AE_DDE_DEMO_DATA view.

map 'AE_DDE_DEMO' to VIEW_LONG_NAME of DDE_ADVISE_I
map 'AE_DDE_DEMO_DATA[0]' to VIEW_QUALIFIER of DDE_ADVISE_I
map 'R1C1:R5C2' to SERVER_ITEM of DDE_ADVISE_I
map AE_DDE_HANDLE to SERVER_HANDLE of DDE_ADVISE_I
use component DDE_ADVISE

It makes more sense to use DDE_ADVISE over DDE_REQUEST when there is a need for "real-time" data. For instance, assume you want to
extract stock price data from another application. If you use DDE_ADVISE, any changes in the other application are reflected automatically in
your application.

DDE_EXECUTE

This section presents the purpose, the syntax, and an usage example of the DDE_EXECUTE component. See .Example: DDE_EXECUTE

Purpose

This component requests the server to execute a command string. The command is a text string in a format the server defines.

Syntax

Here is the syntax of DDE_EXECUTE component.

DDE_EXECUTE component syntax

Name DDE_EXECUTE

System Identifier CDDEXEC

Type IMMEDIATE

Input View Name DDE_EXECUTE_I

Input View Field SERVER_HANDLE integer(31)
Server/topic handle of the DDE link

Input View Field COMMAND_FIELD character(512)
String for the server to execute

Output View Name DDE_EXECUTE_O

Output View Field RETURN_CODE integer(15)
This field is attached to the system set ,RETURN_CODES (SRETURN)

which has the following values: 1 for Success, 0 for Failure.

Example: DDE_EXECUTE

AE_DDE_HANDLE is a user-defined field that contains the handle to server/topic saved from the DDE_INITIATE. The command string tells Excel
to select a range of cells on the current spreadsheet, graph them, and maximize the graph.

map AE_DDE_HANDLE to SERVER_HANDLE of DDE_EXECUTE_I
map '[SELECT("R1C1:R5C2,R1C1")][NEW(2)][FULL]' to COMMAND_FIELD of DDE_EXECUTE_I
use component DDE_EXECUTE

DDE_INITIATE

This section presents the purpose, the syntax, and an usage example of the DDE_INITIATE component. See .Example: DDE_INITIATE

Purpose

This component initializes a DDE link for a given topic and server. If the DDE server can support the requested topic, it returns a handle to the
server/topic, SERVER_HANDLE. You must save this handle, which all the other DDE components use to communicate with the server on that
topic. The DDE server application defines the topic and server names.

Syntax

Here is the syntax of DDE_INITIATE component.

DDE_INITIATE component syntax

Name DDE_INITIATE

System Identifier CDDEINI

Type IMMEDIATE

Input View Name DDE_INITIATE_I

Input View Field SERVER_NAME character(50)
Name of server

Input View Field SERVER_TOPIC character(50)
Name of topic

Output View Name DDE_INITIATE_O

Output View Field RETURN_CODE integer(15)
This field is attached to the system set ,RETURN_CODES (SRETURN)

which has the following values: 1 for Success, 0 for Failure.

Output View Field SERVER_HANDLE integer(31)
Server/topic handle of DDE link

Example: DDE_INITIATE

In this example, a connection is made to a Microsoft Excel spreadsheet called "Sheet1". If the connection is successful, a server/topic handle is
sent back. The user saves the returned SERVER_HANDLE, which is used in all subsequent communications with Excel about the spreadsheet.
The AE_DDE_HANDLE is a user-defined field for storing the handle.

map 'EXCEL' to SERVER_NAME
map 'SHEET1' to SERVER_TOPIC
use component DDE_INITIATE
map SERVER_HANDLE of DDE_INITIATE_O to AE_DDE_HANDLE

DDE_POKE

This section presents the purpose, the syntax, and an usage example of the DDE_POKE component. See .Example: DDE_POKE

Purpose

This component sends data to the server/topic for a specified item. This is a one-time request; if the data changes, you must use this component
again to send the changed data. The data is sent from the view pointed to by the VIEW_LONG_NAME and VIEW_QUALIFIER.

Syntax

Here is the syntax of DDE_POKE component.

DDE_POKE component syntax

Name DDE_POKE

System Identifier CDDESND

Type IMMEDIATE

Input View Name DDE_POKE_I

Input View Field SERVER_HANDLE integer(31)
Server/topic handle of the DDE link

Input View Field VIEW_LONG_NAME character(30)
View to be updated

Input View Field VIEW_QUALIFIER character(256)
Path for the view as shown in its data link

Input View Field SERVER_ITEM character(50)
Destination of the data

Output View Name DDE_POKE_O

Output View Field RETURN_CODE integer(15)
This field is attached to the system set ,RETURN_CODES (SRETURN)

which has the following values: 1 for Success, 0 for Failure.

Example: DDE_POKE

AE_DDE_HANDLE is a user-defined field containing the handle to a server/topic saved from the use of DDE_INITIATE. AE_DDE_DEMO is the
name of the root view and AE_DDE_DEMO_DATA[0] the name of the subview with its first occurrence. The data link these two views specify
points to the data being sent. The string "R1C1:R5C2" represents the Excel items to which the data is sent.

map 'AE_DDE_DEMO' to VIEW_LONG_NAME of DDE_POKE_I
map 'AE_DDE_DEMO_DATA[0]' to VIEW_QUALIFIER of DDE_POKE_I
map 'R1C1:R5C5' to SERVER_ITEM of DDE_POKE_I
map AE_DDE_HANDLE to SERVER_HANDLE of DDE_POKE_I
use component DDE_POKE

DDE_REQUEST

This section presents the purpose, the syntax, and an usage example of the DDE_REQUEST component. See .Example: DDE_REQUEST

Purpose

This component requests data from the server/topic for an item. This is a one-time request; if the data changes, you must use this component
again to retrieve the changed data. The data updates the view pointed to by the VIEW_LONG_NAME and VIEW_QUALIFIER.

Syntax

Here is the syntax of DDE_REQUEST component.

DDE_REQUEST component syntax

Name DDE_REQUEST

System Identifier CDDEREQ

Type IMMEDIATE

Input View Name DDE_REQUEST_I

Input View Field SERVER_HANDLE integer(31)
Server/topic handle of DDE link

Input View Field VIEW_LONG_NAME character(30)
Root view to be updated

Input View Field VIEW_QUALIFIER character(256)
Path for the root view as shown in its data link

Input View Field SERVER_ITEM character(50)
The server to which data is sent

Output View Name DDE_REQUEST_O

Output View Field RETURN_CODE integer(15)
This field is attached to the system set ,RETURN_CODES (SRETURN)

which has the following values: 1 for Success, 0 for Failure.

Example: DDE_REQUEST

AE_DDE_HANDLE is a user-defined field containing the handle to a server/topic saved from the use of DDE_INITIATE. AE_DDE_DEMO is the
name of the root view and AE_DDE_DEMO_DATA[0] the name of the subview with its first occurrence. The data link these two views specify
points to the location in the application hierarchy that accepts the data. The string "R1C1:R5C2" represents the Excel items from which data is
retrieved.

map 'AE_DDE_DEMO' to VIEW_LONG_NAME of DDE_REQUEST_I
map 'AE_DDE_DEMO_DATA[0]' to VIEW_QUALIFIER of DDE_REQUEST_I
map 'R1C1:R5C2' to SERVER_ITEM of DDE_REQUEST_I
map AE_DDE_HANDLE to SERVER_HANDLE of DDE_REQUEST_I
use component DDE_REQUEST

DDE_TERMINATE

This section presents the purpose, the syntax, and an usage example of the DDE_TERMINATE component. See .Example: DDE_TERMINATE

Purpose

This component ends a connection with a server/topic. Once the DDE connection is terminated, the SERVER_HANDLE handle is invalid.

Syntax

Here is the syntax of DDE_TERMINATE component.

DDE_TERMINATE component syntax

Name DDE_TERMINATE

System Identifier CDDETRM

Type IMMEDIATE

Input View Name DDE_TERMINATE_I

Input View Field SERVER_HANDLE integer(31)
Server/topic handle of DDE link

Output View Name DDE_TERMINATE_O_

Output View Field RETURN_CODE integer(15)
This field is attached to the system set ,RETURN_CODES (SRETURN)

which has the following values: 1 for Success, 0 for Failure.

Example: DDE_TERMINATE

The AE_DDE_HANDLE is a user-defined field that contains the handle to access the server/topic saved from the DDE_INITIATE.

if (AE_DDE_HANDLE <> 0)
map AE_DDE_HANDLE to SERVER_HANDLE of DDE_TERMINATE_I
use component DDE_TERMINATE
map 0 to AE_DDE_HANDLE
endif

DDE_UNADVISE

This section presents the purpose, the syntax, and an usage example of the DDE_UNADVISE component. See .Example: DDE_UNADVISE

Purpose

This component terminates a "hot link" previously created with a call to . This component tells the server not to send any moreDDE_ADVISE
updates on this item.

Syntax

Here is the syntax of DDE_UNADVISE component.

DDE_UNADVISE component syntax

Name DDE_UNADVISE

System Identifier CDDEUDV

Type IMMEDIATE

Input View Name DDE_UNADVISE_I

Input View Field SERVER_HANDLE integer(31)
Server/topic handle of the DDE link

Input View Field SERVER_ITEM character(50)
Name of data to unadvise

Output View Name DDE_UNADVISE_O

Output View Field RETURN_CODE integer(15)
This field is attached to the system set ,RETURN_CODES (SRETURN)

which has the following values: 1 for Success, 0 for Failure.

Example: DDE_UNADVISE

AE_DDE_HANDLE is a user-defined field containing the handle to a server/topic saved from the use of DDE_INITIATE. The string "R1C1:R5C2"
represents the Excel items to which the "hot link" is established.

map 'R1C1:R5C2' to SERVER_ITEM of DDE_UNADVISE_I
map AE_DDE_HANDLE to SERVER_HANDLE of DDE_UNADVISE_I
use component DDE_UNADVISE

System Components for Mainframe, Unix and Java Batch
There are system components that work only on mainframe (host) systems only for online MVS - CICS and IMS. These include:

Mainframe Batch System Components
OpenCOBOL for Unix & Java Batch System Components
IMS Components
BLOB System Components

Some batch system components and interface system components are supported for UNIX. Refer to OpenCOBOL for Unix & Java Batch System
 for a list of supported system components.Components

Mainframe Batch System Components

A number of components are available in the repository for execution in the (MVS) mainframe batch environment. You can use them for the
following reasons:

Storage Management Components - for managing storage
Input and Output Components - for handling QSAM input and output of fixed and variable length records
Report Writer Components - for generating information for reports
System Information Components - for retrieving system information

Two batch components, DB2 and CGENV, appear in the enterprise repository but are reserved for internal use. Three components (CDYNPIC,

HPDTTM, and HPSETVP) are discussed in the MVS Report Writer. You can use the MVS LOCATE I/O components on either side of the host or
the workstation.

The storage management components retain the values of static variables that, because of the dynamic nature of the linkage interface, are
cleared each time an entity is used. These components allocate, locate, and free blocks of memory of various sizes from the operating system
pools.

The input and output components deal with the related issue of maintaining positioning within sequential files. The functions they perform include
opening, reading, writing, and closing files. You may use these components on mainframe.

The system information components retrieve variables from the environment and do not process any input data.

You communicate with these components using standard input and output view passing. By convention, a component's input view is the name of
the component with the letter "I" appended. Similarly, the name of its output view is the component's name with the letter "O" appended.

Batch components are written in assembler and are reentrant, so you can realize significant performance improvements by
installing them in the link pack area. They have been link-edited using an addressing mode of 31 and a residency mode of 24.
I/O components must reside below the 16 MB line as they switch into addressing mode 24 when calling mainframe routines.

Storage Management Components

Storage management is handled by the following components:

HPGET (as in GETMAIN) and HPGETL
HPFIND and HPFINDL
HPFREE (as in FREEMAIN) and HPFREEL

These components allocate, locate, and free blocks of memory of various sizes from the operating system pools. The following sample rule,
HPFSR01, illustrates their actions.

This rule first uses HPGET to allocate an area for HPFSC01's static variables. It then uses HPFIND and HPFSC01 repeatedly until HPFSC01
returns a value of 10 in its output view. HPFSC01 establishes addressability to its static variables, increments COUNTER, and returns its value in
its output view. Finally, HPFSR01 uses HPFREE to deallocate the block of storage.

HPGET

This section presents the purpose, the syntax, and the usage of the HPGET component.

Purpose

This component allocates blocks of storage of any desired length.

Syntax

Here is the syntax of HPGET component.

HPGET component syntax

Name HPGET

System Identifier HPGET

Input View Name HPGETI

Input View Field KEY character(8)
System identifier of a static variable view

Input View Field SIZE integer(15)
Length to be allocated

Output View Name HPGETO

Output View Field COMPLETE integer(31)
A return code indicating the status of the request

0 = Normal
4 = Duplicate address of storage

Output View Field STORAGE integer(31)
Address of storage

Usage

The first field of this component's input view is KEY. This field should be an arbitrary eight-character string that becomes the name used to refer to
the block in subsequent calls to the location and deallocation components such as HPFIND and HPFREE. The second field of its input view is
SIZE, a small integer field that contains the number of bytes of memory required to satisfy the request. The operating system rounds this number
up to the next multiple of eight, if necessary.

HPGET executes a GETMAIN to allocate the required storage plus a fixed-length header that is not addressable by the calling rule. The block is
then inserted into an ordered linked list whose address the MAINAREA control block maintains. Then call HPFIND or HPFREE to search this list.
The storage resides below the 16-megabyte line and is initialized to binary zeroes.

The first field of the output view is the long integer COMPLETE. A completion code of 0 in this field indicates success and a code of 4 indicates a
block with the same key is already on the list. The second field is the long integer STORAGE. This field normally contains the address of the block
allocated. In the case of a duplication, it contains the address of the existing block of the same name.

HPGETL

This section presents the purpose, the syntax, and the usage of the HPGETL component.

Purpose

Similar to HPGET, this component allocates blocks of storage of any desired length. However, while the field KEY stores the system name of the
static variable view in the input view of HPGET, the field KEY_LONG_NM stores the view's name in the input view of HPGETL.

Syntax

Here is the syntax of HPGETL component.

HPGETL component syntax

Name HPGETL

System Identifier HPGETL

Input View Name HPGETLI

Input View Field KEY_LONG_NM character(30)
View name of a static variable view

Input View Field SIZE integer(15)
Length to be allocated

Output View Name (note this is not)HPGETO HPGETLO

Output View Field COMPLETE integer(31)

0 = Normal
4 = Duplicate address of storage

Output View Field STORAGE integer(31)
Address of storage

Usage

The first field of the input view of this component is KEY_LONG_NM. This field specifies the name of the static variable view referred to in
subsequent calls to the location and deallocation components such as HPFIND and HPFREE. The second field of its input view is SIZE, a small
integer field that contains the number of bytes of memory required to satisfy the request. The mainframe operating system rounds this number up
to the next multiple of eight, if necessary.

This component executes a GETMAIN to allocate the required storage plus a fixed-length header that the calling rule cannot address. The block
is then inserted into an ordered linked list whose address the MAINAREA control block maintains. Then call or to search thisHPFIND HPFREE
list to locate or deallocate a block. The storage resides below the 16-megabyte line and is initialized to binary zeroes.

The first field of the output view of this component is the long integer COMPLETE. A completion code of 0 in this field indicates success and a
code of 4 indicates that a block with the same key is already on the list. The second field is the long integer STORAGE. This field normally
contains the address of the block allocated. In the case of a duplication, it contains the address of the existing block of the same name.

HPFIND

This section presents the purpose, the syntax, and the usage of the HPFIND component.

Purpose

This component locates a block of storage already acquired through a use of .HPGET

Syntax

Here is the syntax of HPFIND component.
HPFIND component syntax

Name HPFIND

System Identifier HPFIND

Input View Name HPFINDI

Input View Field KEY character(8)
System identifier of a static variable view

Output View Name HPFINDO

Output View Field COMPLETE integer(31)

0 = Normal
4 = Not found

Output View Field STORAGE integer(31)
Address of storage

Usage

The character field KEY is the only field in the input view of the component. KEY should be the same eight-character string specified in a previous
allocation request using the component.HPGET

HPFINDL

This section presents the purpose, the syntax, and the usage of the HPFINDL component.

Purpose

This component has the same functionality as and locates a block of storage already acquired with . The only difference is in theHPFIND HPGET
input view: KEY_LONG_NM can be up to 30 characters long.

Syntax

Here is the syntax of HPFINDL component.

HPFINDL component syntax

Name HPFINDL

System Identifier HPFINDL

Input View Name HPFINDLI

Input View Field KEY_LONG_NM character(30)
View name of a static variable view

Output View Name (note this is not)HPFINDO HPFINDLO

Output View Field COMPLETE integer(31)

0 = Normal
4 = Not found

Output View Field STORAGE integer(31)
Address of storage

Usage

This component is functionally equivalent to the component. The only difference is in the input views' field. For the HPFIND component,HPFIND
the KEY field uses the system name of the static variable view that provides input to the component. This component uses the name, stored in the
field KEY_LONG_NM, of the static variable view.

HPFREE

This section presents the purpose, the syntax, and the usage of the HPFREE component.

Purpose

This component searches the linked list of blocks for one with a matching key. When the desired block is found, it is removed from the list and a
FREEMAIN is executed to return it to the free storage pool. If the desired block is not found, no action is taken.

Syntax

Here is the syntax of HPFREE component.

HPFREE component syntax

Name HPFREE

System Identifier HPFREE

Input View Name HPFREEI

Input View Field KEY character(8)
System identifier of a static variable view

Output View Name HPFREEO

Output View Field COMPLETE integer(31)

0 = Normal
4 = Not found

Usage

The only field of the output view of this component is the long integer COMPLETE. A completion code of (0) in this field indicates success; a code
of (4) indicates that the block with the specified key did not exist on the list.

HPFREEL

This section presents the purpose, the syntax, and the usage of the HPFREEL component. See Example - Use of Storage Management
 for an usage example.Components

Purpose

Similar to the component, the HPFREEL component searches the linked list of blocks for one with a matching key. When the desiredHPFREE
block is found, it is removed from the list and a FREEMAIN is executed to return it to the free storage pool. If the desired block is not found, no
action is taken. However, the HPFREE component stores the system name of the static variable view in the field KEY of the input view, but
HPFREEL stores the name of the static variable view in the KEY_LONG_NM field.

Syntax

Here is the syntax of HPFREEL component.

HPFREEL component syntax

Name HPFREEL

System Identifier HPFREEL

Input View Name HPFREELI

Input View Field KEY_LONG_NM character(30)
View name of a static variable view

Output View Name (note this is not)HPFREEO HPFREELO

Output View Field COMPLETE integer(31)

0 = Normal
4 = Not found

Example - Use of Storage Management Components

This example shows the use of storage management components.

*>**<*
> RULE HPFSR01 <
*>**<*
map 'STATIC' TO KEY OF HPGETI
map 8 TO SIZE OF HPGETI
use component HPGET

 COUNTER OF HPFSC010 <> 10do while
 map 'STATIC' TO KEY OF HPFINDI
 use component HPFIND
 map STORAGE OF HPFINDO TO STORAGE OF HPFSC01I
 use component HPFSC01
enddo
map 'STATIC' TO KEY OF HPFREEI
use component HPFREE

Only subcomponents can use storage that these components obtain. The following uses the previously defined rule.

**/
/* COMPONENT HPFSCO1 */
*//***/
HPFSC01: PROCEDURE(COMMADDR) OPTIONS(MAIN)
 DCL COMMADDR PTR;
 DCL 1 COMMAREA BASED (COMMADDR) UNALIGNED,
 %INCLUDE HPSCOMM
 DCL 1 INPUT_VIEW BASED(IV_PTR),
 3 STORAGE PTR;
 DCL 1 OUTPUT_VIEW BASED(OV_PTR),
 3 COUNTER FIXED BIN(15);
 DCL 1 STATIC_VARIABLES BASED(STORAGE),
 3 STATIC_COUNTER FIXED BIN(15);
 STATIC_COUNTER = STATIC_COUNTER \+1;
 COUNTER = STATIC_COUNTER;
 END HPFSC01;

Input and Output Components

There are two sets of four components each that handle QSAM input and output of fixed and variable length records. These components maintain
sequential files and positioning within them. The managed files can be fixed length or variable length and blocked or unblocked, but you must
define them before referencing them. The functions they perform include opening, reading, writing, and closing sequential files. In addition, the
SET_HPSBATCH_RETURN_CODE component allows you to set the value of the return code that the HPSBATCH program returns.

The first set of components uses the MOVE I/O mode. Use these components only on the mainframe:

HPOPEN (opens a sequential file)
HPREAD (reads from a sequential file)
HPWRITE (writes to a sequential file)
HPCLOSE (closes a sequential file)

The second set of components performs the same functionality as the first set, but uses the LOCATE I/O mode. This mode passes pointers to
data, instead of the data themselves, and hence is more efficient:

HPS_OPEN_FILE_LOCATE_MODE (opens a sequential file)
HPS_READ_FILE_LOCATE_MODE (reads from a sequential file)
HPS_WRITE_FILE_LOCATE_MODE (writes to a sequential file)
HPS_CLOSE_FILE_LOCATE_MODE (closes a sequential file)

There is also a component for flushing data records stored in I/O buffers:

HPS_TRUNC_FILE_LOCATE_MODE

There is also a component that sets the value of the return code that the HPSBATCH program returns:

SET_HPSBATCH_RETURN_CODE

JCL Considerations

To minimize coding requirements for rules development and provide maximum flexibility at runtime, the input and output components make no
assumptions about the files being processed, other than that the records are either fixed or variable length. The records can be blocked or
unblocked but must be defined. This means that the file's characteristics are taken from an existing data set's labels or from the JCL if a data set
is created. Remember, you must explicitly override unacceptable defaults on DD cards or TSO ALLOCATE commands.

HPOPEN

This section presents the purpose, the syntax, and the usage of the HPOPEN component.

Purpose

This component initiates processing a sequential mainframe data set through the standard QSAM interface. Storage for a mainframe data set
control block (DCB) is allocated by using a suballocation of dynamic storage that was acquired by the batch driver at startup. The DCB is then
initialized and opened for either input or output depending on the value of the MODE field.

Syntax

Here is the syntax of HPOPEN component.

HPOPEN component syntax

Name HPOPEN

System Identifier HPOPEN

Input View Name HPOPENI

Input View Field DDNAME character(8)
Identifies the JCL file in a corresponding TSO ALLOCATE command or DD card

Input View Field MODE character(8)
Can be one of two values:

INPUT indicates data is taken from the data set (default)
OUTPUT indicates data is passed to the data set

Output View Name HPOPENO

Output View Field COMPLETE integer(31)

0 = Successful
4 = Could not be opened

Output View Field DCB integer(31)
Address of the open data set control block (DCB)

Usage

Missing DD cards for the files concerned are the most common cause of open failures. Do not try to process a file that does not open
successfully. In the case of an open failure, the DCB contents are meaningless.

HPREAD

This section presents the purpose, the syntax, and the usage of the HPREAD component.

Purpose

This component reads records from a sequential mainframe data set through the standard QSAM interface. It executes a GET to read a single
record from the input file. The record data is then copied from an internal buffer below the 16-megabyte line to the component's output view.

Syntax

Here is the syntax of HPREAD component.

HPREAD component syntax

Name HPREAD

System Identifier HPREAD

Input View Name HPREADI

Input View Field DCB integer(31)
Address of the data set control block (DCB) obtained through use of the HPOPEN component

Output View Name HPREADO

Output View Field COMPLETE integer(31)

0 = Successful
4 = End of file

Output View Field SIZE integer(15)
Record length

Output View Field RECORD integer(1920)
Data read from the data set

Usage

Do not try to read records from a file when the end of the file has been reached. The contents of the RECORD field are meaningless at end of file.

The SIZE field contains the length of the record read when processing variable length records. It does not include the length of the record
descriptor word. The contents of the SIZE field are the logical record length of the input data set when processing fixed-length records.

The length of the RECORD field in the repository imposes an upper bound on the logical record length of the files this component can read. If this
limit is insufficient, you can use the field RECORDL, which allows for a larger character field. However, you must then prepare the HPREADO
output view and the HPREAD component.

HPWRITE

This section presents the purpose, the syntax, and the usage of the HPWRITE component.

Purpose

This component writes records to a sequential mainframe data set through the standard QSAM interface. It copies the record data from the input
view to an internal buffer below the 16-megabyte line. A PUT is then executed to write the single record to the output file.

Syntax

Here is the syntax of HPWRITE component.

HPWRITE component

Name HPWRITE

System Identifier HPWRITE

Input View Name HPWRITEI

Input View Field DCB integer(31)
Address of the data set control block (DCB) obtained through use of the HPOPEN component.

Input View Field SIZE integer(15)
Variable record length.

Input View Field RECORD character(1920)
Data to be written to the set.

Output View Name HPWRITEO

Output View Field COMPLETE integer(31)

0 = Success
4 = Could not be written

Usage

The SIZE field must contain the length of the record to be written when processing variable-length records. It should not include the length of a
record descriptor word. The contents of the SIZE field are ignored when processing fixed-length records. (The DCB contains the necessary record
length information.)

The length of the RECORD field in the repository imposes an upper bound on the logical record length of the files that this component can write. If
this limit is insufficient, increase the size of the field and prepare the HPWRITEI view again. You must make a corresponding change to the
RECORDL equate in the HPWRITE component and then prepare the component again.

HPCLOSE

This section presents the purpose, the syntax, and the usage of the HPCLOSE component.

Purpose

This component concludes processing a sequential mainframe data set through the standard QSAM interface. It closes the file, causing the
mainframe operating system to take the appropriate actions for the data set, as specified in the JCL. Storage for the data set control block (DCB)
is then deallocated by using a suballocation of dynamic storage that was acquired by the batch driver at startup.

Syntax

Here is the syntax of HPCLOSE component.

HPCLOSE component syntax

Name HPCLOSE

System
Identifier

HPCLOSE

Input View
Name

HPCLOSEI

Input View
Field

 DCB integer(31)
Address of the DCB obtained through the use of the HPOPEN component.

Output View
Name

HPCLOSEO

Output View
Field

 COMPLETE integer(31)

0 = Success
This is the only value returned. Any condition causing a close to fail usually causes the batch job to abend (for
example, a missing DD statement).

Usage

Do not try to process a closed file without first reopening it.

HPS_OPEN_FILE_LOCATE_MODE

This section presents the purpose, the syntax, and the usage of the HPS_OPEN_FILE_LOCATE_MODE component.

Purpose

This component initiates processing a sequential mainframe data set through the standard QSAM interface. Storage for a mainframe data set
control block (DCB) is allocated by this component. The DCB is then initialized and opened for either input or output depending on the value of the
MODE field.

This component is functionally equivalent to , except that this component uses LOCATE I/O mode instead of MOVE I/O mode, andHPOPEN
hence is more efficient.

Syntax

Here is the syntax of HPS_OPEN_FILE_LOCATE_MODE component.

HPS_OPEN_FILE_LOCATE_MODE component syntax

Name HPS_OPEN_FILE_LOCATE_MODE

System Identifier CHPOPEN

Input View Name HPS_OPEN_FILE_LOCATE_MODE_I

Input View Field DDNAME character(8)
Identifies the JCL file in a corresponding TSO ALLOCATE command or DD card

Input View Field MODE character(8)
Can be one of two values:

INPUT indicates data is taken from the data set (default)
OUTPUT indicates data is passed to the data set
See for MODE used for OpenCOBOL for Unix & JavaOpenCOBOL for Unix & Java Batch System Components
Batch.

Output View
Name

HPS_OPEN_FILE_LOCATE_MODE_O

Output View Field COMPLETE integer(31)
The following codes are returned on the workstation:

0 = Successful
4 = File could not be opened or invalid mode parameter
The following codes are returned on the mainframe:
0 = Successful
4 = File could not be opened

Output View Field LOCATE_MODE_DCB character(4)
Address of the open data set control block (DCB).

Usage

Missing DD cards for the files concerned are the most common cause of open failures. Do not try to process a file that does not open
successfully. In the case of an open failure, the DCB contents are meaningless.

HPS_READ_FILE_LOCATE_MODE

This section presents the purpose, the syntax, and the usage of the HPS_READ_FILE_LOCATE_MODE component.

Purpose

This component reads records from a sequential data set through the standard QSAM interface. It executes a GET to read a single record from
the input file. The record data is then copied from an internal buffer below the 16-megabyte line to view specified by the LOCATE_RECORD field.

This component is functionally equivalent to , except that this component uses LOCATE I/O mode instead of MOVE I/O mode, andHPREAD
hence is more efficient.

Syntax

Here is the syntax of HPS_READ_FILE_LOCATE_MODE component.

HPS_READ_FILE_LOCATE_MODE component syntax

Name HPS_READ_FILE_LOCATE_MODE

System
Identifier

CHPREAD

Input View
Name

HPS_READ_FILE_LOCATE_MODE_I

Input View
Field

 VIEW_LONG_NAME character(30)
The name of the view to be read

Input View
Field

 SIZE_LONG integer(31)
Record length in bytes

Input View
Field

 LOCATE_MODE_DCB character(4)
Address of the data set control block (DCB) obtained through use of the HPS_OPEN_FILE_LOCATE_MODE component

Input View
Field

 LOCATE_RECORD character(8)
Location of the view structure where the component should place the data after it has read it from the record. Use the LOC
function to supply the view location. (Refer to the .)Rules Language Reference Guide

Output
View
Name

HPS_READ_FILE_LOCATE_MODE_O

Output
View Field

 COMPLETE integer(31)
The following codes are returned on the workstation:

0 = Successful
4 = End of file reached
8 = Invalid DCB or the read operation failed
The following codes are returned on the mainframe:
0 = Successful
4 = End of file reached.

Output
View Field

 SIZE_LONG integer(31)
Record length

Usage

It is imperative that the value supplied to the SIZE_LONG field in the component input view not exceed the size of the view into which the record
is being read. It is recommended that the function SIZEOF(viewname) be used to determine the value to supply to the component. For example:
map SIZEOF(viewname) to SIZE_LONG of HPS_READ_FILE_LOCATE_MODE_I

HPS_WRITE_FILE_LOCATE_MODE

This section presents the purpose, the syntax, and the usage of the HPS_WRITE_FILE_LOCATE_MODE component.

Purpose

This component writes records to a sequential mainframe data set through the standard QSAM interface. It copies the record data specified by
the LOCATE_RECORD field of the input view to an internal buffer below the 16-megabyte line. A PUT is then executed to write the single record
to the output file.

This component is functionally equivalent to , except that this component uses LOCATE I/O mode instead of MOVE I/O mode, andHPWRITE
therefore is more efficient.

Syntax

Here is the syntax of HPS_WRITE_FILE_LOCATE_MODE component.

HPS_WRITE_FILE_LOCATE_MODE component syntax

Name HPS_WRITE_FILE_LOCATE_MODE

System
Identifier

CHPWRIT

Input View
Name

HPS_WRITE_FILE_LOCATE_MODE_I

Input View
Field

 VIEW_LONG_NAME character(30)
Name of the view to be written

Input View
Field

 SIZE_LONG integer(31)
Record length in bytes

Input View
Field

 LOCATE_MODE_DCB character(4)
Address of the data set control block (DCB) obtained through use of the HPS_OPEN_FILE_LOCATE_MODE component

Input View
Field

 LOCATE_RECORD character(8)
Location of the view structure where the component gets the data for writing to the record. Use the LOC function to supply the
location of a view. (Refer to the .)Rules Language Reference Guide

Output
View Name

HPS_WRITE_FILE_LOCATE_MODE_O

Output
View Field

COMPLETE (31) integer
The following codes are returned on the workstation:

0 = Success
8 = Invalid DCB or the write operation failed
The following codes are returned on the mainframe:
0 = Success
4 = Could not be written

Usage

The SIZE_LONG field must contain the length of the record to be written when processing variable-length records. It should not include the length
of a record descriptor word. The contents of the SIZE_LONG field are ignored when processing fixed-length records. (The DCB contains the
necessary record length information.)

HPS_CLOSE_FILE_LOCATE_MODE

This section presents the purpose, the syntax, and the usage of the HPS_CLOSE_FILE_LOCATE_MODE component.

Purpose

This component concludes processing a sequential mainframe data set through the standard QSAM interface. It closes the file, causing to take
the appropriate actions for the data set, as specified in the JCL. Storage for the data set control block (DCB) and the file buffer pools is freed by
this component.

This component is functionally equivalent to , except that this component uses LOCATE I/O mode instead of MOVE I/O mode, andHPCLOSE
hence is more efficient.

Syntax

Here is the syntax of HPS_CLOSE_FILE_LOCATE_MODE component.

HPS_CLOSE_FILE_LOCATE_MODE component syntax

Name HPS_CLOSE_FILE_LOCATE_MODE

System
Identifier

CHPCLOS

Input View
Name

HPS_CLOSE_FILE_LOCATE_MODE_I

Input View
Field

 LOCATE_MODE_DCB character(4)
Address of the DCB obtained through the use of the componentHPS_OPEN_FILE_LOCATE_MODE

Output View
Name

HPS_CLOSE_FILE_LOCATE_MODE_O

Output View
Field

 COMPLETE integer(31)
The following codes are returned on the workstation:

0 = Success
4 = Invalid DCB or the close operation failed
The following code is returned on the mainframe:
0 = Success
This is the only value returned. Any condition causing a close to fail usually causes the batch job to abend (for
example, a missing DD statement).

Usage

Do not try to process a closed file; first open it.

HPS_TRUNC_FILE_LOCATE_MODE

This section presents the purpose, the syntax, and the usage of the HPS_TRUNC_FILE_LOCATE_MODE component.

Purpose

Batch jobs that use the mainframe checkpoint/restart feature to recover from failure can experience a loss of data from files used by rules. If you
lose data in this way, you can use this system component to flush data records stored in the I/O buffers. This component issues the mainframe
TRUNC macro command for the specified file, which causes the operating system to regard the current buffer as full, allowing a short block to be
written to the file.

Syntax

Here is the syntax of HPS_TRUNC_FILE_LOCATE_MODE component.

HPS_TRUNC_FILE_LOCATE_MODE component syntax

Name HPS_TRUNC_FILE_LOCATE_MODE

System
Identifier

CHPTRUN

Input View
Name

HPS_TRUNC_FILE_LOCATE_MODE_I

Input View
Field

 LOCATE_MODE_DCB character(4)
Address of the DCB obtained through the use of the componentHPS_OPEN_FILE_LOCATE_MODE

Output View
Name

HPS_TRUNC_FILE_LOCATE_MODE_O

Output View
Field

 COMPLETE integer(31)
The following codes are returned on the workstation:

0 = Success
4 = Invalid DCB or the close operation failed
The following code is returned on the mainframe:
0 = Success
This is the only value returned. Any condition causing a close to fail usually causes the batch job to abend (for
example, a missing DD statement).

SET_HPSBATCH_RETURN_CODE

This section presents the purpose, the syntax, and the usage of the SET_HPSBATCH_RETURN_CODE component. See Example - Using
 for an usage example.MOVE I/O Mode

Purpose

This component sets the value of the return code that the HPSBATCH program returns. Executing this component twice within the same rule
displays only the last value assigned.

Syntax

Here is the syntax of SET_HPSBATCH_RETURN_CODE component.

SET_HPSBATCH_RETURN_CODE component syntax

Name SET_HPSBATCH_RETURN_CODE

System Identifier HPBRETC

Input View Name SET_HPSBATCH_RETURN_CODE_I

Input View Field RETURN_CODE integer(15)
This can be a number from 0 to 4,095

Example - Using MOVE I/O Mode

The following sample rule, HPIOR01, illustrates the actions of the MOVE I/O mode components. This rule copies a fixed or variable length input
file to a fixed or variable length output file.

*>***<*
> RULE HPIOR01 <
*>***<*
map 'FILEIN' TO DDNAME OF HPOPENI
map 'INPUT' TO MODE OF HPOPENI
use component HPOPEN
map DCB OF HPOPENO TO DCB OF HPREADI
map 'FILEOUT' TO DDNAME OF HPOPENI
map 'OUTPUT' TO MODE OF HPOPENI
use component HPOPEN
map DCB OF HPOPENO TO DCB OF HPWRITEI
use component HPREAD

 COMPLETE OF HPREADO = 0do while
 map RECORD OF HPREADO TO RECORD OF HPWRITEI
 map SIZE OF HPREADO TO SIZE OF HPWRITEI
 use component HPWRITE
 use component HPREAD
enddo
map DCB OF HPREADI TO DCB OF HPCLOSEI
use component HPCLOSE
map DCB OF HPWRITEI TO DCB OF HPCLOSEI
use component HPCLOSE

This example shows JCL suitable for executing the sample rule HPIOR01.

 // Background JCL DD card fixed length input *//*for
//FILEIN DD DISP=SHR,DSN=NA2XX.TEST.FIXED
//* Background JCL DD card fixed length output *//for
//FILEOUT DD SYSOUT=*,DCB=(RECFM=F,BLKSIZE=121)
//* Background JCL DD card variable length input *//for
//FILEIN DD DISP=SHR,DSN=NA2XX.TEST.VARIABLE
//* Background JCL DD card variable length output *//for
//FILEOUT DD SYSOUT=*,DCB=(RECFM=V,BLKSIZE=121)

This example shows a CLIST suitable for executing the sample rule HPIOR01.

/* Foreground TSO ALLOCATE fixed length input */for
 ATTRIB FIXED RECFM(F)
 ALLOCATE FI(FILEIN) DA(*y) USING(FIXED)
/* Foreground TSO ALLOCATE fixed length output */for
 ATTRIB FIXED RECFM(F)
 ALLOCATE FI(FILEOUT) DA(*y) USING(FIXED)
/* Foreground TSO ALLOCATE variable length input */for
 ATTRIB VARIABLE RECFM(V) BLKSIZE(84) LRECL(80)
 ALLOCATE FI(FILEIN) DA(*y) USING(VARIABLE)
/* Foreground TSO ALLOCATE variable length output */for
 ATTRIB VARIABLE RECFM(V) BLKSIZE(84) LRECL(80)
 ALLOCATE FI(FILEOUT) DA(*y) USING(VARIABLE)

Report Writer Components

The Report Writer uses these components:

CDYNPIC
HPDTTM
HPSETVP

CDYNPIC

This section presents the purpose, the syntax, and the usage of the CDYNPIC component.

Purpose

This system component does the following for dynamic picture editing:

Validates that PIC_FMT_AMT has only a sign or digits, or both.
PIC_FMT specifies a valid picture. Anything that is accepted at generation time is also accepted at runtime. Exception: Signs are
specified with "+" or "-" and not with "S".
Transforms PIC_FMT_AMT together with PIC_FMT_SCALE into PIC_FMT_RESULT according to PIC specification in PIC_FMT.
Validates for run-time overflow (return all "*"s).

Report Writer invokes this component behind the scenes. You do not need to invoke it explicitly in your rules to makes dynamic picture editing
work. Refer to .HPSETVP

Syntax

This system component with a mainframe batch execution environment accepts as input:

01 VRWFORMI
 03 PIC_FMT_AMT PIC 'S9(15)'
 03 PIC_FMT_SCALE smallint
 03 PIC_FMT char(30)
To allow a wide range of precision before and after the decimal point, the decimal number to be formatted is supplied as an integer
(PIC_FMT_AMT) together with the number of decimals (PIC_FMT_SCALE).

This system component returns this output:
01 VRWFORMO
 03 RET_CODE smallint
 03 PIC_FMT_RESULT VarChar(30).

HPDTTM

This section presents the purpose, the syntax, and the usage of the HPDTTM component.

Purpose

This system component either provides the current date and time in a certain format or formats an integer number into a specified date and time
template. Calls to this component are automatically invoked by the report program. You are not required to call this component in your driver
rules.

Syntax

Here is the syntax of HPDTTM component.

HPDTTM component syntax

Name HPDTTM

System
Identifier

HPDTTM

Input View
Name

VRWDTTMI

Input View
Field

 DATE_FMT character(20)
Stores date format.

Input View
Field

 TIME_FMT character(20)
Stores time format.

Input View
Field

 FORMAT_IND character(1)
 if formatting input data, if formatting current date or time.Y N

Input View
Field

 INP_DATE_TIME picture('999999999')
Contains data for formatting (data must be numeric). Date is expected to be yyyymmdd. Time is expected to be hhmmssttt. If less
than nine digits are passed, the component fills in leading zeroes.

Output
View Name

VRWDTTMO

SubView
Name

VDTTM

Output
View Field

 DATE_STR character(18)
Formatted date.

Output
View Field

 TIME_STR character(13)
Formatted time.

Output
View Field

YEAR_NBR integer(15)

Output
View Field

MONTH_NBR integer(15)

Output
View Field

DAY_NBR integer(15)

Output
View Field

HOUR_NBR integer(15)

Output
View Field

MIN_NBR integer(15)

Output
View Field

SEC_NBR integer(15)

Output
View Field

DAY_IN_YEAR integer(15)

Output
View Field

DAY_PLUS_YEAR integer(31)

Output
View Field

STATUS_CD picture('999999999')

Obtaining the Current Date

To obtain the current date, the requirements shown in must be met.Requirements for current date field

Requirements for current date field

Field Requirement

DATE_FMT Desired date format must be specified

TIME_FMT Must be cleared with the CLEAR statement

FORMAT_IND Must equal N

Obtaining the Current Time

To obtain the current time, the requirements shown in must be met.Requirements for current time field

Requirements for current time field

Field Requirement

DATE_FMT Must be cleared with the CLEAR statement

TIME_FMT Desired time format must be specified

FORMAT_IND Must equal N

Formatting a Number into a Date Template

To format a number into one of the date templates, the requirements shown in mustRequirements for formatting a number into a date template
be met.

Requirements for formatting a number into a date template

Field Requirement

DATE_FMT Desired date format must be specified

TIME_FMT Must be cleared with the CLEAR statement

FORMAT_IND Must equal Y

INP_DATE_TIME Number for formatting (for example 19920301)

For DATE_FMT=DATE1 DATE_STR returns 03/01/1992

Formatting a Number into a Time Template

To format a number into one of the date templates, the requirements shown in must beRequirements for formatting a number into a time template
met.

Requirements for formatting a number into a time template

Field Requirement

DATE_FMT Must be cleared with the CLEAR statement

TIME_FMT Desired time format must be specified

FORMAT_IND Must equal Y

INP_DATE_TIME Number for formatting (for example 000012345)

For TIME_FMT=TIME1 TIME_STR contains 00:00:12

You can simultaneously obtain both the current date and current time by providing appropriate non-blank entries for both DATE_FMT and
TIME_FMT. But you cannot at the same time format a number into both a date and a time template.

STATUS_CODE Return Codes

The STATUS_CODE field for the HPDTTM component provides the return codes listed in .Return codes for STATUS_CODE field

Return codes for STATUS_CODE field

Return Code Explanation

0 No error detected

1001 Invalid date format input

1002 Invalid time format input

1003 Cannot specify both date AND time request

1100 Invalid date

1200 Invalid time

HPSETVP

This section presents the purpose, the syntax, and the usage of the HPSETVP component.

Purpose

This system component is used in Report Writer in conjunction with (as input to) to help generate dynamic pictures. You must makeCDYNPIC
explicit calls to this component in your driver rules.

Syntax

Here is the syntax of HPSETVP component.
HPSETVP component syntax

Name HPSETVP

System
Identifier

HPSETVP

Input
View
Name

HPSETVPI

Input
View
Field

 KEY_LONG_NM character(30)
This is the report name.

Input
View
Field

VPTAG character(16)

Input
View
Field

 VPICTURE character(30)
This is the picture format. VPICTURE contains the picture specification you want to impose. If VPSCALE = 1, PIC_FMT_SCALE of
VFORMATI is 1. Report Writer uses this to communicate the specific format in which the data is to be displayed.

Input
View
Field

VPSCALE integer(15)

Output
View
Name

HPSETVPO

Output
View
Field

COMPLETE integer(31)

System Information Components

Two components are available for retrieving information about the system. These components are:

HPSMODE - returns the current execution environment
HPSPARM - retrieves any parameters passed to the rule in the JCL that invoked the application

Because these components retrieve variables from the environment and do not process any input data, they have no input views.

HPSMODE

This section presents the purpose, the syntax, and the usage of the HPSMODE component.

Purpose

Because you can prepare a rule for different execution environments, you may wish to determine the current execution environment at runtime so

you can perform certain environment-specific functions. This component returns the execution environment in which the rule that invoked the
component is currently executing.

Syntax

Here is the syntax of HPSMODE component.
HPSMODE component syntax

Name HPSMODE

System Identifier HPSMODE

Input View Name This component has no input view.

Output View Name HPSMODEO

Output View Field EXECMODE character(6)
This field has the execution environment with these possible values:

CICS
IMS
BATCH
UNKNOWN

HPSPARM

This section presents the purpose, the syntax, and the usage of the HPSPARM component. See forExample - Using HPSMODE and HPSPARM
an usage example.

Purpose

This component reads the EXEC CARD PARM statement in the JCL that invoked the application and returns that parameter to the calling rule.

LE statements in the PARM statement is ignored.

Syntax

Here is the syntax of HPSPARM component.
HPSPARM component syntax

Name HPSPARM

System Identifier HPSPARM

Input View Name This component has no input view.

Output View Name HPSPARMO

Output View Field EXECPARM character(78)
The parameter passed to the application in the EXEC CARD PARM statement in the JCL

Usage

If the application was not invoked with JCL (for example, it was invoked using TE), the EXECPARM field contains the value "PARAMETER". If
you are testing with TE, you need to break on this component and set the EXECPARM field correctly.

Example - Using HPSMODE and HPSPARM

The following sample rule, HPSIR01, illustrates the use of these components. This rule uses HPSPARM to find the EXEC card parameter and
HPSMODE to find the execution environment. It then uses HPWRITE to write this information to a data set.

*>***<*
> HPSIR01 <
*>***<*
map 'FILE' TO DDNAME OF HPOPENI
map 'OUTPUT' TO MODE OF HPOPENI
use component HPOPEN

 COMPLETE OF HPOPENO >0if
 RETURN
map DCB OF HPOPENO TO DCB OF HPWRITEI
use component HPSPARM
map EXECPARM OF HPSPARMO TO RECORD OF HPWRITEI
map 80 TO SIZE OF HPWRITEI
use component HPWRITE
use component HPSMODE
map EXECMODE OF HPSMODEO TO RECORD OF HPWRITEI
map 80 TO SIZE OF HPWRITEI
use component HPWRITE
map DCB OF HPWRITEI TO DCB OF HPCLOSEI
use component HPCLOSE

The JCL for this rule is included. (The rule's system identifier is "AAAUVV".)

//SS0116C JOB (NA2,HPSD),'RUN PROG',CLASS=1,
// NOTIFY=SS0116,MSGCLASS=X,REGION=4096K
//RUN EXEC PGM=HPSBATCH,PARM='AAAUVV,,X,Y,Z,1'
//STEPLIB DD DSN=SS0196.HPS510.LOADLIB,DISP=SHR
// DD DSN=SS0196.USER1.BATCH.LOADLIB,DISP=SHR
// DD DSN=MV.COBOLII.COB2LIB,DISP=SHR
// DD DSN=MV.PLI2.SIBMLINK,DISP=SHR
// DD DSN=MV.EDC.SEDCBASE,DISP=SHR
// DD DSN=MV.EDC.SIBMBASE,DISP=SHR
// DD DSN=MV.EDC.SEDCLINK,DISP=SHR
// DD DSN=MV.EDC.SIBMLINK,DISP=SHR
// DD DSN=MV.EDC.SEDCCOMP,DISP=SHR
// DD DSN=MV.EDC.SEDCMSGS,DISP=SHR
// DD DSN=MV.EDC.SEDCHDRS,DISP=SHR
//INPUT DD DUMMY
//OUTPUT DD SYSOUT=*
//VIEWFILE DD DSN=NAVHP.SS0196.USER1.BATCH.VIEWDEF,DISP=SHR
//FILE1 DD DSN=SS0116.HPS510.T10200.FILE1,DISP=SHR
//SYSTSPRT DD SYSOUT=*
//SYSABOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*
//CEEDUMP DD SYSOUT=*
//PLIDUMP DD SYSOUT=*
/*

OpenCOBOL for Unix and Java Batch System Components

A number of components are available in the repository for execution in the OpenCOBOL for Unix & Java batch environments:

Input and Output Components - for handling QSAM input and output of fixed and variable length records
System Information Components - for retrieving system information

The input and output components deal with the related issue of maintaining positioning within sequential files. The functions they perform include
opening, reading, writing, and closing files.
The system information components retrieve variables from the environment and do not process any input data.
You communicate with these components using standard input and output view passing. By convention, a component's input view is the name of
the component with the letter "I" appended. Similarly, the name of its output view is the component's name with the letter "O" appended.

Input and Output Components

These components maintain sequential files and positioning within them. The managed files can be fixed length or variable length and blocked or
unblocked, but you must define them before referencing them. The functions they perform include opening, reading, writing, and closing
sequential files. In addition, the SET_HPSBATCH_RETURN_CODE component allows you to set the value of the return code that the
HPSBATCH program returns.
This set of components performs the same functionality as the set of similar components in section, butMainframe Batch System Components
uses the LOCATE I/O mode. This mode passes pointers to data, instead of the data themselves, and hence is more efficient:

HPS_OPEN_FILE_LOCATE_MODE (opens a sequential file)
HPS_READ_FILE_LOCATE_MODE (reads from a sequential file)
HPS_WRITE_FILE_LOCATE_MODE (writes to a sequential file)
HPS_CLOSE_FILE_LOCATE_MODE (closes a sequential file)

There is also a component for flushing data records stored in I/O buffers:

HPS_TRUNC_FILE_LOCATE_MODE

There is also a component that sets the value of the return code that the HPSBATCH program returns:

SET_HPSBATCH_RETURN_CODE

HPS_OPEN_FILE_LOCATE_MODE

This section presents the purpose, the syntax, and the usage of the HPS_OPEN_FILE_LOCATE_MODE component.

Purpose

This component initiates processing a sequential mainframe data set through the standard QSAM interface. Storage for a mainframe data set
control block (DCB) is allocated by this component. The DCB is then initialized and opened for either input or output depending on the value of the
MODE field.
This component is functionally equivalent to , except that this component uses LOCATE I/O mode instead of MOVE I/O mode, andHPOPEN
hence is more efficient.

Syntax

Here is the syntax of HPS_OPEN_FILE_LOCATE_MODE component.

HPS_OPEN_FILE_LOCATE_MODE component syntax

Name HPS_OPEN_FILE_LOCATE_MODE

System Identifier CHPOPEN

Input View Name HPS_OPEN_FILE_LOCATE_MODE_I

Input View Field DDNAME character(8)
Identifies the JCL file in a corresponding TSO ALLOCATE command or DD card

Input View Field MODE character(8)
Can be one of two values:

INPUT indicates data is taken from the data set (default)
OUTPUT indicates data is passed to the data set

Output View Name HPS_OPEN_FILE_LOCATE_MODE_O

Output View Field COMPLETE integer(31)
The following codes are returned on the workstation:

0 = Successful
4 = File could not be opened or invalid mode parameter
The following codes are returned on the mainframe:
0 = Successful
4 = File could not be opened

Output View Field LOCATE_MODE_DCB character(4)
Address of the open data set control block (DCB).

Usage

Missing DD cards for the files concerned are the most common cause of open failures. Do not try to process a file that does not open
successfully. In the case of an open failure, the DCB contents are meaningless.

1.

2.

OpenCOBOL for Unix & Java Batch Support

This component is supported for generation of OpenCOBOL for Unix & Java Batch applications. The error codes are the same as those for the
mainframe. This component reads the INI file and environment variables for a given DDNAME (see DDNAME in OpenCOBOL for Unix & Java

), then opens the file as binary according to the MODE:Batch

INPUT - The file is opened for reading.
OUTPUT - The file is opened for writing.
APPEND - The file is opened for appending.
UPDATE - The file is opened for update (read and write).

Even in the Line Sequential mode, the file is opened as binary; Line Feed and Carriage Return characters are processed by components. See
.Line Sequential Record Format

DDNAME in OpenCOBOL for Unix & Java Batch

HPS_OPEN_FILE_LOCATE_MODE component receives DDNAME as an argument. For OpenCOBOL for Unix & Java Batch, it must be
translated to a real filename using the information from the environment variables and the INI file. The INI file is set up in the environment variable
FILEINI. When invoking the root rule directly, you must set up this variable.
The algorithm of reading the settings for DDNAME is as follows:

Open the INI file, and search for the requested DDNAME record in the following format:

<DDNAME>=[["]<FILE_NAME>["]][,RECFM={V|F|L}]\[,LRECL=<record length>]

where:

FILE_NAME is a real file name.
RECFM is a record format: ariable, ixed or ine sequential (or text mode)V F L
LRECL is a record length.

Read the environment variables named <DDNAME> which must be in the same format:

[["]<FILE_NAME>["]][,RECFM={V|F|L}][,LRECL=<record length>]

Settings in the environment variables override the corresponding settings read from the INI file. Note the following for RECFM and LRECL
settings:

If RECFM is not specified, RECFM=V is assumed.
If RECFM=F, then LRECL is mandatory and must be greater than zero.
If RECFM=V or RECFM=L, then LRECL is optional.

HPS_READ_FILE_LOCATE_MODE

This section presents the purpose, the syntax, and the usage of the HPS_READ_FILE_LOCATE_MODE component.

Purpose

This component reads records from a sequential data set through the standard QSAM interface. It executes a GET to read a single record from
the input file. The record data is then copied from an internal buffer below the 16-megabyte line to view specified by the LOCATE_RECORD field.
This component is functionally equivalent to , except that this component uses LOCATE I/O mode instead of MOVE I/O mode, andHPREAD
hence is more efficient.

Syntax

Here is the syntax of HPS_READ_FILE_LOCATE_MODE component.

HPS_READ_FILE_LOCATE_MODE component syntax

Name HPS_READ_FILE_LOCATE_MODE

System
Identifier

CHPREAD

Input View
Name

HPS_READ_FILE_LOCATE_MODE_I

Input View
Field

VIEW_LONG_NAME character(30)
The name of the view to be read

Input View
Field

SIZE_LONG integer(31)
Record length in bytes

Input View
Field

LOCATE_MODE_DCB character(4)
Address of the data set control block (DCB) obtained through use of the HPS_OPEN_FILE_LOCATE_MODE component

Input View
Field

LOCATE_RECORD character(8)
Location of the view structure where the component should place the data after it has read them from the record. Use the LOC
function to supply the view location. (Refer to the .)Rules Language Reference Guide

Output
View
Name

HPS_READ_FILE_LOCATE_MODE_O

Output
View Field

COMPLETE integer(31)
The following codes are returned on the workstation:

0 = Successful
4 = End of file reached
8 = Invalid DCB or the read operation failed
The following codes are returned on the mainframe:
0 = Successful, 4 = End of file reached.

Output
View Field

SIZE_LONG integer(31)
Record length

Usage

It is imperative that the value supplied to the SIZE_LONG field in the component input view not exceed the size of the view into which the record
is being read. It is recommended that the function SIZEOF(viewname) be used to determine the value to supply to the component. For example:

map SIZEOF(viewname) to SIZE_LONG of HPS_READ_FILE_LOCATE_MODE_I

OpenCOBOL for Unix & Java Batch Support

This component is supported for generation of OpenCOBOL for OpenCOBOL for Unix & Java Batch. The error codes are the same as those for
the mainframe. LOCATE_RECORD of the input view is initialized with SIZE_LONG of the input view number of spaces. It reads records according
to the record format which is described in the :DDNAME in OpenCOBOL for Unix & Java Batch

Fixed Record Format
If SIZE_LONG of the input view is zero, then LRECL is used to determine the number of bytes to read. If SIZE_LONG of the input view is
not zero and is less than LRECL, then an error code is returned and nothing is read. The number of bytes specified in LRECL is read
from LOCATE_RECORD. If the number of bytes read is less than the record lengths, no error is returned. SIZE_LONG of the output view
always contains the actual number of bytes read.
Variable Record Format
It reads 4 bytes from the file and subtracts four from an integer value formed by the first 2 bytes, and assigns an integer value formed by
all 4 bytes to SIZE_LONG of the output view. This is the record length. Then it reads the number of bytes specified in SIZE_LONG of the
output view into LOCATE_RECORD. SIZE_LONG of the input view and LRECL are ignored.
Line Sequential Record Format
First, the expected maximum length of the record is determined: if SIZE_LONG of the input view is greater than zero, then it is used as
the buffer length; otherwise, LRECL is used. If both SIZE_LONG of the input view and LRECL are less than or equal to zero, then an
error code is returned and nothing is read. LOCATE_RECORD is initialized with spaces by the determined maximum record length. The
file is read into LOCATE_RECORD until either the buffer is full, or newline or EOF is encountered. SIZE_LONG of the output view
contains the number of bytes actually read, not counting the newline character. If the buffer becomes full and neither newline nor EOF
has been read, then the remainder of the record is skipped and lost.

HPS_WRITE_FILE_LOCATE_MODE

This section presents the purpose, the syntax, and the usage of the HPS_WRITE_FILE_LOCATE_MODE component.

Purpose

This component writes records to a sequential mainframe data set through the standard QSAM interface. It copies the record data specified by
the LOCATE_RECORD field of the input view to an internal buffer below the 16-megabyte line. A PUT is then executed to write the single record
to the output file.
This component is functionally equivalent to , except that this component uses LOCATE I/O mode instead of MOVE I/O mode, andHPWRITE
therefore is more efficient.

Syntax

Here is the syntax of HPS_WRITE_FILE_LOCATE_MODE component.

HPS_WRITE_FILE_LOCATE_MODE component syntax

Name HPS_WRITE_FILE_LOCATE_MODE

System
Identifier

CHPWRIT

Input View
Name

HPS_WRITE_FILE_LOCATE_MODE_I

Input View
Field

VIEW_LONG_NAME character(30)
Name of the view to be written

Input View
Field

SIZE_LONG integer(31)
Record length in bytes

Input View
Field

LOCATE_MODE_DCB character(4)
Address of the data set control block (DCB) obtained through use of the HPS_OPEN_FILE_LOCATE_MODE component

Input View
Field

LOCATE_RECORD character(8)
Location of the view structure where the component gets the data for writing to the record. Use the LOC function to supply the
location of a view. (Refer to the .)Rules Language Reference Guide

Output
View Name

HPS_WRITE_FILE_LOCATE_MODE_O

Output
View Field

COMPLETE integer(31)
The following codes are returned on the workstation:

0 = Success
8 = Invalid DCB or the write operation failed
The following codes are returned on the mainframe:
0 = Success
4 = Could not be written

Usage

The SIZE_LONG field must contain the length of the record to be written when processing variable-length records. It should not include the length
of a record descriptor word. The contents of the SIZE_LONG field are ignored when processing fixed-length records. (The DCB contains the
necessary record length information.)

OpenCOBOL for Unix & Java Batch Support

This component is supported for generation of OpenCOBOL for OpenCOBOL for Unix & Java Batch. The error codes are the same as those for
the mainframe. It writes records to the output file according to the record format, which is described in the DDNAME in OpenCOBOL for Unix &

:Java Batch

Fixed Record Format
First, the number of bytes to be taken from LOCATE_REOCRD is determined. If SIZE_LONG of the input view is zero, then LRECL is
used; otherwise, SIZE_LONG is used. Next, this number of bytes is taken from LOCATE_RECORD of the input view, and written to the
output file.
Variable Record Format
When the record format is the variable format, it writes SIZE_LONG of the input view plus 4 (total length of this record) to the file, placing
it into 2 bytes, and writes two 0 bytes (this is for mainframe component compatibility). Then the number of bytes specified in SIZE_LONG
is taken from LOCATE_RECORD, and written to the file. For the variable record format, LRECL is ignored.
Line Sequential Record Format
The number of bytes specified in SIZE_LONG is taken from LOCATE_RECORD and written to the file. Then the newline character (\n) is
written. For the line sequential record format, LRECL is ignored.

HPS_CLOSE_FILE_LOCATE_MODE

This section presents the purpose, the syntax, and the usage of the HPS_CLOSE_FILE_LOCATE_MODE component.

Purpose

This component concludes processing a sequential mainframe data set through the standard QSAM interface. It closes the file, causing to take
the appropriate actions for the data set, as specified in the JCL. Storage for the data set control block (DCB) and the file buffer pools is freed by
this component.
This component is functionally equivalent to , except that this component uses LOCATE I/O mode instead of MOVE I/O mode, andHPCLOSE
hence is more efficient.

Syntax

Here is the syntax of HPS_CLOSE_FILE_LOCATE_MODE component.

HPS_CLOSE_FILE_LOCATE_MODE component syntax

Name HPS_CLOSE_FILE_LOCATE_MODE

System
Identifier

CHPCLOS

Input View
Name

HPS_CLOSE_FILE_LOCATE_MODE_I

Input View
Field

LOCATE_MODE_DCB character(4)
Address of the DCB obtained through the use of the componentHPS_OPEN_FILE_LOCATE_MODE

Output View
Name

HPS_CLOSE_FILE_LOCATE_MODE_O

Output View
Field

COMPLETE integer(31)
The following codes are returned on the workstation:

0 = Success
4 = Invalid DCB or the close operation failed
The following code is returned on the mainframe:
0 = Success
This is the only value returned. Any condition causing a close to fail usually causes the batch job to abend (for
example, a missing DD statement).

Usage

Do not try to process a closed file; first open it.

OpenCOBOL for Unix & Java Batch Support

This component is supported for generation of OpenCOBOL for OpenCOBOL for Unix & Java Batch. The error codes are the same as those for
the mainframe.

HPS_TRUNC_FILE_LOCATE_MODE

This section presents the purpose, the syntax, and the usage of the HPS_TRUNC_FILE_LOCATE_MODE component.

Purpose

Batch jobs that use the mainframe checkpoint/restart feature to recover from failure can experience a loss of data from files used by rules. If you
lose data in this way, you can use this system component to flush data records stored in the I/O buffers. This component issues the mainframe
TRUNC macro command for the specified file, which causes the operating system to regard the current buffer as full, allowing a short block to be
written to the file.

Syntax

Here is the syntax of HPS_TRUNC_FILE_LOCATE_MODE component.

HPS_TRUNC_FILE_LOCATE_MODE component syntax

Name HPS_TRUNC_FILE_LOCATE_MODE

System
Identifier

CHPTRUN

Input View
Name

HPS_TRUNC_FILE_LOCATE_MODE_I

Input View
Field

LOCATE_MODE_DCB character(4)
Address of the DCB obtained through the use of the componentHPS_OPEN_FILE_LOCATE_MODE

Output View
Name

HPS_TRUNC_FILE_LOCATE_MODE_O

Output View
Field

COMPLETE integer(31)
The following codes are returned on the workstation:

0 = Success
4 = Invalid DCB or the close operation failed
The following code is returned on the mainframe:
0 = Success
This is the only value returned. Any condition causing a close to fail usually causes the batch job to abend (for
example, a missing DD statement).

OpenCOBOL for Unix & Java Batch Support

This component is supported for generation of OpenCOBOL for OpenCOBOL for Unix & Java Batch. It flushes all data that has not been written
to the file if a file was opened for writing. If a file was opened for reading, it clears content of the internal read buffer. The error codes are the same
as those for the mainframe.

SET_HPSBATCH_RETURN_CODE

This section presents the purpose, the syntax, and the usage of the SET_HPSBATCH_RETURN_CODE component.

Purpose

This component sets the value of the return code that the HPSBATCH program returns. Executing this component twice within the same rule
displays only the last value assigned.

Syntax

Here is the syntax of SET_HPSBATCH_RETURN_CODE component.

SET_HPSBATCH_RETURN_CODE component syntax

Name SET_HPSBATCH_RETURN_CODE

System Identifier HPBRETC

Input View Name SET_HPSBATCH_RETURN_CODE_I

Input View Field RETURN_CODE integer(15)
This can be a number from 0 to 4,095

OpenCOBOL for Unix & Java Batch Support

This component is supported for generation of OpenCOBOL for OpenCOBOL for Unix and Java Batch. The error codes are the same as those for
the mainframe.
When rule execution ends, the value passed in the RETURN_CODE field is stored and assigned to the COBOL register RETURN-CODE only. A
call to this component does not affect the RETURN-CODE register while the rule executes. The value passed to the last executed call of this
component is used as RETURN-CODE.

System Information Components

Two components are available for retrieving information about the system. These components are:

HPSMODE - returns the current execution environment
HPSPARM - retrieves any parameters passed to the rule in the JCL that invoked the application

Because these components retrieve variables from the environment and do not process any input data, they have no input views.

HPSMODE

This section presents the purpose, the syntax, and the usage of the HPSMODE component.

Purpose

Because you can prepare a rule for different execution environments, you may wish to determine the current execution environment at runtime so
you can perform certain environment-specific functions. This component returns the execution environment in which the rule that invoked the
component is currently executing.

Syntax

Here is the syntax of HPSMODE component.

HPSMODE component syntax

Name HPSMODE

System Identifier HPSMODE

Input View Name This component has no input view.

Output View Name HPSMODEO

Output View Field EXECMODE character(6)
This field has the execution environment with these possible values:

CICS
IMS
BATCH
UNKNOWN

OpenCOBOL for Unix & Java Batch Support

This component is supported for generation of OpenCOBOL for OpenCOBOL for Unix and Java Batch. It sets EXECMODE of the output view to
"BATCH" upon return.

HPSPARM

This section presents the purpose, the syntax, and the usage of the HPSPARM component.

Purpose

This component reads the EXEC CARD PARM statement in the JCL that invoked the application and returns that parameter to the calling rule.
LE statements in the PARM statement is ignored.

Syntax

Here is the syntax of HPSPARM component.

HPSPARM component syntax

Name HPSPARM

System Identifier HPSPARM

Input View Name This component has no input view.

Output View Name HPSPARMO

Output View Field EXECPARM character(78)
The parameter passed to the application in the EXEC CARD PARM statement in the JCL

Usage

If the application was not invoked with JCL (for example, it was invoked using TE), the EXECPARM field contains the value "PARAMETER". If
you are testing with TE, you need to break on this component and set the EXECPARM field correctly.

OpenCOBOL for Unix & Java Batch Support

This component is supported for generation of OpenCOBOL for OpenCOBOL for Unix & Java Batch. It reads the HPSPARM environment variable
and returns it in the EXECPARM field of the output view.

IMS Components

There are three system components that you use when building IMS applications for the mainframe:

GET_IMS_PCB_ADDR
IMS_SPA_COMPONENT

STOP_TP_RULE_REGION

GET_IMS_PCB_ADDR

This section presents the purpose, the syntax, and the usage of the GET_IMS_PCB_ADDR component. See Example: GET_IMS_PCB_ADDR
for an usage example.

Purpose

Use this component to obtain the address of the Program Control Block (PCB). You can then pass this address to a user-written component to
allow it to access an IMS database in the conventional (non-AIB) way.

Syntax

Here is the syntax of GET_IMS_PCB_ADDR component.

GET_IMS_PCB_ADDR component syntax

Name GET_IMS_PCB_ADDR

System Identifier HPIGPCB

Input/Output View Name GET_IMS_PCB_ADDR_VIEW

View Field IMS_PCB_LIST_ADDR integer(31)

Example: GET_IMS_PCB_ADDR

This example shows the usage of this component.

use COMPONENT GET_IMS_PCB_ADDR

Pass the IMS_PCB_LIST_ADDR field to the user component that accesses IMS databases in the conventional way. The user component can
now reference that field as an address and base the list of PCBs to it.

map IMS_PCB_LIST_ADDR of GET_IMS_PCB_ADDR_VIEW to PCB_BASE_ADDRESS of USER_COMPONENT_I
use COMPONENT USER_COMPONENT

GET_IMS_PCB_ADDR is not supported under OpenCOBOL execution.

IMS_SPA_COMPONENT

This section presents the purpose, the syntax, and the usage of the IMS_SPA_COMPONENT component. See Example:
 for an usage example.IMS_SPA_COMPONENT

Purpose

Use this component to allow rules with an execution environment of IMS to manipulate the IMS Scratch Pad Area (SPA) for IMS conversational
transactions. This component supports the following functions.

Functions supported by IMS_SPA_COMPONENT

Retrieve SPA To enable a rule to view the SPA, map R to SPA_FUNCTION_CODE before calling this component. The output view of this
component contains the SPA_DATA or a non-blank SPA_RETURN_CODE code.

Update SPA To update the SPA, map U to SPA_FUNCTION_CODE and map data to the SPA_DATA. The output view of this component
contains the updated SPA_DATA or a non-blank SPA_RETURN_CODE code.

Insert SPA To combine the Update SPA_FUNCTION_CODE and an IMS SPA Insert. It sends the SPA back to IMS with a new
non-AppBuilder transaction code. You can use this function only for an immediate conversational transaction switch from an
AppBuilder rule to a non-AppBuilder component or from one non-AppBuilder component to another. Map I to the
SPA_FUNCTION_CODE to inform this component to insert the SPA.
You must always insert an SPA before inserting any other messages, as this component uses the SPA to modify the
non-Express Alternate PCB to specify the new conversational message queue.

Insert Messages After inserting the SPA, you must insert a further message to complement the SPA call. Map M to the
SPA_FUNCTION_CODE to insert the message.

Syntax

Here is the syntax of IMS_SPA_COMPONENT component.

IMS_SPA_COMPONENT component syntax

Name IMS_SPA_COMPONENT

System Identifier HPISPAU

Input View Name SPA_INPUT_VIEW

Input View Field SPA_FUNCTION_CODE character(1)
Values are: R = Retrieve SPA, U = Update SPA, I = Insert SPA, M = Insert Message

Input View Field SPA_FILLER_BYTE1 character(1)

Input View Field SPA_TRAN_CODE character(8)

Input View Field SPA_LENGTH integer(15)
Do not use this field for an Update or an Insert SPA function. (The size in the LL bytes of the original SPA is used and is
not changed.) You must use this field for an Insert Message function.

Input View Field SPA_DATA character(1986)
Use the first 8 bytes to specify the IMS transaction code if the function is an Insert SPA or Update SPA. This field does not
include the IMS LL and ZZ bytes. They are calculated by the component.

Output View Name SPA_OUTPUT_VIEW

Output View Field SPA_RETURN_CODE character(2)

01 = Invalid SPA function code
02 = SPA address does not exist (hex zeroes)
03 = SPA input view is not large enough to contain the SPA
A1 = Call attempted to unknown transaction
AT = User's message area too long
A6 = Message segment size exceeded
A7 = Number of output messages inserted has been exceeded
XB = SPA already inserted
XG = Attempted to insert SPA with different or non-fixed length
X2 = The SPA must be inserted first
X4 = The non-AppBuilder transaction is not conversational; Insert SPA not allowed
X5 = SPA already inserted
X6 = Invalid transaction code in SPA

Output View Field SPA_DATA character(1986)

Usage

If you are doing an immediate conversational transfer to a non-AppBuilder application, and the current transaction SPA is defined as fixed length,
then the new transaction's SPA also must be defined as fixed length. A variable length SPA for the current transaction can transfer to both fixed
and variable length SPA conversations. The SPA length is not changed by the component. Refer to your IMS operating system manuals for full
details.

To allow a rule to reuse the input view of this component for both an SPA Insert and a Message Insert, use the OVERLAY verb to populate the
data area. See the sample rule above.

The SPA must contain the new IMS transaction code that this component transfers to in the first 8 bytes of the SPA_data area.

The SPA size does not change for the Update or Insert SPA functions.

The maximum size for an SPA is 32,000 bytes.

Example: IMS_SPA_COMPONENT

This example performs an immediate conversational transfer to a non-AppBuilder user application using this component.

The following internal declaration is used for the second call to the component, because the input view for the Insert Message is different from the

Insert SPA.

dcl
 spa_function_code char (1);
 spa_length fixed bin (15);
 last_name char (15);
 parm_func char (1);

 spa_message_view VIEW CONTAINS
 spa_function_code,
 spa_length,
 last_name,
 parm_func;
enddcl

Map the transaction code from the rule's input view to the input view of the component.

map SPA_TRANSACTION_CODE of SPA_INPUT_UPD_VIEW to SPA_TRAN_CODE of SPA_INPUT_VIEW

Assign the Insert SPA function.

map 'I' to SPA_FUNCTION_CODE of SPA_INPUT_VIEW

Call the component.

use component IMS_SPA_COMPONENT

Assign the Insert Message function to the input view of the component.

map 'M' to SPA_FUNCTION_CODE of SPA_MESSAGE_VIEW
map LAST_NAME of SPA_INPUT_UPD_VIEW to LAST_NAME of SPA_MESSAGE_VIEW
map PARM_FUNC of SPA_INPUT_UPD_VIEW to PARM_FUNC of SPA_MESSAGE_VIEW

Calculate the length of the message area without the IMS LL/ZZ bytes.

map 18 to SPA_LENGTH of SPA_MESSAGE_VIEW

The OVERLAY verb allows the internally declared structure to be mapped to the SPA_INPUT_VIEW of the component, allowing for the same rule
to call the component with two different input views.

overlay SPA_MESSAGE_VIEW to SPA_INPUT_VIEW
use component IMS_SPA_COMPONENT

STOP_TP_RULE_REGION

This section presents the purpose, the syntax, and the usage of the STOP_TP_RULE_REGION component.

Purpose

Use this component to notify the IMS Application Execution Run Control subsystem that an independent IMS TP region for the specified
application is to be stopped.

Syntax

Here is the syntax of STOP_TP_RULE_REGION component.

STOP_TP_RULE_REGION component syntax

Name STOP_TP_RULE_REGION

System Identifier HPISTPR

Input/Output View Name RULE_STOP_INIT

View Field RETURN_KEY character(2)
Contains any invalid IMS return code

View Field IMS_RULE_ID character(8)
The rule's system identifier

Example: STOP_TP_RULE_REGION

This example initiates another TP rule 100 times, passing it different input view field values on each call.

do while (I <= 100)
 use RULE SAMPLE_RULE INIT
 map I + 1 to I
enddo

After the rule has been called for the last time, this rule or another rule issues a call to the component to request the completion of the process.

map AAOVWX to IMS_RULE_ID of RULE_STOP_INIT
use COMPONENT STOP_TP_RULE_REGION

Check the RETURN_KEY field; any invalid IMS return code detected by the component is put into this field.

BLOB System Components

Some system components allow you to manipulate large-object files. Large-object files can be either text files or binary files. In this topic, such
files are referred to generically as BLOBs. You can use these components only on the mainframe host. These components with the Rules
Language can accomplish the .BLOB Functions

The following is a list of BLOB components with a description of how each component manipulates large object files:

List of BLOB components

HPS_BLOB_CLOSE_FILE Closes a BLOB file that was previously opened with the HPS_BLOB_OPEN_FILE component.

HPS_BLOB_GENNAME_FILE Allocates a BLOB file, which is a VSAM file to which you can write BLOB contents.

HPS_BLOB_OPEN_FILE Opens a BLOB file. The file can be created on the mainframe with the HPS_BLOB_GENNAME_FILE
component, or it can be created automatically when the file was transferred to the mainframe from another
system.

HPS_BLOB_READ_FILE Performs a sequential read of a BLOB file.

HPS_BLOB_WRITE_FILE Appends to a BLOB file.

HPS_BLOB_DELETE_FILE Deletes a BLOB file.

BLOB Functions

The BLOB components with the Rules Language can accomplish the following functions:

Transferring BLOB Files from Workstation to Mainframe and accessing them on the mainframe
Creating a BLOB file on the Mainframe
Transferring BLOB Files from Mainframe to Workstation

1.

2.

3.
4.
5.

1.
2.
3.
4.

Transferring BLOB Files from Workstation to Mainframe

To transfer a BLOB file residing on a workstation to the mainframe and to access it on the mainframe, do the following:

In a workstation rule, map the BLOB file name to a TEXT or IMAGE field in the input view of a mainframe rule.
The fact that a TEXT or IMAGE field contains a file name in the input view of a mainframe rule tells the system that the workstation is
sending a BLOB file to the mainframe. A TEXT field indicates the file contains ASCII. An IMAGE field indicates the file is binary.
When the workstation rule invokes the mainframe rule, the system transfers the BLOB file to the mainframe. The System overwrites the
name of the workstation file with the name of the file that is automatically allocated on the mainframe.
On the mainframe, use the file name that the system overwrites in the TEXT or IMAGE field of the rule's input view as input to
HPS_BLOB_OPEN_FILE to open the file.
Use the file handle returned by HPS_BLOB_OPEN_FILE as input to HPS_BLOB_READ_FILE to read the contents of the BLOB file.
Use the file handle as input to HPS_BLOB_CLOSE_FILE.
If the workstation rule wants to know the name of the file that was allocated on the mainframe, then the mainframe rule should map the
TEXT or IMAGE field from its input view to its output view. This would allow a workstation rule to later download the file.

Creating a BLOB file on the Mainframe

To create a BLOB file on the mainframe, do the following:

Use HPS_BLOB_GENNAME_FILE to allocate a file.
Use the name returned by HPS_BLOB_GENNAME_FILE as input to HPS_BLOB_OPEN_FILE to open the file.
Use the file handle returned by HPS_BLOB_OPEN_FILE as input to HPS_BLOB_WRITE_FILE to write the BLOB contents to the file.
Use the file handle as input to HPS_BLOB_CLOSE_FILE.

Transferring BLOB Files from Mainframe to Workstation

To transfer a BLOB file from the mainframe to a workstation, do the following:

In a mainframe rule, map the BLOB file name to a TEXT or IMAGE field in the mainframe rule's output view:

If the BLOB file was created on the mainframe, then the file name is the one returned by HPS_BLOB_GENNAME_FILE.
If the BLOB file was uploaded from a workstation, then the file name is the one passed in a TEXT or IMAGE field in the input view of the
mainframe rule when the file was uploaded.

The fact that a TEXT or IMAGE field contains a file name in the output view of a mainframe rule tells the system that the workstation is receiving a
BLOB file from the mainframe. A TEXT field indicates the file contains EBCDIC. An IMAGE field indicates it is binary.

When the mainframe rule returns control to the workstation rule, the BLOB file is automatically transferred to the workstation. The workstation
directory to which the file is transferred is specified in the FILE_XFER_LOCATION field of the dna.ini file.

Downloading from a mainframe to a workstation is initiated by a workstation rule. It is the workstation rule that uses the
mainframe rule, and the mainframe rule that returns the file as its output.

HPS_BLOB_CLOSE_FILE

This section presents the purpose, the syntax, and the usage of the HPS_BLOB_CLOSE_FILE component.

Purpose

Use this component to close a previously opened BLOB file. The file can be created on the mainframe with the HPS_BLOB_GENNAME_FILE
component, or it can be created automatically when the file was transferred to the mainframe from another system.

Syntax

Here is the syntax of HPS_BLOB_CLOSE_FILE component.

HPS_BLOB_CLOSE_FILE component syntax

Name HPS_BLOB_CLOSE_FILE

System Identifier HPDCLOS

Input View Name HPS_BLOB_CLOSE_FILE_I

Input Field Name HPS_BLOB_FILE_HANDLE integer(31)
File handle returned by the component in the HPS_BLOB_FILE_HANDLE field of its outputHPS_BLOB_OPEN_FILE
view. After using this component, this file handle is no longer valid.

Output View Name HPS_BLOB_CLOSE_FILE_O

Output Field Name COMPLETE integer(31)
0 = Successful
1 = Unsuccessful

HPS_BLOB_DELETE_FILE

This section presents the purpose, the syntax, and the usage of the HPS_BLOB_DELETE_FILE component.

Purpose

Use this component to delete a previously allocated BLOB file. The file can be created on the mainframe with the HPS_BLOB_GENNAME_FILE
component, or it can be created automatically when the file was transferred to the mainframe from another system.

Syntax

Here is the syntax of HPS_BLOB_DELETE_FILE component.

HPS_BLOB_DELETE_FILE component syntax

Name HPS_BLOB_DELETE_FILE

System Identifier HPDDELE

Input View Name HPS_BLOB_DELETE_FILE_I

Input Field Name HPS_BLOB_FILE_HANDLE integer(31)
File handle returned by the component in the HPS_BLOB_FILE_HANDLE field of its outputHPS_BLOB_OPEN_FILE
view. After using this component, this file handle is no longer valid.

Output View Name HPS_BLOB_DELETE_FILE_O

Output Field Name COMPLETE integer(31)
0 = Successful
1 = Unsuccessful

HPS_BLOB_GENNAME_FILE

This section presents the purpose, the syntax, and the usage of the HPS_BLOB_GENNAME_FILE component.

Purpose

Use this component to allocate a VSAM file that you can use to store the contents of a BLOB file before transferring the file to another system.

Syntax

Here is the syntax of HPS_BLOB_GENNAME_FILE component.

HPS_BLOB_GENNAME_FILE component syntax

Name HPS_BLOB_GENNAME_FILE

System Identifier HPDGENN

Input View Name HPS_BLOB_GENNAME_FILE_I

Input Field Name HPS_BLOB_LENGTH small integer or integer(31)
Length of field in which the generated file name is to be returned. You can use the SIZEOF function to calculate a length.
The field must be at least 26 bytes.

Input Field Name HPS_BLOB_FILE_NAME character(8)
Location of a field in which the generated file name is to be returned. Use the LOC function to determine a location. (Refer
to the .) Because the LOC function takes a view as its argument, the field must be theRules Language Reference Guide
first field in a view.

Output View Name HPS_BLOB_GENNAME_FILE_O

Output Field Name COMPLETE small integer or integer(31)
0 = Successful
1 = Unsuccessful

HPS_BLOB_OPEN_FILE

This section presents the purpose, the syntax, and the usage of the HPS_BLOB_OPEN_FILE component.

Purpose

Use this component to open a previously allocated BLOB file. The file can be created on the mainframe with the HPS_BLOB_GENNAME_FILE
component, or it can be created automatically when the file was transferred to the mainframe from another system.

Syntax

Here is the syntax of HPS_BLOB_OPEN_FILE component.

HPS_BLOB_OPEN_FILE component syntax

Name HPS_BLOB_OPEN_FILE

System Identifier HPDOPEN

Input View Name HPS_BLOB_OPEN_FILE_I

Input Field Name HPS_BLOB_FILE_MODE character(8)
Can be one of two values. INPUT for data to be read from the file. OUTPUT for data to be written to the file.

Input Field Name HPS_BLOB_FILE_NAME character(8)
Location of a field containing the file name. Use the LOC function to calculate a location. (Refer to the Rules Language

.) Because the LOC function takes a view as its argument, the field must be the first field in a view.Reference Guide
If the file being opened was allocated with HPS_BLOB_GENNAME_FILE, this location is the same as specified in
HPS_BLOB_FILE_NAME.
If the file being opened was created automatically when a BLOB file was transferred to the mainframe from another
system, this is the location of an IMAGE or TEXT field in the input view of the mainframe rule receiving the BLOB file (see

)Transferring BLOB Files from Workstation to Mainframe

Output View Name HPS_BLOB_OPEN_FILE_O

Output Field Name COMPLETE small integer or integer(31)
0 = Successful, 1 = Unsuccessful

 HPS_BLOB_FILE_HANDLE small integer or integer(31)
File handle of the opened file. The handle is input to the following components:

HPS_BLOB_CLOSE_FILE
HPS_BLOB_DELETE_FILE
HPS_BLOB_READ_FILE
HPS_BLOB_WRITE_FILE

HPS_BLOB_READ_FILE

This section presents the purpose, the syntax, and the usage of the HPS_BLOB_READ_FILE component.

Purpose

Use this component to read data sequentially from a BLOB file. The file can be created on the mainframe with the HPS_BLOB_GENNAME_FILE
component, or it can be created automatically when the file was transferred to the mainframe from another system.

Syntax

Here is the syntax of HPS_BLOB_READ_FILE component.

HPS_BLOB_READ_FILE component syntax

Name HPS_BLOB_READ_FILE

System Identifier HPDREAD

Input View Name HPS_BLOB_READ_FILE_I

Input Field Name HPS_BLOB_FILE_HANDLE small integer or integer(31)
File handle returned by the HPS_BLOB_OPEN_FILE component in the HPS_BLOB_FILE_HANDLE field of its output
view.

Input Field Name HPS_BLOB_LENGTH small integer or integer(31)
Length of buffer to receive data from the file. You can use the SIZEOF function to specify a length.

Input Field Name HPS_BLOB_BUFFER character(8)
Location of a buffer that is to receive data from the file. Use the LOC function to determine the location. (Refer to the

.) Because the LOC function takes a view as its argument, the field must be the firstRules Language Reference Guide
field in a view.

Output View Name HPS_BLOB_READ_FILE_O

Output Field Name COMPLETE small integer or integer(31)
0 = Successful, 1 = Unsuccessful, 4 = EOF (end of file)

Output Field Name HPS_BLOB_LENGTH small integer or integer(31)
Length of data read in from the file.

HPS_BLOB_WRITE_FILE

This section presents the purpose, the syntax, and the usage of the HPS_BLOB_WRITE_FILE component.

Purpose

Use this component to write data sequentially to a BLOB file. This component always appends data to the end of the file. The file can be created
on the mainframe with the component, or it can be created automatically when the file was transferred to theHPS_BLOB_GENNAME_FILE
mainframe from another system.

Syntax

Here is the syntax of HPS_BLOB_WRITE_FILE component.

HPS_BLOB_WRITE_FILE component syntax

Name HPS_BLOB_WRITE_FILE

System Identifier HPDWRIT

Input View Name HPS_BLOB_WRITE_FILE_I

Input Field Name HPS_BLOB_FILE_HANDLE small integer or integer(31)
File handle returned by the component in the HPS_BLOB_FILE_HANDLE field of its outputHPS_BLOB_OPEN_FILE
view.

Input Field Name HPS_BLOB_LENGTH small integer or integer(31)
Length of buffer to be written to the file. You can use the SIZEOF function to specify a length.

Input Field Name HPS_BLOB_BUFFER character(8)
Location of the buffer to be written to the file. Use the LOC function to determine the location. (Refer to the Rules

.) Because the LOC function takes a view as its argument, the field must be the first field in aLanguage Reference Guide
view.

Output View Name HPS_BLOB_WRITE_FILE_O

Output Field Name COMPLETE small integer or integer(31)
0 = Successful, 1 = Unsuccessful

System Components Support Matrix
Some system components were designed for a particular environment and are not universally supported. The information in Support for System

 summarizes which system components work in which environment.Components

When a component does not execute immediately after a USE COMPONENT statement executes, it is referred to as Deferred. onlyDeferred
applies to C language system components. See for more information.Deferred Interface System Components

Support for System Components

System Component Java
Thick
Client

Java
Thin
Client
(HTML)

3270 C
Language

Deferred
(C only)

C# OpenCOBOL
for Unix and
Java Batch

MVS Special Comments

Cache_Object X

CDYNPIC b

Clear_Field_Messagesa X X X X

Clear_Selected_Fields X X X X

Clear_Window_Changes X X X X X

DDE_ADVISE X

DDE_EXECUTE X

DDE_INITIATE X

DDE_POKE X

DDE_REQUEST X

DDE_TERMINATE X

DDE_UNADVISE X

Get_Altered_Field X X X

Get_Business_Process_Name X X X

Get_Current_Date_Time X X X X

Get_Elevator_Position X X X X

Get_First_Visible_Occurrence X X X X

Get_Full_User_Identity X X X X

GET_IMS_PCB_ADDR i

Get_Last_Visible_Occurrence X X X X X

Get_Listbox_Window_Sizes X X X X

Get_Menu_Mode_By_ID X X X X

Get_Selected_Field X X X X

Get_Text_Message X X X X

Get_User_Workstation_ID X X

HPCLOSE X b

HPDTTM b

HPFIND b

HPFREE b

HPFREEL b

HPGET b

HPGETL b

HPOPEN X b

HPREAD X b

HPS_BLOB_CLOSE_FILE o

HPS_BLOB_DELETE_FILE o

HPS_BLOB_GENNAME_FILE o

HPS_BLOB_OPEN_FILE o

HPS_BLOB_READ_FILE o

HPS_BLOB_WRITE_FILE o

HPS_CLOSE_FILE_LOCATE_MODE X X b

HPS_Event_Post_to_Child X X X

HPS_Event_Post_to_Parent X X X

HPS_Get_Activate X X X

HPS_Get_Environment X X X X X X

HPS_Get_MinMax X X

HPS_Get_Window_Handle X

HPS_Intercept_Events X

HPS_Limit_Scroll_Size X X

HPS_OPEN_FILE_LOCATE_MODE X X b

HPS_READ_FILE_LOCATE_MODE X X b

HPS_Set_Activate X X X X

HPS_Set_Bitmap_File X X X X

HPS_Set_Cursor_By_ID X X X X

HPS_Set_Help_Topic X X X X

HPS_Set_HTML_File X

HPS_Set_HTML_Fragment X

HPS_Set_MinMax X X X X

HPS_Set_Selected_Field X X X X X

HPS_Set_Window_Attributes X X

HPS_Tbl_Get_Data_State X

HPS_Tbl_Init_Size X X

HPS_TRUNC_FILE_LOCATE_MODE X b

HPS_WRITE_FILE_LOCATE_MODE X X b

HPSETVP b

HPSMODE X b

HPSPARM X b

HPWRITE X b

IMS_SPA_COMPONENT i

Restore_Altered_Fields X X X

Set_CloseDown_Notification X X X

Set_Control_Color_By_IDb X X X X X

Set_Control_Mode_By_ID X X X X X

Set_Control_RGBColor_By_ID X X X X X

Set_Cursor_Field X X X X

Set_Default_Push_Button X X X X

Set_Field_Blink_By_ID X

Set_Field_Color X X X X X

Set_Field_Message X X X X

Set_Field_Mode X X X X X

Set_Field_Numeric_By_ID X

Set_Field_Picture X X X X X

Set_First_Visible_Occurrence X X X X X

Set_Help_File_Name X X X

SET_HPSBATCH_RETURN_CODE X X b

Set_Item_Text X X X X

Set_Last_Visible_Occurrence X X X X X X

Set_Menu_Mode X X X X X X

Set_Menu_Mode_By_ID X X X X X

Set_PopUp_Position X X X X X

Set_Push_Color X X X X X

Set_Push_Mode X X X X X

Set_Virtual_Listbox_Size X X X X X

Set_Window_Message X X X X X X

Set_Window_Position X X X X

Set_Window_Timeout X X

Set_Window_Title X X X X

Set_Window_Title_Ex X X X X X

Show_Help_Topic X X X

Show_Window_Message X X

Sound_3270_Alarm X

STOP_TP_RULE_REGION i

Special Components

a: Asynch

b: Batch

o: BLOB

i: IMS

a. In Java, only edit fields are supported.
b. For both SET_CONTROL_COLOR_BY_ID and SET_CONTROL_RGBCOLOR_BY_ID, for a Thin (HTML) client there is no way to set a
separate color for a single MCLB column only for the whole MCLB.

System Sets
The fields of some system components are attached to sets that are included in the default repository with the components. A list of these default
or system sets appears in the following section. The system identifier of each set is in parentheses after the set name. The system identifier is the
reference table name for the indicated field.

Default System Sets

The system sets are:

EMULATOR_FKEYS (SFKEYS)
HPS_ACTIVE_STATES (SACSTAT)
HPS_EVENT_TYPE (SEVTYPE)
HPS_WINDOW_STATES (SWSTATE)
MENU_ITEM_ATTRIBUTES (SMIATTR)
MENU_ITEM_STATE (SMIST)
OK_YES_NO (SOKYNO)
RETURN_CODES (SRETURN)
SEARCH_CRITERIA (SSEARCH)
WINDOW_OBJECT_ATTRIBUTES (SATTR)
WINDOW_OBJECT_COLORS (SCOLORS)
WINDOW_OBJECT_MODES (SMODE)
WINDOW_POSITIONS (SPOPPNL)

EMULATOR_FKEYS (SFKEYS)

Used By

The values in this set may be used by 3270 Window Painter.

Values

The values of EMULATOR_FKEYS

Symbol Value

PF1 1

PF2 2

PF3 3

PF4 4

PF5 5

PF6 6

PF7 7

PF8 8

PF9 9

PF10 Zero_A

PF11 Zero_B

PF12 Zero_C

PF13 Zero_D

PF14 Zero_E

PF15 Zero_F

PF16 10

PF17 11

PF18 12

PF19 13

PF20 14

PF21 15

PF22 16

PF23 17

PF24 18

PA2 One_E

PA3 One_F

INSERT Two_A

DELETE Two_B

BACK_TAB Two_C

TAB Two_D

NEW_LINE Two_E

ATTN Two_F

CLEAR 20

PRINT Twenty_One

CUR_LEFT Twenty_Two

CUR_RGT Twenty_Three

CUR_UP Twenty_Four

CUR_DOWN Twenty_Five

CUR_HOME Twenty_Six

CUR_D_LEFT Twenty_Seven

CUR_D_RGT Twenty_Eight

BKSP Twenty_Nine

SYS_REQ Thirty

ERA_INP Thirty_One

ERS_EOF Thirty_Two

IDENT Thirty_Three

TEST Thirty_Four

ENTER Thirty_Nine

HPS_ACTIVE_STATES (SACSTAT)

Used By

This set is attached to the field HPS_ACTIVE_STATE, used by the following system components:

HPS_Get_Activate
HPS_Set_Activate

Values

The values of HPS_ACTIVE_STATES

Symbol Value

INACTIVE 0

ACTIVE 1

HPS_EVENT_TYPE (SEVTYPE)

Used By

This set is not used for Java or C#. Instead, all symbols from this set are redefined in Constants class (see forObjectSpeak Reference Guide
more information) and they are available in the rule (with the same names as set symbols). The values are used to populate EVENT_TYPE field
of HPS_EVENT_VIEW (see , EventType() in Converse event class).ObjectSpeak Reference Guide

For C, set values are used to populate EVENT_TYPE field of HPS_EVENT_VIEW.

Values

The values of HPS_EVENT_TYPE

Symbol Value

LANDP_SYS_EVENT 6

INTERFACE_EVENT 1

SYSTEM_EVENT 0

USER_EVENT 2

LANDP_EVENT 3

LANDP_REQUEST 4

HPS_WINDOW_STATES (SWSTATE)

Used By

This set is attached to the field HPS_WINDOW_STATE, used by the following system components:

HPS_Get_MinMax
HPS_Set_MinMax

Values

The values of HPS_WINDOW_STATES

Symbol Value

MINIMIZED 0

MAXIMIZED 1

NORMAL 2

MENU_ITEM_ATTRIBUTES (SMIATTR)

Used By

This set contains the available attributes of a menu item. It is attached to the field HPS_MItem_Attribute, used by the following system
components:

Get_Menu_Mode_By_ID
Set_Menu_Mode_By_ID

Values

The values of MENU_ITEM_ATTRIBUTES

Symbol Value

ENABLE 0

CHECK 1

MENU_ITEM_STATE (SMIST)

Used By

This set contains the possible states for a menu choice. It is attached to the field HPS_MItem_State, used by the following system components:

Get_Menu_Mode_By_ID
Set_Menu_Mode_By_ID

Values

The values of MENU_ITEM_STATE

Symbol Value

HPS_OFF 0

HPS_ON 1

OK_YES_NO (SOKYNO)

Used By

This set is attached to the OK_BUTTON_YN field, used by the following system components:

Set_Window_Message
Show_Window_Message

Values

The values of OK_YES_NO

Symbol Value

NO 0

YES 1

This set and the field to which it is attached are included for upward compatibility from earlier versions of the product. In the
current version, you do not need to supply any value in the field OK_BUTTON_YN when you use one of the above two
components.

RETURN_CODES (SRETURN)

Used By

This set is attached to the RETURN_CODE field. The DDE components and the following interface system components use this set:

The set used by DDE components and following system components

Clear_Field_Messages Set_Field_Color

Clear_Selected_Fields Set_Field_Message

Clear_Window_Changes Set_Field_Mode

Get_Altered_Field Set_Field_Picture

Get_Menu_Mode_By_ID Set_First_Visible_Occurrence

Get_Selected_Field Set_Help_File_Name

Get_Text_Message Set_Item_Text

HPS_Event_Post_to_Child Set_Last_Visible_Occurrence

HPS_Event_Post_to_Parent Set_Menu_Mode

HPS_Get_Activate Set_Menu_Mode_By_ID

HPS_Get_MinMax Set_PopUp_Position

HPS_Set_Activate Set_Push_Color

HPS_Set_Help_Topic Set_Push_Mode

HPS_Set_MinMax Set_Virtual_Listbox_Size

HPS_Set_Selected_Field Set_Window_Message

Restore_Altered_Fields Set_Window_Position

Set_CloseDown_Notification Set_Window_Timeout

Set_Control_Color_By_ID Set_Window_Title

Set_Control_Mode_By_ID Show_Help_Topic

Set_Cursor_Field Show_Window_Message

Values

Values of RETURN_CODES

Symbol Value

FAILURE 0

SUCCESS 1

SEARCH_CRITERIA (SSEARCH)

Used By

This set contains the search criteria for list boxes and fields in a panel.It is attached to the field FIELD_OCCUR, used by the following system
components:

Get_Altered_Field
Get_Selected_Field

Values

Values of SEARCH_CRITERIA

Symbol Value

FIRST_SELECTION -1

NEXT_SELECTION 0

WINDOW_OBJECT_ATTRIBUTES (SATTR)

Used By

This set of attributes is used for push buttons, boxes, and fields. It is attached to the fields FIELD_ATTR and PUSH_ATTR, used by the following
system components:

Set_Control_Color_By_ID
Set_Field_Color
Set_Push_Color

Values

Values of WINDOW_OBJECT_ATTRIBUTES

Symbol Value

BACKGROUND 0

TEXT 1

BORDER 2

RESETBACKGROUND 10

RESETTEXT 11

RESETBORDER 12

WINDOW_OBJECT_COLORS (SCOLORS)

Used By

This set contains the colors for push buttons and field properties. It is attached to the field ATTR_COLOR, used by the following system
components:

Set_Control_Color_By_ID
Set_Field_Color
Set_Push_Color

Values

Values of WINDOW_OBJECT_COLORS

Symbol Value

WHITE 0

YELLOW 1

BLUE 2

RED 3

Not supported 4

Not supported 5

GREEN 6

MAROON (magenta) 7

BLACK 8

AQUA (cyan) 9

WINDOW_OBJECT_MODES (SMODE)

Used By

This set contains the available window object modes. It is attached to the fields FIELD_MODE and PUSH_MODE, used by the following system
components:

Set_Control_Mode_By_ID
Set_Field_Mode
Set_Push_Mode

Values

Values of WINDOW_OBJECT_MODES

Symbol Value Note

INVISIBLE 0

VISIBLE_DISABLED 1

VISIBLE_ENABLED 2

VISIBLE_READONLY 3 Used differently on Windows workstation and mainframe. See explanation below.

The value of 3 is used differently on the PC workstation (for Java and C development) than on the mainframe. The symbol name may be
confusing for mainframe users.

On the mainframe, the value of 3 means Invisible, enabled (3270 Converse only).
On a Windows workstation, for C and Java, the value of 3 means Visible, Read-only.

WINDOW_POSITIONS (SPOPPNL)

Used By

This set contains the standard panel pop-up positions for nested windows. It is attached to the field POPTYPE, used by the following system
component:

Set_PopUp_Position

Values

Values of WINDOW_POSITIONS

Symbol Value

ABSOLUTE_COORDINAT 1

LOGICAL_TO_WINDOW 2

LOGICAL_TO_CLIENT 3

	System Components Reference Guide
	Introduction to System Components
	Interface System Components
	Hierarchy of an Interface System Components
	Interface Component by Enviornment
	Interface Components
	Get_Altered_Field
	Get_Business_Process_Name
	Get_Current_Date_Time
	Get_Elevator_Position
	Get_First_Visible_Occurrence
	Get_Full_User_Identity
	Get_Last_Visble_Occurence
	Get_Listbox_Window_Sizes
	Get_Menu_Mode_By_ID
	Get_Selected_Field
	Get_Text_Message
	Get_User_Workstation_ID
	HPS_Event_Post_to_Child
	HPS_Event_Post_to_Parent
	HPS_Get_Activate
	HPS_Get_Environment
	HPS_Get_MinMax
	HPS_Get_Window_Handle
	HPS_Intercept_Events
	HPS_Limit_Scroll_Size
	HPS_Set_Activate
	HPS_Set_Bitmap_File
	HPS_Set_Cursor_By_ID
	HPS_Set_Help_Topic
	HPS_Set_HTML_File
	HPS_Set_HTML_Fragment
	HPS_Set_MinMax
	HPS_Set_Selected_Field
	HPS_Set_Window_Attributes
	HPS_Tbl_Get_Data_State
	HPS_Tbl_Init_Size
	Restore_Altered_Fields
	Set_CloseDown_Notification
	Set_Control_Color_By_ID
	Set_Control_Mode_By_ID
	Set_Control_RGBColor_By_ID
	Set_Cursor_Field
	Set_Default_Push_Button
	Set_Field_Blink_By_ID
	Set_Field_Color
	Set_Field_Message
	Set_Field_Mode
	Set_Field_Numeric_By_ID
	Set_Field_Picture
	Set_First_Visible_Occurrence
	Set_Help_File_Name
	Set_Item_Text
	Set_Last_Visible_Occurrence
	Set_Menu_Mode
	Set_Menu_Mode_By_ID
	Set_PopUp_Position
	Set_Push_Color
	Set_Push_Mode
	Set_Virtual_Listbox_Size
	Set_Window_Message
	Set_Window_Position
	Set_Window_Timeout
	Set_Window_Title
	Set_Window_Title_Ex
	Show_Help_Topic
	Show_Window_Message
	Sound_3270_Alarm
	Cache_Object
	Clear_Field_Messages
	Clear_Selected_Fields
	Clear_Window_Changes

	Smooth Scrolling with Components

	DDE System Components
	System Components for Mainframe, Unix and Java Batch
	Mainframe Batch System Components
	OpenCOBOL for Unix and Java Batch System Components
	IMS Components
	BLOB System Components

	System Components Support Matrix
	System Sets

