

Magic Software

AppBuilder
Version 3.2

Rules Language Reference Guide

Corporate Headquarters
Magic Software Enterprises
5 Haplada Street,
Or Yehuda 60218, Israel
Tel +972 3 5389213
Fax +972 3 5389333

© 1992-2013 AppBuilder Solutions

All rights reserved.

Pr inted in the United States of America.

AppBuilder is a trademark of AppBuilder Solutions. All

other product and company names mentioned herein are

for identif ication purposes only and are the property of,
and may be trademarks of, their respective ow ners.

Portions of this product may be covered by U.S. Patent

Numbers 5,295,222 and 5,495,610 and various other

non-U.S. patents.

The softw are supplied w ith this document is the property

of AppBuilder Solutions and is furnished under a license

agreement. Neither the softw are nor this document may

be copied or transferred by any means, electronic or

mechanical, except as provided in the licens ing

agreement.

AppBuilder Solutions has made every effort to ensure

that the information contained in this document is

accurate; how ever, there are no representations or

warranties regarding this information, including
warranties of merchantability or f itness for a particular

purpose. AppBuilder Solutions assumes no responsibility

for errors or omissions that may occur in this document.

The information in this document is subject to change

w ithout prior notice and does not represent a

commitment by AppBuilder Solutions or its

representatives.

1. Rules Language Reference Guide . 2
1.1 Introduction to the Rules Language . 2
1.2 Data Types . 6
1.3 Data Items . 18
1.4 Expressions and Conditions . 30
1.5 Functions . 44

1.5.1 Numeric Conversion Functions . 44
1.5.2 Mathematical Functions . 48
1.5.3 Date, Time and Timestamp Functions . 53
1.5.4 Character String Functions . 66
1.5.5 Double-Byte Character Set Functions . 74
1.5.6 Error-Handling Functions . 75
1.5.7 Support Functions . 76

1.6 Declarations . 81
1.7 Procedures . 95
1.8 Control Statements . 100
1.9 Assignment Statements . 112
1.10 Condition Statements . 127
1.11 Transfer Statements . 133
1.12 Macros . 147
1.13 Platform Support and Target Language Specifics . 173

1.13.1 Specific Considerations for C . 173
1.13.2 Specific Considerations for Java . 176
1.13.3 Specific Considerations for CSharp . 212
1.13.4 Specific Considerations for ClassicCOBOL . 212
1.13.5 Specific Considerations for OpenCOBOL . 215
1.13.6 Specific Considerations for ClassicCOBOL and OpenCOBOL . 233
1.13.7 Restrictions on Features . 235
1.13.8 Supported Functions by Release and Target Language . 237

1.14 Code Generation Parameters and Settings . 241
1.15 Reserved Words . 262
1.16 Decimal Arithmetic Support . 269
1.17 Rules Language Quick Reference and Syntax . 278

Rules Language Reference Guide
This guide explains how to use the AppBuilder Rules Language to define the processing logic of an application. With the Rules Language, an
application can transfer processing control from one rule to another, open windows at runtime, generate reports, pass data, and define how the
entities comprising an application interact.

Rules Language is supported on C, Java, ClassicCOBOL, and OpenCOBOL language platforms. Some features are platform-specific. For more
information about target language specifics, see .Platform Support and Target Language Specifics

This guide includes the following topics and sections:

Introduction to the Rules Language
Data Types
Data Items
Expressions and Conditions
Functions
Declarations
Procedures
Control Statements
Transfer Statements
Macros
Platform Support and Target Language Specifics
Code Generation Parameters and Settings
Reserved Words
Decimal Arithmetic Support
Rules Language Quick Reference and Syntax

Introduction to the Rules Language
This guide explains how to use the AppBuilder Rules Language to define the processing logic of an application. With the Rules Language, an
application can transfer processing control from one rule to another, open windows at runtime, generate reports, pass data, and define how the
entities comprising an application interact.

Rules Language is supported on C, Java, ClassicCOBOL, and OpenCOBOL language platforms. Some features are platform-specific. For more
information about target language specifics, see .Platform Support and Target Language Specifics

The following topics are included in this overview:

Rules Language Elements
Syntax Flow Diagrams Conventions and Symbols
Rules Language Statements and Arguments
Documentation Conventions and Symbols

Although the Rules Language is a high-level language and hides most of the low-level details, a basic knowledge of programming concepts is
required for writing rules code. Additionally, knowledge of SQL is recommended for coding rules that access databases.

Rules Language Elements

AppBuilder application consists of the set of executable modules which define the application logic. The term Rule is used to denote the module of
this kind. To define the data and process flow within the Rule as well as interaction between the different Rules a simple procedural language is
used which is called Rules Language.

The following table describes the Rules Language statements:

Rules Language Statements

Statements Description

Declarative
statement
(declaration)

The binding of an identifier to the information that relates to it. For example, to declare a variable means to address a portion of
memory, bind it with the information about the data type of the variable, and label it with the variable name. This is also true
when declaring a constant. The difference is that since a constant, by definition, always has the same value, it can be initialized
and bound with its value at the time when it is declared.

Procedural
statement
(procedure)

A named sequence of statements, often with associated data types and variables, that usually performs a single task.
Procedures may have parameters and can return value to their caller.

Comment
statement

A description that explains aspects of a part of the program to other programmers, for example, and has no impact on the
execution of the program.

Assignment
statement

A statement that assigns a value to a variable. It is a good practice to assign a value to a variable prior to its usage; however,
since all variables are initialized with valid values in the Rules Language, it is not obligatory to do so. These statements usually
consist of three elements: an expression to be assigned, an assignment operator, and a destination variable.

Control
statement

A statement that affects the flow of execution through a Rule. These include conditional statements, iterative statements, and
transfer statements.

Transfer
statement

A statement in a programming language that transfers the flow of execution to another location in the program. For example, a
USE RULE statement.

File access
statement

A SQL statement that performs database-related tasks such as fetching data from the database and updating data in the
database.

Condition
statement

A statement that alters the flow of execution depending on some condition. An example of condition statement is an IF
statement.

This overview describes the elements of the Rules Language from the top level (statement) down to the lowest level (arguments); however,
throughout this reference documentation, the Rules Language elements are listed from the lowest level up. For instance, data items are
discussed before expressions, and expressions before statements. Thus, the documentation describes Rules Language building blocks first and
then the statements used to combine these blocks into rules.

The following figure shows an example of a simple rule syntax diagram with a declaration, procedure, and statement.

Rule diagram example

Syntax Flow Diagrams Conventions and Symbols

Grammar

This specification presents syntax of the Rules Language.

The grammar consists of a number of syntactic productions. Each production defines a notion of the Rules Language.

Each grammar production contains of a left-side of the production, followed by a colon symbol, followed by a right-side of the production. Each
left-side of the production is a non-terminal symbol being defined by this production. Each right-side of the production is a sequence of
non-terminal or terminal symbols.

Example.

date_data_type:

 DATE

In this production a date data type is defined as the Rules Language keyword DATE. The left-side of the production is the non-terminal
date_data_type, and the right-side of the production is the terminal symbol that is the Rules Language keyword.

Sometimes the non-terminal symbol is defined as a set of different cases.

For example, the Rules Language defines an assign statement that is either an map statement or a set symbol. It is possible to define the assign
statement in the following manner:

assign_statement:

 map_statement

assign_statement:

 set_statement

On other hand it is possible to define assign statement using only one right-side:

assign_statement:

 map_statement

 set_statement

In grammar productions, terminal symbols are shown as words in lower-case letters.

The terminal symbols are complied with the following conventions:

Rules Language keywords are represented as a word in all CAPITAL LETTERS.
Other terminal symbols are shown as words in . Such terminal symbols are data item that you provide when coding the statement,italics
such as a name of a field or a string literal.

Besides of terminal symbols and non-terminal symbols in the right-side of the grammar production can be used the metacharacters. If the terminal
symbol represented by single character matches the metacharacter then such terminal symbol is enclosed in apostrophes. The full list of the
metacharacters is [,], (,), *.

The parenthesis (,) can be used in the right-hand part of the grammar production to group a sequence composed of terminal and/or
non-terminal symbols.
The square brackets are used to indicate an optional symbol.
The metacharacter * following an element (i.e. a terminal symbol or a non-terminal symbol or a sequence of terminal/non-terminal
symbols enclosed in parentheses) indicates repetition of the symbol or the sequence zero or more times.

. The following production defines syntax of statement listExample 1

statement-list:

 statement*

This means that the statement list can be empty or contain a number of the statements.

 The productionExample 2.

IF-statement:

 condition statement-list [statement-list] IF ELSE ENDIF

is shorthand for:

IF-statement:

 condition statement-list IF ENDIF

 condition statement-list statement-list IF ELSE ENDIF

and defines an to consist of the token , followed by a , followed by a , followed by optional IF-statement IF condition statement-list ELSE
, followed by the token .statement-list ENDIF

The different cases are normally listed on separate lines, though in cases where there are many alternatives, the phrase "one of" may precede a
list of expansions given on a single line. This is simply shorthand for listing each of the alternatives on a separate line. For example, the
production:

date_time_data_type: one of

 DATE TIME TIMESTAMP

is shorthand for:

date_time_data_type:

 DATE

 TIME

1.
2.

3.

 TIMESTAMP

Case Sensitivity

Rules Language is case-sensitive. Capital letters are used in the syntax diagrams only to indicate Rules Language keywords. Rules Languagenot
 consider case in character literals and macro names.does

Reading a Diagram

Follow these steps to interpret the syntax of a diagram:

Start at the double-headed arrow on the left side and proceed to the right until you reach the end of the diagram.
Follow any one of the possible line paths from left to right. Any path that you can traverse from left to right results in valid syntax. For
whichever line you follow, you must use all the words or symbols designated on that line.
You cannot go back to the left unless there is a loop. A loop is indicated by an arrow with its arrow head on its left end and appears
above another line. You can repeat a loop any number of times.

Symbols used in syntax flow diagrams

Symbol Meaning

Flow of statement starts

Flow continues on next line or may include another path

Flow continued from previous line

Flow may branch in either direction

Flow of statement ends

For example, all of the following are ways a variable data item can appear according to the following diagram:

field_name
field_name OF view(5)
field_name OF view OF view
view.field_name

Rules Language Statements and Arguments

Each Rules Language statement consists of one or more clauses. A clause is a Rules Language keyword followed, in most cases, by one or more
arguments. The actual arguments for each clause vary by statement. However, an argument can always be described as one of the following:

Data Item Either a constant (a numeric value, a character value, a boolean value, or a symbol) or a variable (a view or a field).

Expression Data items, other expressions, and functions (such as ROUND or STRLEN) linked with operators (such as + or -).

Condition Expressions linked with relational operators (such as = or >) and other conditions linked with boolean operators (such as OR,
AND, and NOT).

SQL
statement

An argument only for an SQL ASIS statement.

other Another statement or the name of a specific entity (such as a window or report).

Documentation Conventions and Symbols

When describing a statement within text, a keyword appears in all CAPITAL letters. In addition, its arguments are generally replaced by ellipses or
dropped if they trail the statement. For example:

IF condition statement ELSE statement ENDIF

appears in text as:

IF...ELSE...ENDIF

while

CLEAR variable_data_item

appears simply as:

CLEAR

Data Types

A Rules Language data item must be defined as a specific data type. The data type of a data item determines both its compatibility with other data
items and how the data item is stored or displayed. You declare a data item as having a certain data type either locally using the DCL statement
or as a property of a field. See for more information.Declarations

See for information about converting a data item of one data type to a different data type.Data Type Conversions

Data Types

The data types used in the Rules Language are categorized as follows:

BOOLEAN Data Type
Numeric Data Types
Date and Time Data Types
Large Object Data Types
Object Data Types
Character Data Types

For platform specific information about data types, see the following:

Data Types in C
Data Types in Java
Data Types in ClassicCOBOL
Data Types in OpenCOBOL

Data Type Syntax

BOOLEAN Data Type

The BOOLEAN data type can have either of two values: TRUE or FALSE, which are reserved words by default. Boolean variables can be used
anywhere in place of a condition in a rule, and results of conditional expressions can be mapped to these variables.

Boolean Syntax

Example: Using the BOOLEAN Data Type

The following routine uses a BOOLEAN data type to control processing flow.

DCL
 b BOOLEAN;
 i, j INTEGER;
ENDDCL

MAP 1 TO i
MAP 2 TO j
MAP i > j TO b *> False <*
MAP TRUE TO b
IF b
 MAP 10 TO i *> This line is executed. <*
ELSE
 MAP 1 TO i *> This line is not. <*
ENDIF

Numeric Data Types

There are four numeric data types:

SMALLINT
INTEGER
PIC
DEC
LONGINT, FLOAT, DOUBLE – See for more details about these data types.LONGINT, FLOAT and DOUBLE in Java

A data item of these types:

can contain only numeric characters.
can be preceded by a negative sign, indicating a negative value. The absence of a sign indicates a positive value (preceding a value with
a positive sign is not valid).
can have only decimal point if it is a PIC or DEC data type.one
cannot have decimal point if it is an INTEGER or SMALLINT data type.any

Numeric Data Syntax

where:

integer_literal is an integer value specifying the total length of the data item and the scale.

Locally-declared Numeric Data

See for more examples of locally declared data items that use a numeric data type.Local Variable Declaration

Consideration for COBOL

For ClassicCOBOL specifics including decimal field representation and DDL, see .Decimal Field Representation in ClassicCOBOL

For OpenCOBOL considerations regarding DDL, see .DEC in OpenCOBOL

SMALLINT

Use SMALLINT for a two-byte integer data item that contains values between -32,768 and 32,767 inclusive.

The following example illustrates how to locally declare a variable as the SMALLINT data type:

DCL
 COUNTER_1,COUNTER_2 SMALLINT;
ENDDCL

INTEGER

Use INTEGER for a four-byte integer data item that contains values between -2,147,483,648 and 2,147,483,647 inclusive.

The following example illustrates how to locally declare a variable as the INTEGER data type:

DCL
 SUBTOTAL INTEGER;
ENDDCL

PIC

Declaring a data item as an integer picture (PIC) creates a storage picture that structures numeric data according to the following format.

PIC Data Item Codes

Code Meaning

S Signed number

9 Number placeholder

V Decimal placeholder

For example, a PIC data item declared with the storage picture S999V99 can contain numeric data from -999.99 to 999.99.

A PIC declaration represents an internal or storage PICTURE and should not be confused with an external, display, or edit
PICTURE. Also, you cannot write S9(3)V9(2) or S(3)9V(2)9 as in COBOL or PL/I.

Besides the syntax shown in the flow diagram, the following restrictions apply to a PIC string:

It cannot contain more than thirty-one 9s
It cannot contain embedded spaces

You can also declare a in Java, Open COBOL, and C#. For details about this picture type declaration, see picture with trailing sign PIC with
.trailing sign

The following are advantages of using the PIC data items:

On the host, a decimal (DEC) data item is stored packed two bytes to one; a PIC type is not.
A PIC data item is the only numeric data type that can be used in a comparison to a character data type. An unsigned PIC can be
compared to the following:

Any signed/unsigned numeric data type
CHAR
VARCHAR
TEXT
IMAGE

An unsigned PIC can be assigned to the following types of fields:
Any signed/unsigned numeric data type

CHAR
VARCHAR
TEXT
IMAGE

An unsigned PIC can be concatenated with the following field types:
An unsigned PIC
CHAR
VARCHAR
TEXT
IMAGE
MIXED
DBCS

For releases that support DBCS, an unsigned integer picture can be assigned to a MIXED field. Also, an unsigned integer picture can be
concatenated with DBCS and MIXED. See for more information.Restrictions on Features

DEC

Use DEC to specify a decimal data item. The first integer value after a DEC keyword is the total length of the data item; the second integer value
is the scale, indicating the number of places to the right of the decimal point. If no scale value is specified, it is assumed to be 0, indicating an
integer value. A DEC data item is always assumed to be a signed value.

The following restrictions apply to length and scale:

Length must be greater than or equal to 1 (one) and less than or equal to 31 (thirty-one) (1 length 31)
Length includes the scale, but not the decimal point.
Scale, if specified, must be greater than or equal to 0 (zero), and less than or equal to length (0 scale length)

Date and Time Data Types

A data item declared as one of the following three data types must contain numeric data:

DATE
TIME
TIMESTAMP

The format standards used for date and time data types are set during installation. The specific standard designated for your
system is contained in a configuration file. The format for your system must match the format your database uses or errors
occur. For instance, the delimiter designated in your language configuration file must match the delimiter used by your database
or your rule will not prepare.

Date and Time Syntax

For OpenCOBOL considerations regarding Date and Time Syntax, see .Date and Time Functions in OpenCOBOL

Date and Time Formats

AppBuilder supports the standard date and time formats shown in the following table:

Standard Date and Time Formats

Standard Date Format Example Time Format Example

ISO (International Organization for Standardization) yyyy-mm-dd 1996-11-30 hh.mm.ss 14.15.05

USA mm/dd/yyyy 11/30/1996 hh:mm AM or PM 2:15 PM

EUR (European) dd.mm.yyyy 30.11.1996 hh.mm.ss 14.15.05

JIS (Japanese Industrial Standard Christian Era) yyyy-mm-dd 1996-11-30 hh:mm:ss 14:15:05

LOCAL (site defined) Any site-defined form Any site-defined form

Converting Dates and Times

Use the date and time conversion functions discussed in to convert a variable from one date and time dataDate, Time and Timestamp Functions
type to another (or to an integer or character data type).

Locally-declared Date and Time

See for examples of locally-declared data items that use the date and time data types.Local Variable Declaration

DATE

Use DATE for a date data item. The value in the data item is the number of days past the date of origin. January 1, 0000 is the date of origin and
has a date number of 1. A DATE variable has a length of four-bytes except for OpenCOBOL. For OpenCOBOL considerations regarding DATE,
see .DATE, TIME and TIMESTAMP in OpenCOBOL

TIME

Use TIME for a time data item. The value in the data item is the number of milliseconds past midnight. The TIME data type has a length of
four-bytes except for OpenCOBOL. For OpenCOBOL considerations regarding TIME, see .DATE, TIME and TIMESTAMP in OpenCOBOL

TIMESTAMP

Use TIMESTAMP for a time data item where you need greater precision than milliseconds. The TIMESTAMP data type has a length of 12 bytes
except for OpenCOBOL. The TIMESTAMP data type consists of three independent subfields:

 <DATE>:<TIME>:<FRACTION>

The <DATE> and <TIME> fields are for the DATE and TIME data types. <FRACTION> is platform-dependent and provides a more precise time
measurement than the <TIME> field. The value in the FRACTION field is usually displayed in picosecond units, but the actual units used are
system-dependent and are determined by the limitations of the operating system.

Although you can set the values for TIME and TIMESTAMP to contain seconds and milliseconds, some DBMSs might not
support the time and timestamp values that AppBuilder allows.

For OpenCOBOL considerations regarding TIMESTAMP, see .DATE, TIME and TIMESTAMP in OpenCOBOL

Large Object Data Types

Use the following data type items to store a reference to a file containing a large object:

TEXT
IMAGE

On the workstation, a reference is a fully-qualified path and file name of a large-object file. On the host, a reference is a generated name, either
generated automatically by AppBuilder when a large-object file is transferred to the host, or generated explicitly by the
HPS_BLOB_GENNAME_FILE system component.

AppBuilder processes TEXT and IMAGE data items as if they were CHAR (256) data items, so any conditions that apply to CHAR data items also
apply to TEXT and IMAGE data items. However, this does not apply to the files referenced by these data items.

Large Object Syntax

Mapping Character Values to TEXT or IMAGE

Use a MAP operation to assign a character value to a TEXT or IMAGE data item. A TEXT or IMAGE data item can also be mapped to another
TEXT or IMAGE data item, or to a character field.

When a TEXT or IMAGE data item is mapped to another TEXT or IMAGE data item, only the large-object file name is copied.
The large-object file itself is not copied.

Transferring a Large-Object File from the Workstation to the Host

Observe the following considerations when transferring a large-object file from a workstation to a host:

In the workstation rule, map the full path and file name of the large-object file to a TEXT or IMAGE field in the input view of a host rule.
When the workstation rule uses the host rule, AppBuilder automatically transfers the large-object file to the host. AppBuilder overwrites
the TEXT or IMAGE field with the name of the large-object file on the host. If you want to later transfer the same large-object file, then
copy the name from the TEXT or IMAGE field of the input view of the host rule to a TEXT or IMAGE field in the output view of the host
rule. This makes the name available to the workstation rule — which can then pass it back to a host rule and request that the rule transfer
the file.
When a workstation rule uses a host rule, if the host rule maps the name of a large-object file to a TEXT or IMAGE field in its output view,
AppBuilder automatically transfers the file to the workstation when the host rule returns control to the workstation rule.
The recipient of a transferred file, whether a host or a workstation rule, is responsible for deleting the file when it is no longer required.
AppBuilder will not delete the file because AppBuilder can not know when the file no longer needed.

TEXT

Use TEXT for a data item that holds a reference to a large-object, text file.

IMAGE

Use IMAGE for a data item that holds a reference to a binary large-object file (BLOB).

Object Data Types

The following are Object data types:

OBJECT
OBJECT POINTER
Array Object

Object Data Type Declarations

where:

identifier – see restrictions on names in .Local Variable Declaration
class_identifier is a string that identifies the implementation of the class. Therefore, it might be the full Java class name for Java classes.
The identification string is case-sensitive.
class_name is a class name to be used in a rule. case-sensitive.Not
language is a string that identifies the source of the class. The following languages are supported:

Java: the set of Java classes, available from CLASSPATH.

Do not use a language prefix when employing a subsystem clause.

subsystem is the group to which this object belongs.

The following subsystems are supported:
GUI_KERNEL: the set of AppBuilder-supplied window controls
JAVABEANS: used for any Java class

type can be numeric, character, date and time, boolean, or object (with certain limitations, see for more details).Array Object

Refer to the for more information about using objects and AppBuilder-supplied objects.ObjectSpeak Reference Guide

Case-sensitivity in Identifiers

Generally speaking, any identifier without single quotation marks is case-sensitive; likewise, any identifier with single quotation marks not is
case-sensitive. The only exception is the listener name in the LISTENER clause in an event or error handler declaration. See Event Procedure

 for the syntax used in this declaration.Declaration

OBJECT

The OBJECT data type is supported for all generations. However for C, ClassicCOBOL and OpenCOBOL only the first, simple form of the
declaration is supported, i.e. the form: <identifier> OBJECT;

In C, OpenCOBOL and ClassicCOBOL generations OBJECT data type is equivalent to CHAR(8) and represents data object location. It can only
be used in the following operations:

mappings from the LOC function result. For details about LOC function see .LOC
comparisons with other objects, as shown below:

dcl
 o1, o2 object;
 i integer;
enddcl

map LOC(i) to o1
map LOC(i) to o2

if o1 = o2
 trace("ok")
endif

In Java and CSharp the OBJECT data type is equivalent to the OBJECT POINTER data type. This data type represents a non-typed reference to
an object. Since any object (object of any class) can be mapped to the OBJECT data type, it is useful when performing a type conversion. For
more details see .OBJECT and OBJECT POINTER in Java

OBJECT POINTER

The OBJECT POINTER data type is supported only for generation to Java ; it is deprecated for C.and CSharp

In Java and CSharp, the OBJECT POINTER data type is equivalent to the OBJECT data type.

Refer to for more details, CSharp generation supports the same Rules syntax and semantic as JavaOBJECT and OBJECT POINTER in Java
generation.

Array Object

Use the array object (OBJECT ARRAY form) to declare an array as a locally-declared data item.

OBJECT ARRAY Syntax

where:

character_data_type — see .Character Data Types
date_and_time_data_type — see .Date and Time Data Types
numeric_data_type — see .Numeric Data Types
object — see . You can only have an array of non-typed objects, that is OBJECT ARRAY OF OBJECT.OBJECT
boolean_data_type — see .BOOLEAN Data Type

An array reference operation takes the form:

 array_name.method(index)

Where is the overall name of the array, the following the delimiting period specifies a particular operation, and the valuearray_name method
resulting from the evaluation of specifies a particular member of the array.index

For example:

DCL
 array1 OBJECT ARRAY OF INTEGER;
 array2 OBJECT ARRAY OF CHAR(20);
ENDDCL

Array Methods

The following methods can be applied to arrays:

Append
Size
Elem
Insert
Delete

Append

This method appends one element at the end of an array. Its index is equal to the size of the array. This method takes one argument that must be
of the same type as the array's type, or that can be converted to this type as if the argument were MAPped to a variable of array type. However,
no warnings are issued if an argument cannot fit into the array type. See for compatible data types.Data Type Conversions

Size

This method takes no arguments and returns the size of the array. When first declared, an array has a size of zero. The size of an array is
determined dynamically by how many elements you append to the array.

Elem

This method can have one or two arguments. If it is used to get the value of an array element, then it has one argument — the index of an existing
element. For example:

MAP array1.elem(i+2) TO dec_value

After this statement is executed, field contains the same value as the array element with index i+2.dec_value

If this method is used as a destination in a MAP statement, it also must have one parameter — the index of an existing element. For example:

MAP char_value TO array2.elem(123)

After this statement is executed, the array element with index 123 contains the same value as the field .char_value

If the elem method has two arguments, then the first argument must be the index, and the second argument's value is assigned to the array
element with the specified index.

For example:

array2.elem(123, char_value)

This statement has the same effect as the previous MAP statement; that is, the array element with index 123 will contain the same value as the
field .char_value

In all cases, the index value must be within the range from 1 to the size of the array. Otherwise, a runtime error occurs.

Insert

This method has two arguments: the index and a value. A new array element containing the specified value is inserted into the array at the
location specified by the index; the existing element at that location and all following elements have their index incremented by 1.

In all cases, the index value must be within the range from 1 to the size of the array. Otherwise, a runtime error occurs.

Delete

This function has only one argument, the index of an existing element. After the specified element is deleted, all element indices following the
deleted element are decremented by 1. The following example deletes all elements from an array:

MAP arr.Size TO ArraySize
DO TO ArraySize
 arr.Delete(1) *> every time the first element is deleted <*
ENDDO

Character Data Types

Character data types hold character data. The following are character data types in the Rules Language:

CHAR
VARCHAR
DBCS and MIXED Data Types

Character Data Syntax

Locally-declared Character Data Items

See for examples of locally-declared data items that use character data types.Local Variable Declaration

Character Data Type Definitions

The descriptions for the various character data types use the terms "single-byte" and "double-byte" characters. These character types are defined
as follows:

Single-byte

Single-byte characters occupy one byte in the current default or specified codepage. Field sizes are specified in characters but are allocated on
the underlying assumption that one character equals one byte. Within a Unicode environment such as Java, while this single-byte concept is
essentially meaningless, it still applies for data entering or exiting such an environment; for example, when making a remote rule call to a
mainframe. The single-bye space character is the standard ASCII space character (or Unicode \u0020).

Double-byte

Double-byte character set (DBCS) uses 16-bit (two-byte) characters rather than 8-bit (one-byte) characters. Using double-byte characters
expands the possible number of combinations of binary digits (1s and 0s) from 256 (as in ASCII) to 65,536 (or 256 x 256). Double-byte character
sets are needed for such languages as Japanese, Chinese, and Korean, which have many characters.

Double-byte characters occupy two bytes in the current default or a specified codepage. Field sizes are specified in characters but are allocated

on the underlying assumption that one character equals two bytes, except in environments that have a specific type for such data such as a
mainframe type. Also, within a Unicode environment like Java, while there is no distinction between single-byte and double-bytegraphic
characters, it is still relevant for data entering or exiting such an environment; for example, when making a remote rule call to a mainframe.

The double-byte space character is the ideographic or wide space Unicode character \u3000.

CHAR

Use CHAR for a fixed-length character data item. A fixed-length field reserves and retains the number of bytes you define in the field's length
property. CHAR () denotes a CHAR data item of length ; a data item has a length of 1 if value is not supplied. A CHAR data item is alwaysn n n
padded with spaces to its declared length. The length of a CHAR data item is calculated in characters (or bytes) and can have a maximum length
of 32K.

CHAR fields contain single-byte character data. No specific validation is performed on the content to ensure this. Rules Language statements will
be validated to the extent that when mapping MIXED or DBCS fields or literals to a CHAR field, a conversion function must be explicitly specified.
The only exception is a DBCS literal, which can be mapped directly to a CHAR field. When such data is in a CHAR field, it loses any special
behavior or validation that might have been previously applied to it, thus it essentially becomes single-byte data, including being padded with
single-byte spaces.

Trimming a CHAR field removes any trailing single-byte spaces. However, storing the trimmed result into another CHAR, MIXED or DBCS field
will re-pad the data to the declared length of that field as necessary.

VARCHAR

Use VARCHAR for a variable-length character data item. VARCHAR () denotes a VARCHAR data item of maximum length ; a data item has an n
length of 1 if value is not supplied. The length of a VARCHAR data item is calculated in characters or bytes. The maximum length is 32K.n

Although the contents of a VARCHAR are variable length, the data item can be allocated based on the specified maximum length, therefore, do
not assume that VARCHAR data items occupy less space. See forVariable for the Length of the VARCHAR Data Item in ClassicCOBOL
information about ClassicCOBOL's use of VARCHAR in determining the length of a data item.

VARCHAR fields contain single-byte character data. No specific validation is performed on the content to ensure this. Rules Language statements
will be validated to the extent that when mapping MIXED or DBCS fields or literals to a VARCHAR field, a conversion function must be explicitly
specified. The only exception is a DBCS literal that can be mapped directly to a VARCHAR field. Once such data is in a VARCHAR field, it loses
any special behavior or validation that may have been previously applied to it, thus it essentially becomes single-byte data. No padding beyond
that already present in the source data will be added to the value.

Variable for the Length of the VARCHAR Data Item

Any variable of type VARCHAR implicitly declares a variable of type SMALLINT named:

< >_LENvarchar variable_name

For example, a variable named of type VARCHAR declares the variable:VC

VC_LEN of type SMALLINT

The variable is a dynamic variable that represents the length of the VARCHAR variable. A dynamic variable can be changed directlyxxx_LEN
through an assignment statement and these changes are reflected in the VARCHAR contents. At any given time, this field contains the actual
length of the corresponding VARCHAR variable unless it has been changed directly.

However, the semantics of (the way a change to affects the corresponding VARCHAR data) varies on different platforms.xxx_LEN xxx_LEN
Complete descriptions of the variations by platform are provided in the following sections:

Variable for the Length of the VARCHAR Data Item in C
Variable for the Length of the VARCHAR Data Item in Java
Variable for the Length of the VARCHAR Data Item in ClassicCOBOL
Variable for the Length of the VARCHAR Data Item in OpenCOBOL

Appbuilder 3.2 allows user to have explicitly defined xxx_LEN variable of type SMALLINT. Let's see an example:

DCL
 VC VARCHAR(10);
 VC_LEN SMALLINT;
ENDDCL

In this case all the references to it the rule text will be resolved to an explicitly defined variable rather than to internallyVC_LEN
defined one, so the assignment

MAP 22 TO VC_LEN

will not affect neither contents nor its length. Note that the warning will be generated in this case.VC

DBCS and MIXED Data Types

You can use a CHAR and VARCHAR data type only with single-byte character set (SBCS) data (that is, where each character is encoded as a
single byte, allowing up to 256 distinct characters). However, some languages use character sets based on encoding characters using multiple
bytes because they have more than 256 distinct characters. For those languages, AppBuilder contains two double-byte character set data types:
DBCS and MIXED. See the chapter on DBCS Programing in the for more details.Developing Applications Guide

Only the DBCS enabled versions of AppBuilder support the DBCS and MIXED data types. Using these data types in other
versions of AppBuilder causes the code generation step of the preparation process to fail.

See the following for more information about DBCS and MIXED data types:

DBCS
MIXED

DBCS

The DBCS data type can contain only fixed-length, double-byte character set data items. The length of a data item is defined as a number of
double-byte characters, with a maximum of 32,767 characters (64k bytes).

Because field size is defined in terms of double-byte characters, the actual length is twice that number of bytes.

The concept of double-byte is dependent on the codepage. Even with codepages for the same language, a character might be double-byte on
one platform but not the other. Depending on target platform, validation can optionally be performed at runtime to ensure only characters valid
within the context of a specific codepage are allowed within a DBCS data item. It is assumed that the specified codepage will generally be that of
the eventual destination platform for such data. It is also expected that the specified codepage might have to be a compromise because we must
treat all DBCS fields similarly. Applying different validation rules for specific fields because they are not sent to the primary backend system is not
a realistic option.

User input fields are validated for length to ensure no truncation of non-space data occurs when undergoing codepage conversion, such as when
making remote rule calls. Such length validation must occur in the context of a specified codepage, and should typically be the one that is used by
JNetE when marshalling data for transmission to backend systems. This is done in order to handle conversions from Unicode to other codepages,
and stateful codepages for DBCS regions where characters or escape sequences are embedded in the data to switch modes, thus expanding the
data.

Depending on target platform, when mapping to DBCS fields, the source data can be optionally validated for content to verify that all characters
are double-byte, unless the source is another DBCS field. Additionally, the source data will be truncated if it is too long to fit in the destination
field. Any such truncation is based on the actual field lengths, and will not take into account any length changes that might occur due to codepage
conversion, such as when making remote rule calls. See the chapter on DBCS Programming in the for moreDeveloping Applications Guide
details.

A DBCS field will be padded to its declared length with double-byte spaces. Trimming DBCS data will remove any trailing double-byte spaces.

MIXED

The MIXED data type can contain double-byte characters and single-byte characters in any combination thereof. Although it might contain

double-byte characters, the length of a MIXED data item is declared on the basis of single-byte characters. And thus, as for the CHAR type, it has
a maximum length of 32K.

While the length of a MIXED data item is declared in terms of single-byte characters, any string functions with MIXED arguments work on actual
characters, whether double- or single-byte.

Since the field size is defined in terms of single-byte characters, the number of double-byte characters that can be stored in such a field is a
maximum of half the field's specified size. Note that for Unicode based platforms, such as Java, this limitation on double-byte characters is not
present. This can lead to different behaviors for such platforms. To minimize such issues, user input fields can optionally be validated for length as
detailed in the DBCS Programming chapter of the .Developing Applications Guide

User input data is validated for length to ensure that no truncation of non-space characters occurs when undergoing codepage conversion, such
as when marshalled by JNetE. Such length validation must occur in the context of a specified codepage, which is typically the one used by JNetE
when marshalling data for transmission to backend systems. This is done in order to handle conversions from Unicode to other codepages, and
stateful codepages for DBCS regions where characters or escape sequences are embedded in the data to switch modes, thus expanding the
data.

When mapping to or constructing a new field of this type, the source data is truncated if it is too long to fit in the destination field. Any such
truncation is based on the actual field lengths and does not take into account any length changes that might occur due to a codepage conversion,
such as when making remote rule calls. If such truncation causes the second byte of a double-byte character to be truncated, the entire
double-byte character is truncated, and the field is padded as necessary.

A MIXED field is padded to its declared length with single-byte spaces. Trimming MIXED data removes both trailing single-byte or double-byte
spaces.

Because of the differences in character representation on different platforms, a varied number of characters can fit into a
particular MIXED field. Keep the following in mind when writing multi-platform applications:

DBCS and MIXED Data Types in Java
DBCS and MIXED Data Types in COBOL (for ClassicCOBOL and OpenCOBOL)

Data Type Conversions

A data item of a certain data type can be converted to a different data type, either explicitly using a conversion function such as DECIMAL(char)
or DBCS(mixed), or implicitly. An implicit conversion is performed automatically when a data item of one type is assigned to a variable of another
type and the conversion is possible. When such an assignment is performed, and if there is a possibility of data loss because of the data type
conversion, a warning is issued for MAP and SET statements.

A data type conversion is also performed for implicit assignments in which actual parameters are passed to a procedure or method. When an
implicit conversion is supplied for actual procedure parameters, the same rule applies as for a MAP or SET statement; however, no warnings are
generated for the possibility of data loss caused by the data type conversion. Refer to for possible conversionsObjectSpeak Conversions in Java
when calling a method.

The implicit conversions are:

Identity conversions
Implicit numeric conversions
Implicit character conversions

An transforms an expression of any type to a field to the same type.identity conversion

The are:implicit numeric conversions

Conversion of any numeric expression value to any numeric type.
Conversion of any numeric expression value to unsigned picture. This case causes warning generation because value of expression can
be negative.

The are:implicit character conversions

Conversion of character expression value to character or varchar.
Conversion of text or image field to character or varchar.
Conversion of any character expression value to text or image.
Conversion of unsigned picture to any character type. Such conversion is legal if and only if the unsigned picture is defined as PIC '9...9'.
Conversion DBCS expression to MIXED.
Conversion DBCS or MIXED literal to character or varchar.

Platform Specific Consideration

For platform specific considerations, see Implicit Numeric Conversions in Java and Implicit Numeric Conversions in COBOL.

Data Items
A data item — or data element — is an individual unit of data that is processed by a rule. A data item, such as a field, is defined for processing
purposes and might have a specific size, type, and range. Views and fields are data items that are named storage locations capable of containing
data that can be modified by rules during the program execution. Literals and symbols, on the other hand, are data items that have a constant
value throughout the program execution. They can be altered only by manually changing their values within the coding of a rule.

If a field is modified by a component outside of AppBuilder, the component must ensure that the field complies with the AppBuilder definition. If a
user component initializes or pads a field, it must perform as if within AppBuilder. Even if the field type has different characteristics in the language
the user component is written in, the field must conform to what AppBuilder uses. Refer to for definitions of data types supported inData Types
AppBuilder.

The following data items are described in this section:

Variable Data Item
View
Character Value
Numeric Value
Symbol
Alias

The following table shows how the various data items are classified.

Classification of Data Items

Data Item Name Variable Data Item Constant Data Item

View X

Field X

Symbol X

Literal X

Array X

Default Object X

Alias X

Variable Data Item

A rule can use any view or field in its data universe as a variable data item. You can either define a variable in your repository to be used globally
or declare it within a rule to be used locally within that rule. See for information about how to declare a variable locally.Local Variable Declaration

The variables in an application are initialized according to their data types prior to program execution to prevent them from processing
unpredictable values. See for more information.Initializing Variables

AppBuilder does not validate non-initialized variables before they are used.

Generally, a view can be a variable data item almost everywhere a field can be; exceptions are noted where they apply. You can transfer data
from all the fields of one view directly to all the fields of another view by mapping the first view to the second.

Variable Data

variable_data_item:

 (OF)* [‘(‘ index_list ‘)’]field_name view

 [‘(‘ index ‘)’] . ([‘(‘ index ‘)’] .)* view view field_name

 (. object_speak_reference)*object_name

index_list:

 numeric_expression (, numeric_expression)*

index:

 numeric_expression

object_speak_reference:

 . property_name

 . ‘(‘ expression (, expression)* ‘)’

Variable Data Syntax

where index_list is:

where index is:

where object_speak_reference is:

where can be one of the following:object_name

The system identifier (HPSID) of the object.
The alias of the object — see .Alias
An object — see .Object Data Types
An array — see .Array Object

where:

expression — see .Expression Syntax
numeric_expression — see .Numeric Expressions
view — see .View

Qualifying Fields

When you reuse an entity defined in the repository, a given field or view can appear more than once in the rule's data universe. In such a case,

referring to just the name of a field or view could lead to an identification conflict. To avoid this, qualify potentially ambiguous references with
some or all of the names of the ancestor views of the variable.

Ambiguity in the data hierarchy of a rule is not checked until that rule is prepared. Thus, ambiguity errors will only be issued during the rule
preparation. Such an error is usually reported with a BINDFILE prefix in the error message and is issued when a view is used as a top-level view
and as a child of another view.

For example, in the following view hierarchy, the View D is a top-level view and also a child of View C. A reference to the variable X becomes
ambiguous because there are two occurrences of variable X, and the full path to one of the occurrences is exactly the same as the beginning of
the path to the second occurrence.

The following qualifications are ambiguous, because is exactly and fully included in the path :A.B.C A.B.C.D.X

A.B.C.X
A.B.C.D.X

Consider a different hierarchy as shown below:

The following qualifications are not ambiguous:

A.B.C.X
A.B.D.X

However, the following qualification uses only partial qualification. It is an ambiguous reference:

A.B.X

There are two ways to qualify fields: using either "." (dot) notation or the clause.OF

To uniquely identify different instances of a field or view, place the name of a containing view before "." and the name of a field or view after it.

Using the OF clause produces the same result. Add the name of an ancestral view in an OF clause following the name of the variable. This type
of fields and views qualification differs in order, or direction: when using the OF clause, the sequence begins from the innermost item — a field or
view; with the "." (dot) notation, the sequence begins from the outermost item.

You do not have to give the entire list of ancestor or successor views if a partial list uniquely identifies the intended view or field. To be sufficient,
the ancestor list must contain the name of at least one view that uniquely identifies the intended view or field.

Be careful when reusing views. A root view is a view whose parent is not another view. The AppBuilder environment considers
all root views with the same name in the data universe of a rule to be the same view. (See "Data Universe" topic in the

.)Developing Applications Guide

Mapping information to one such view maps the information to all root views with the same name in the data universe of a rule,
. For example, in the hierarchy shown above, if you map information to EMP_DATA of theeven if the names are fully qualified

rule EMPLOY, that information also appears in two other instances of EMP_DATA, assuming that EMP_DATA under
EMP_UPDATE is an input/output view, and not a work view.

Both of the following examples can be used to qualify fields. They each refer to the same fields and are completely equal in rights.

Examples: Field Qualifications and Using Subscripts

The following is an example of field qualifications:

> Using OF clause <
LAST_NAME OF CUSTOMER OF ALL_CUSTOMERS
LAST_NAME OF ALL_CUSTOMERS

> Using dot notation <
ALL_CUSTOMERS.CUSTOMER.LAST_NAME
ALL_CUSTOMERS.LAST_NAME

The following examples illustrate the use of subscripts (indexes):

> Using OF clause <
LAST_NAME OF CUSTOMER OF ALL_CUSTOMERS OF DEPARTMENT(5, 10)

> Using dot notation <
DEPARTMENT.ALL_CUSTOMERS(5).CUSTOMER(10).LAST_NAME

You can also write:

LAST_NAME OF ALL_CUSTOMERS(5, 10)
LAST_NAME(5, 10)

You can omit intermediate views that are not ambiguous. You omit views that require indexes when using the dot notation to qualify fields.cannot
For example, the following is not correct:

DEPARTMENT. (5). (10).LAST_NAME

Using Partial Qualification

In the following sample view, the subview NAME is used in three places to hold three categories of data: the employee's name, the employee's
customer's name, and the employee's supervisor's name.

Sample View Hierarchy

The following example shows a method of specifying the unique data contained in each field by qualifying a part of an argument based on a
unique identifier that precedes the field.

For a fully-qualified statement, the following MAP statement defines the unique identity of:

the employee's LAST_NAME field:

MAP 'Attonasio' TO LAST_NAME OF NAME OF EMP_NAME OF EMPLOYEE

or the customer's:

MAP 'Borges' TO LAST_NAME OF NAME OF CUSTOMER OF
RESERVATION_LOG OF EMPLOYEE

or the supervisor's:

MAP 'Calvino' TO LAST_NAME OF NAME OF SUPERVISOR OF EMPLOYEE

These qualifications, however, can be shortened, since each field has at least one unique ancestor. Thus, the three last-name fields could be
identified as:

LAST_NAME OF EMP_NAME
LAST_NAME OF CUSTOMER (or LAST_NAME OF RESERVATION_LOG)
LAST_NAME OF SUPERVISOR

Since only one instance of LAST_NAME exists beneath each of the EMP_NAME, CUSTOMER (or RESERVATION_LOG) and SUPERVISOR
views, specifying any of these view names is sufficient to distinguish between any instance of the LAST_NAME field within the EMPLOYEE view.

Initializing Variables

The variables in an application are initialized according to their data types prior to program execution to prevent them from processing
unpredictable values. Initialization of a view causes recursive initialization of every field of that view. Different data types are initialized in different
ways and variables of different scope are initialized as required during program execution. When variables have been correctly coded, the system
automatically initializes them.

Variables are initialized in the following situations:

The rule and procedure local variables and rule output views are initialized every time a rule is called and before the rule code is

executed.
The input view of a rule is initialized in the parent rule.
Global and all other views are initialized only one time upon application start (main rule start).

The following table shows the data types and the initial values when they are initialized:

Data types and initial values

Data Type Initialized with...

BOOLEAN FALSE

CHAR single-byte spaces

VARCHAR In C and Java: zero length string
In ClassicCOBOL and OpenCOBOL: The character portion is initialized to single-byte spaces and the numeric
portion is initialized to zeros.

DBCS ideographic blanks (DBCS spaces)

MIXED single-byte spaces

Variables of numeric data
types

zero

Large object data types zero length string

Object references null reference

DATE variables January, 1st, 1 AD

TIME variables 00.00.00.000

TIMESTAMP variables 0000-00-00-00.00.00.000000

For additional information, see and .Initialization in Java NULL in Java

View

A View is an object in the Information Model that defines a data structure you use within your rules. Essentially, it is a "container" for other views
and fields.

For detailed information about the Information Model, refer to the .Information Model Reference Guide

View Name Syntax

view_data_item:

 (OF)* [‘(‘ index_list ‘)’]view_name view_name

 [‘(‘ index ‘)’] . ([‘(‘ index ‘)’] .)* ‘(‘ index ‘)’view_name view_name view_name

character_value:

 symbol

 ‘ ’string_literal

 “ “string_literal

 character_field

where index_list is:

where index is:

Usage

When using a view in a Rules Language statement, only the name of the view as it is defined in the repository is required.

You can create what other programming languages call an array (a multiple-accurring vilew) by setting the Occurs property. For more information,
see .Multiple-Occurring Subview

By using a view to redefine another view, you can assign data and structure to the redefined view. These two views share the same data in
memory without creating two copies of the same data. Refer to for more information.Redefining Views

Platform Specific Consideration

For platform specific considerations, see .Views in OpenCOBOL

View Size Limitations

Generally, AppBuilder has no limitations on the view size; however, some platforms or compilers might have such limitations. Additionally,
multiple-occurring views in input/output views for remote rules are limited to 32K occurrences.

For Specific Considerations for ClassicCOBOL and OpenCOBOL, see .Size Limitations in ClassicCOBOL and OpenCOBOL

Multiple-Occurring Subview

Define a by changing the Occurs times property in the "View View" relationship that connects the child view tomultiple-occurring subview includes
its parent. This creates what other programming languages call an array. Each "row" is simply an indexed instance of the child view, with the
same field data types. The Occurs property works with the "View View" relationship only. This means that neither fields nor top-levelincludes
views can be subscripted.

You can refer by number to a specific instance of a multiple-occurring subview within the rule that owns the including view. To reference an
individual occurrence of an item in a multiple-occurring view, place the occurrence number of the multiple-occurring view in parentheses after the
last qualifier. This index can be any expression that resolves to a number. Because occurrence numbers can only be integers, any fractional part
to an index value will be truncated.

As discussed in , you can omit the names of some of a field's ancestral views in a statement. However, youVariable Data Item
must always include the occurrence number of a multiple-occurring subview in a statement, even if the view's name does not
appear.

Arrays can be nested to a maximum of three levels. To refer to a particular element, list the indices of its parent views in parentheses after the last
qualifier.

When using the OF clause, while the view names ascend in the hierarchy when reading from left to right, you must place the
subscripts in reverse order so that they descend in the hierarchy. When using the dot notation, the subscripts are in the same
order as the view names are listed in the statement.

For OpenCOBOL, you can prevent an occurring view from being initialized. For more information, see Initialization of Occurring Views in
.OpenCOBOL

For specific considerations for Java, see .Dynamically-Set View Functions in Java

Example: Using the Occurs Property to Set the View

Assume the relationship between a view named DEPARTMENT and its subview named EMPLOYEE has an Occurs property of 20, and
EMPLOYEE view contains a field LAST_NAME. Thus, each DEPARTMENT view has 20 EMPLOYEE views, each of which can be accessed
separately by any rule that has the DEPARTMENT view in its data universe. The following statements reference the twelfth occurrence of the
employee view:

MAP 'Jones' TO LAST_NAME OF EMPLOYEE OF DEPARTMENT(12)

or

MAP 'Jones' TO DEPARTMENT.EMPLOYEE(12).LAST_NAME

Assume a SITE view includes the DEPARTMENT view, and the DEPARTMENT view is itself occurring. The following statements reference the
twelfth employee's last name in Department 4:

MAP 'Jones' TO LAST_NAME OF DEPARTMENT OF SITE (4,12)

or

MAP 'Jones' TO SITE.DEPARTMENT(4).EMPLOYEE(12).LAST_NAME

Even though the name of the EMPLOYEE view does not appear in the statement, you must include the subscript for this view to
avoid ambiguity.

Use caution with regard to the fields because they can be unqualified in the rule code. Statements like the following can be confused for
subscripted fields:

MAP 'Jones' TO LAST_NAME(12)

The subscript here does not refer to the LAST_NAME field, but to the omitted EMPLOYEE view.

Character Value

A character value can be a symbol associated with a character value, a field of a character data type, or a character literal. A character literal is a
string of up to 50 characters enclosed in single or double quotation marks.

Character Value Syntax

character_value:

 symbol

 ‘ ’string_literal

 “ “string_literal

 character_field

where:

character_field is a variable data item of any character type.
symbol — see .Symbol

Using Character Literals

Character literals can be enclosed in double or single quotation marks. If a literal begins with a single quotation mark, it must end with a single
quotation mark. If a literal begins with a double quotation mark, it must also end with a double quotation mark. A string literal is a constant.

You can include a single-quotation mark (') as part of a character string by putting two single quotation marks (not a double quotation mark) in its
place in the string. For example,

MAP 'Enter the item''s price' TO message

Two consecutive single quotation marks (when not being used as part of a character string) represent a null string, which is the value of an empty
character field.

Character literals can be placed on one or more lines of Rules Language code. To place the literal on several source code lines, put quotation
marks at the end of the first line and begin the second line with the same quotation mark. For example:

MAP 'Orson Welles,'
 'Frank Capra,'
 'Preston Sturges.' TO director_list

or

MAP "Orson Welles,"
 "Frank Capra,"
 "Preston Sturges." TO director_list

Example: String Literal

The following is an example of a string literal in a MAP statement:

MAP 'This is a character literal' TO MESSAGE

The MAP statement

MAP 'Enter the items''s price' TO MESSAGE

puts the string "Enter the item's price" in the MESSAGE field.

The following statement tests for an empty value in a character field:

IF NAME = ''

Using Escape Sequences within Literals

The backslash (\) starts an escape sequence and is valid only in literals within double quotation marks. These escape sequences allow you to use
a sequence of characters to represent special characters, including non-printing characters. Escape sequences also allow you to specify
characters with hexadecimal or octal notation. The supported escape sequences are listed in the following table.

Supported Escape Sequences

Escape Sequence Character Name

\a Alert (Bell)

\b Backspace

\f Form feed

\n New-line

\r Carriage return

\t Horizontal tab

\v Vertical tab

\? Question mark

\' Single quotation mark

\" Double quotation mark

\\ Backslash

\o...o octal number

\xh...h hexadecimal number

DBCS and MIXED Literals

Both single-quotation mark and double-quotation mark literals can contain Double Byte Character Set (DBCS) characters. If such a literal contains
only DBCS characters, it is considered a DBCS literal. If a literal contains both DBCS and Single Byte Character Set (SBCS) characters, it is
considered a MIXED literal.

Using Hexadecimal and Octal Notation

Each hexadecimal or octal number represents only one character. Therefore, if an octal or hexadecimal number is greater than 255, the character
value is equal to the remainder of integer division of this number by 256.

For characters notated in hexadecimal, leading zeros are ignored. During preparation, the code generation process establishes the end of the
hexadecimal or octal number when it encounters the first non-hexadecimal or non-octal character correspondingly. For example, will\x0cDebug
have only three characters: , , and .\xEB u g

To define two bytes, use the string literal . This is converted to two bytes, the first with a decimal value of 17 and the second with a\x11\x10
decimal value of 16.

Example: Hexadecimal Notation

/x10 - This is not a hexadecimal value because it begins with a forward slash, instead of a backslash.
\x10 - This is converted to one byte, and equates to a hexadecimal value of 10, a decimal value of 16, and a binary value of 00010000.
\x1110 - This is converted to one byte, and equates to a hexadecimal value 10, a decimal value of 16 (the remainder of integer division
4368 by 256), and a binary value of 00010000.

Numeric Value

A numeric value can be a symbol associated with a numeric value, a field of a numeric data type, or a numeric literal. A numeric literal is either an

integer or a decimal number.

Numeric Value Syntax

numeric_value:

 symbol

 numeric_literal

 integer_field

 smallint_field

 decimal_field

 picture_field

where:

symbol — see .Symbol
integer_field is a variable data item of INTEGER data type.
smallint_field is a variable data item of SMALLINT data type.
decimal_field is a variable data item of DEC data type.
picture_field is a variable data item of PIC data type.

Numeric Literals

An integer literal must be within the range specified for the data type. See and for allowed ranges. A decimal literal can beSMALLINT INTEGER
no more than 31 digits long, regardless of the position of the decimal point within the number. To denote a negative number, precede a numeric
literal with a minus sign (–). A numeric literal is a constant.

There are two types of supported numeric literals — decimal and hexadecimal. Decimal literals are a sequence of decimal digits. The integer and
fraction components of the literal are separated by a period.

Integer and decimal numbers can be represented as hexadecimal literals: represents 255. Hexadecimal literals begin with or 0xFF 0x 0X
characters, which are followed by hexadecimal digits (0 < 29). For example, the following literals are all equal:n n

255
0xff
0Xff
0x0ff
0XFF
0x00FF

See for additional information about hexadecimal usage.Using Hexadecimal and Octal Notation

For an example of associating a symbol with a numeric value, see .Example: Symbols in Rules

Examples: Integer and Decimal literals

An integer numeric literal: 42
A decimal numeric literal: -324.85

Symbol

Because the value of a symbol does not change during program execution, it is a constant. You can store character and numeric literals in the
repository as symbol entities and group them into sets. You can use symbols to specify "define," "encoding," and "display." Rules normally refer to
set symbols by the "define."

Symbol Syntax

symbol:

 [IN]symbol_name set_name

Usage

To use a symbol in a rule, the rule must have a "refers-to" relationship with the set that contains the symbol.

A special case arises when a symbol is used in a CASE statement and the symbol has the same name as a rule. In this case, it is ambiguous
whether the CASE statement is referring to the symbol or to the rule. To prevent ambiguity, enclose the symbol name within parentheses:

CASE (symbol_name IN set)

For additional information regarding the use of Symbol in OpenCOBOL, see .Symbols in OpenCOBOL

Using IN Clause

If the name of a symbol appears more than once in the data universe of a rule (either in another set or as a field or view name), you must specify
the name of the set in an IN clause.

Example: Symbols in Rules

Assume a set MONTHS, as shown in the following figure, has 12 member symbols with the "encoding" (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12)
and the "defines" (M_JAN, M_FEB, M_MAR, M_APR, M_MAY, M_JUN, M_JUL, M_AUG, M_SEP, M_OCT, M_NOV and M_DEC).

Set MONTHS

A rule referring to the MONTHS set can use the symbol M_JAN exactly as if it were the number 1, the symbol M_FEB exactly as if it were the
number 2, and so on:

DO FROM M_JAN TO M_DEC INDEX CURRENT_MONTH
 MAP YEARLY_TOTAL + MONTHLY_TOTALS (CURRENT_MONTH) TO YEARLY_TOTAL
ENDDO

Alias

An alias is a name assigned to a data item of OBJECT data type to be used in the Rules Language in place of a system ID to refer to an object.
Declare an alias when:

The system ID is not a valid Rules Language Identifier – a valid Rules ID contains only alphanumeric characters or underscores, with no
empty spaces.
The system ID is the same as an existing field, view, set, symbol, or keyword.

Alias Syntax

alias:

 OBJECT ‘ ‘alias_name system_identifier

where

alias is any valid Rules Language identifier.
system_identifier is the system identifier of an object declared in the panel file.

This method of declaring an alias be used when declaring procedure parameters.cannot

The system ID in an alias declaration is a character literal, and is case-sensitive. The system ID in the declaration must exactly match the system
ID as entered in Window Painter in the property page of a window object.

The object must exist in a window used by the rule in which the object is declared.

Once an alias is declared, the original name is no longer available for use. the alias can be used to refer to the object.Only

Choose a unique name for an alias when using ObjectSpeak names that are the same as keywords, ObjectSpeak object types,
method names, constants, etc. This is to avoid ambiguity errors that can cause failures during the prepare.

For information about the default object, refer to .OBJECT and OBJECT POINTER in Java

Example: Declaring an Alias

The following example declares "Button1" as the alias for an OBJECT type data item, which has the system ID "Button_1".

DCL
 Button1 OBJECT 'Button_1';
ENDDCL

Expressions and Conditions
An expression is any Rules Language construct with a character or numeric value. Any field, symbol, literal, or function that evaluates to a specific
value is an expression. A view is also considered as an expression. A complex expression is two expressions joined by an operator.

The order of expression and condition evaluation is not guaranteed to be the same as it is written. This is important because the evaluation of
some operands of the expression or condition can lead to unexpected results such as the modification of global variables. For example:

flag = TRUE OR my_date < my_proc(date)

In the above example, the second condition (my_date < my_proc(date)) might be evaluated before the first condition (flag = TRUE). If my_proc
changes the value of the flag variable, the order of evaluation might lead to different results. See Example: Order of Expression and Condition

 for an example in which the order of the expression and condition evaluation is different from the order they are written.Evaluation

The following topics are discussed in this chapter:

Character Expressions
Numeric Expressions
DATE and TIME Expressions
Arithmetic Operators
Condition Operators
Comparing Fields with Expression

Because methods can return a value, the method invocation can be a constituent of an expression. For information about invoking a method, see
.ObjectSpeak Statement

Conditions for Rules Language Statements shows how conditions and expressions can be built from data items.

Conditions for Rules Language Statements

Expression Syntax

expression:

 character_expression

 numeric_expression

 object_expression

 date_expression

 time_expression

 timestamp_expression

 boolean_expression

 view_expression

Example: Order of Expression and Condition Evaluation

In the following example, the procedure P is executed before the "I-P" expression, thus the result is different from what you might expect:

DCL
 I integer;
ENDDCL

PROC P : INTEGER
 MAP I + 1 TO I
 PROC RETURN (I)
ENDPROC

MAP I - P TO I
TRACE(I) // 0 will be printed, while one may expect -1

This is because P is executed before I-P is evaluated.

Character Expressions

character_expression:

 character_value

 character_function

 procedure_call

 objectspeak_expression

where:

++ is the concatenation of two expressions — see .++ (Concatenation)
character_function — see .Character String Functions
procedure_call — see .PERFORM Statement
character_value — see .Character Value
ObjectSpeak_expression — see .ObjectSpeak Statement

Numeric Expressions

numeric_expression:

 numeric_value

 numeric_function

 procedure_call

 - numeric_expression

 numeric_expression arithmetic_operator numeric_expression

 ObjectSpeak_expression

where:

operator — see .Arithmetic Operators
math_function — see .Mathematical Functions
procedure_call — see .PERFORM Statement
numeric_value — see .Numeric Value
ObjectSpeak_expression — see .ObjectSpeak Statement

Using – Expression (unary minus)

The is the shorthand forunary minus

 0 - expression

as in

MAP - (HOUR OF MILITARY_TIME MOD 12) TO A

To avoid having two operators in a row, put parentheses around any expression in this format if an operator immediately precedes it:

A MOD (- B)

instead of

A MOD - B

Parentheses in a complex expression override the normal order of operations. (See , for that order.) When there is more thanArithmetic Operators
one set of parentheses in an expression, left and right parentheses are matched and resolved from the inside out.

Example: Expressions

Both and are numeric literals and hence are expressions; is a complex expression that combines the two numeric literals with the12 7 12 + 7
addition operator (+) to represent the value 19.

Similarly, the following are all expressions:

104366564 + 14223412
PRICE OF ITEM_1 * TAX
HOUR OF MILITARY_TIME MOD 12
ROUND(12.47)

Because an expression can be used again in the expression definition as a sub-expression, these are also expressions:

104 + 23 * 3
(104 + 23) * 3
PRICE OF ITEM_1 + PRICE OF ITEM_1 * TAX
60 * (HOUR OF MILITARY_TIME MOD 12)
ROUND(5.389) * 10 + 2

Expressions can be used to generate even more complex expressions:

(104 + 23 - 3) DIV 2

Note that because of the parentheses, this is equivalent to 124 DIV 2. Similarly, in the statement

(10 * (5-2))

the inside set of parentheses is first resolved to 3, and then the outside set is resolved to 30.

DATE and TIME Expressions

Use data items of DATE and TIME data types in numeric expressions with certain limitations:

"-" (unary minus) is not allowed.
Do not use mixed combinations of the DATE and TIME operands. If one of the operands is DATE (TIME), then the other must be either
numeric or of the same data type - DATE (TIME).

No arithmetic operations with data items of TIMESTAMP data type are supported.

The following table represents valid combinations of operands and the type of result for each combination.

Valid Operands

Left operand type Operator Right operand type Result type

DATE (TIME) +, -, *, /, **, DIV, MOD DATE (TIME) Numeric

DATE (TIME) +, - Numeric DATE (TIME)

DATE (TIME) *, /, **, DIV, MOD Numeric Numeric

Numeric + DATE (TIME) DATE (TIME)

Numeric -, *, /, **, DIV, MOD DATE (TIME) Numeric

When using DATE or TIME in arithmetic expression, its is used, i.e. number of days past the date of origin for DATE and the number ofvalue
milliseconds past midnight for TIME. Use the INT function (see) to obtain the of data items of DATE or TIME data type.INT value

Precision of the expression with DATE or TIME is calculated with the assumption that the DATE and TIME value has type
INTEGER.

Example: Using DATE and TIME Expressions

The following are examples of expressions using DATE and TIME data types

DCL
 DT DATE;
 TM TIME;

 I INTEGER;
 SM SMALLINT;
ENDDCL

MAP 1 TO SM
MAP 1000 TO I

MAP DATE ('05/03/99', '%0m/%0d/%0y') TO DT // 05/03/1999
MAP TIME ('1:22:03 PM', '%h:%0m:%0s %x') TO TM // 13:22:03:000

MAP DT + 1 TO DT // 05/04/1999 - next day
MAP SM + DT TO DT // 05/05/1999

MAP TM + 1000 TO TM // 13:22:04:000 - next second
MAP I + TM TO TM // 13:22:05:000

MAP DT - 1 TO DT // 05/04/1999 - previous day
MAP TM - 1000 TO TM // 13:22:04:000 - previous second

MAP INT(DT) TO I // 730244
MAP DT + DT TO I // 1460488 (730244 + 730244)
MAP DT / 2 TO I // 365122 (730244 / 2)

RETURN

Arithmetic Operators

The Rules Language supports the following basic arithmetic operations. Write and call your own user components if you need to perform more
complex calculations. (For more information about user components, refer to the .)Developing Applications Guide

Arithmetic Operator Syntax

arithmetic_operator:

 one of + - * / ** DIV MOD +:= -:=

Generally, the precision of an arithmetic operation is controlled by the data item in which the result is stored. For instance, the statement

MAP 2001 / 100 TO X

produces a value of 20 if X is declared as SMALLINT or INTEGER, a value of 20.0 if X is declared as DEC (3, 1), and a value of 20.01 if X is
declared as DEC (4, 2) or larger.

When you perform an addition, subtraction, or multiplication operation on two SMALLINT data items, the result is also a
SMALLINT data item, regardless of the actual type of the target variable. That is, the result is calculated before the map
operation takes place. This could cause an overflow.

For example, overflows if the product of the two SMALLINT dataMAP SMALLINT_VAR * SMALLINT_VAR TO INTEGER_VAR
items is greater than 32,767.
If you expect the result to be outside the range of SMALLINT data type, use INTEGER or DEC data type.

Operator Precedence

As in most programming languages, the *, /, MOD, and DIV operators take precedence over the + and - operators. Also, unary minus and the
exponential operator take precedence over *, /, MOD, and DIV. You can use parentheses in the expression syntax to override the order of
operations. All the arithmetic operators take precedence over the relational and Boolean operators.

The following table summarizes the order of precedence of the arithmetic operators. (Unary minus is discussed under Using – Expression (unary
.)minus)

Arithmetic operator precedence

Operator Precedence

unary minus, ** highest

*, /, MOD, DIV

+, -

+:=, -:= lowest

See the following for more information about each operator:

++ (Addition)+
- (Subtraction)
* (Multiplication)
/ (Division)
** (Exponentiation)
DIV (Integer division)
MOD (Modulus)
+:= (Increment)
-:= (Decrement)

+ (Addition)

The arithmetic operator + adds two expressions together. The statement

MAP 10 + 4 TO X

gives X a value of 14.

- (Subtraction)

The arithmetic operator – subtracts its second expression from its first. The statement

MAP 10 - 4 TO X

gives X a value of 6.

* (Multiplication)

The arithmetic operator * multiplies two expressions. The statement

MAP 10 * 4 TO X

gives X a value of 40.

/ (Division)

The arithmetic operator / divides its first expression by its second. The result might be an integer or a decimal number depending on how the
variable is declared, which holds the result. The statement

MAP 10 / 2 TO X

gives X a value of 5.

The statement

MAP 10 / 3 TO X

gives X a value of 3.33333333333333, assuming X was declared as DEC(15, 14).

See also , which always returns an integer.DIV (Integer division)

** (Exponentiation)

The arithmetic operator ** raises its first expression to the power of its second. The first expression can be any numeric type, but the second

expression must be a SMALLINT or INTEGER on the mainframe and any numeric type on the workstation. The statement

MAP 10 ** 4 TO X

gives X a value of 10,000. The statement

MAP 3.14 ** 2 TO X

gives X a value of 9.8596.

Note that the result of the exponentiation operation might be too large to represent in the largest data type, DEC (31). If the first expression of
exponentiation operation is negative and the second expression is a fractional number then invalid exponentiation error message is generated.

DIV (Integer division)

The arithmetic operator DIV returns the number of times the second operand can fit into the first. Both operands can be decimal numbers, but the
result is always an integer. The statement

MAP 11 DIV 2 TO X

gives X a value of 5, since 2 fits into 11 five times (with a remainder of 1).

The following are examples of the DIV operator:

MAP 11 DIV 0.2 TO X

gives X a value of 55

MAP 1.1 DIV 0.2 TO X

gives X a value of 5

MAP 0.11 DIV 0.2 TO
X

gives X a value of 0

See also , which can return either an integer or a decimal number./ (Division)

MOD (Modulus)

The arithmetic operator MOD provides the remainder from an integer division operation. The statement

MAP 11 MOD 2 TO X

gives X a value of 1, since 2 fits into 11 five times, and the remainder (modulus) is 1.

If MOD is declared as a decimal, it returns a decimal remainder when the remainder is not a whole number. If MOD is declared as an INTEGER
or SMALLINT, it will not return a decimal remainder.

The following are examples of the MOD operator

MAP 11 MOD 0.2 TO X

gives X a value of 0

MAP 1.1 MOD 0.2 TO X

gives X a value of 0.1

MAP 0.11 MOD 0.2 TO
X

gives X a value of 0.11

+:= (Increment)

The arithmetic operator +:= adds the right operand to the variable, which is its left operand. The result is the value of this variable. The left
operand of this operator must be a numeric variable. The right operand must be a numeric data item. For example:

MAP 1 TO I
MAP I +:= 1 TO J *> sets I and J to 2 <*
MAP I +:= 1-1 TO J *> I and J are left unchanged because the Increment
 operator has the lowest precedence and this
 statement is equal to MAP I +:= 0 TO J <*

The increment operator modifies its left operand. Because the order of calculation varies on different platforms, the same expression can give
different results on different platforms. Use this operator with caution.

-:= (Decrement)

The arithmetic operator -:= subtracts its right operand from the variable, which is its left operand. The result is the value of this variable. The left
operand of this operator must be a numeric variable. The right operand must be a numeric data item. For example:

MAP 1 TO I
MAP I -:= 1 TO J *>sets I and J to 0<*
MAP I -:= 1-1 TO J *> I and J are left unchanged because Decrement
 operator has the lowest precedence and this
 statement is equal to MAP I +:= 0 TO J <*

The decrement operator modifies its left operand. Because the order of calculation varies on different platforms, the same expression can give
different results on different platforms. Use this operator with caution.

Condition Operators

A condition is an expression that evaluates to either true or false. A condition can be one of two types:

Relational Condition
Boolean Condition

Condition Operators Syntax

condition:

 relational_condition

 boolean_condition

relational_condition:

 expression relational_condition_operator expression

 expression INSET set_name

 ISCLEAR view_name

 ISCLEAR field_name

relational_condition_operator:

 one of = <> < <= > >=

boolean_condition:

 condition boolean_condition_operator condition

 NOT condition

boolean_condition_operator:

 one of AND OR

where:

expression — see .Expression Syntax

Order of Operations

The order of operations for the relational and Boolean operators, in decreasing precedence, is shown in the following table. All the arithmetic
operators take precedence over the relational and Boolean operators. As with expressions, parentheses override the usual order of operations.

Relational and Boolean Operator Precedence

Operator Precedence

INSET, ISCLEAR highest

=, <>, <, <=, >, >=

NOT

AND

OR lowest

Relational Condition

A relational condition compares one expression to another. It consists of an expression followed by a relational operator, then followed by another
expression, except for or . The two expressions must resolve to compatible values. If either expression is aISCLEAR Operator INSET Operator
variable data item, the condition's truth or falsity depends on the value of the data item.

The following table lists the relational operators, the comparisons, and the data type variables to which each applies.

Relational Operators

Relational Operator Comparison Applicable to Data Types

= Is equal to Numeric, Character, Date and Time, large object, Boolean, Object, View

<> Is not equal to Numeric, Character, Date and Time, large object, Boolean, Object, View

< Is less than Numeric, Character, Date and Time, large object, View

<= Is less than or equal to Numeric, Character, Date and Time, large object, View

> Is greater than Numeric, Character, Date and Time, large object, View

>= Is greater than or equal to Numeric, Character, Date and Time, large object, View

INSET Is included in the set Set

ISCLEAR Is operand value equal to its initial value Any Variable or View

In C, you cannot compare for equality or inequality aliases and variables of type OBJECT ARRAY.
In Java, you can compare any objects for equality or inequality.

A relational condition can be the argument to a flow-of-control statement to allow it to choose among different actions depending on the
condition's accuracy. In the code sample below, the IF...ELSE...ENDIF statement checks whether the condition RETURN_CODE OF
UPDATE_CUSTOMER_ DETAIL_O = 'FAILURE' is true. If it is, it displays an error message window. If it is not true, it sets the rule's return code
to UPDATE.

Example: Relational Condition Code

MAP CUSTOMER_DETAIL TO UPDATE_CUSTOMER_DETAIL_I
USE RULE UPDATE_CUSTOMER_DETAIL
IF RET_CODE OF UPDATE_CUSTOMER_DETAIL_O = 'FAILURE'
 MAP 'CUSTOMER_DETAIL_FILE_MESSAGES' TO MESSAGE_SET_NAME OF
 SET_WINDOW_MESSAGE_I
 MAP UPDATE_FAILED IN CUSTOMER_DETAIL_FILE_MESSAGES TO
 TEXT_CODE OF SET_WINDOW_MESSAGE_I
 MAP 'CUSTOMER_DETAIL' TO WINDOW_LONG_NAME OF
 SET_WINDOW_MESSAGE_I
 USE COMPONENT SET_WINDOW_MESSAGE
ELSE
 MAP 'UPDATE' TO RET_CODE OF
 DISPLAY_CUSTOMER_DETAIL_O
ENDIF

INSET Operator

Unlike other relational operators, the name of a Set must follow an INSET operator. A condition with an INSET clause is true if the expression on
the left evaluates to a value that is equal to a value entity related to the Set on the right, or encoding if the type of the Set is LOOKUP. The data
type of the expression must be compatible with that of the value entity, either both numeric or both character.

Assume there is a Set MONTHS in the data universe of a rule that contains the symbols JAN, FEB, MAR, APR, ... , DEC, representing the values
1, 2, 3, 4, ... , 12. In that rule's code, the condition

3 INSET MONTHS

is true, because the set MONTHS does contain a value entity whose value property is 3: the value with the symbol MAR. The condition

26 INSET MONTHS

is false, because there is no such member value in MONTHS. The condition

'DECEMBER' INSET MONTHS

is illegal, because the MONTHS set is numeric and the literal data item DECEMBER is character.

If the Set type is DBCS, the left operand can be either DBCS or MIXED. If the Set type is MIXED, the left operand can be either MIXED, CHAR, or
DBCS. If the Set type is CHAR, the left operand can be either MIXED or CHAR. In all other cases, the explicit conversion function is required. The
Set types and the left operand types are summarized in the following table.

Allowed left operand types for INSET operator with characters sets

 Set Type

 CHAR MIXED DBCS

Left Operand CHAR O O requires conversion function

 MIXED O O O

 DBCS requires conversion function O O

Boolean Condition with INSET

Since the subconditions can also be Boolean, a condition can be built up like an expression:

IF (A > B AND NOT (C <= D OR E = F)) OR G INSET SET_H...

Order of Operations with INSET

The condition

NOT A = B AND C INSET D OR E = F

is equivalent to

((NOT (A = B)) AND (C INSET D)) OR (E = F)

You can change this order using parentheses to something else, such as:

NOT (A = B) AND (C INSET D OR E = F)

ISCLEAR Operator

The ISCLEAR condition returns TRUE if the variables (or all fields of a view) are set to their initial value, and it returns FALSE if a variable (or at
least one field in a view) differs from its initial value. A field is considered to be set to its initialized value if it has never been modified by a user or
if it has been reset programmatically: for example, by using the CLEAR statement or by moving a zero to a numeric field.

MIXED variables are considered clear if they contain blanks only. It does not matter if the blanks are double-byte or single-byte. See the
 for more information.Initializing Variables

To test a variable of any object type in Java for null, or a variable of any type except OBJECT ARRAY and aliases in C (see forObject Data Types
an explanation of the OBJECT ARRAY data type) for null, use ISCLEAR instead of ISNULL; it returns TRUE if the reference actually refers to
nothing (it contains a null value), ant it returns FALSE otherwise.

Before the ISCLEAR was supported, view comparison was sometimes used to check whether or not a view was modified.
Because comparison of views has undefined consequences, and changes in the code generation might result in changes in the
behavior, do not use view comparison. Use ISCLEAR instead.

Order of Operations with ISCLEAR

The condition

NOT ISCLEAR C AND C INSET D OR E=F

is equivalent to

((NOT (ISCLEAR C)AND(C INSET D))OR(E=F)

You can change this order by changing position of the parentheses.

Example: Using ISCLEAR

The following example tests whether or not all fields of is set to its initial value.VIEW1

IF ISCLEAR(VIEW1) USE RULE RULE1 ENDIF

Boolean Condition

A Boolean condition is one of the following:

two conditions joined by a Boolean operator AND or OR
a Boolean operator NOT followed by a condition

The conditions in a Boolean condition can be either relational or Boolean.

The true or false value of a Boolean condition is determined by the values of its two conditions. The following are rules of Boolean algebra:

condition AND is true only if both conditions are truecondition
condition OR is true only if one or both conditions are truecondition
NOT is true only if the condition is falsecondition

The result of relational and Boolean conditions has a BOOLEAN type (See). This allows the use of conditions in statementsBOOLEAN Data Type
not limited to condition statements.

For example, you can store the results of a comparison for later use with the statement:

MAP CUSTOMER_NAME OF UPDATE_DETAILS_WND_IO = CUSTOMER_NAME OF CURRENT_CUSTOMER_V TO IsSameCustomer

and use the variable (of type BOOLEAN) later. Storing results is useful if you want to use the same condition several times;IsSameCustomer
however, using a variable to hold the result of a comparison is not the same as the comparison function itself. In the case of variables holding the
result of a comparison, the variables are compared only once; if the values change later, the result is not updated. For example, in the case
above, is not updated.IsSameCustomer

Comparing Fields with Expression

A PIC field can be compared to either a numeric or a character expression. See for more information. Variables of a large object data typePIC
(IMAGE or TEXT) can be compared with each other and with character data items (CHAR or VARCHAR) in any combination.

These topics describe restrictions and special considerations when comparing certain data items:

Comparing Character Values
Comparing Views
Identifying Illegal Comparisons

Comparing Character Values

You can compare character values using all the relational operators except ISCLEAR and INSET. Any such comparison is a straight binary
comparison, using the collating sequence of the hardware execution platform, either ASCII (on the workstation in C), Unicode (in Java) or
EBCDIC (on the host). Thus, because the numeric values of ASCII and EBCDIC alphabetic characters differ, "abc" is less than "ABC" on the host,
but greater than "ABC" on the workstation, both in C and Java.

Since 7-bit ASCII is included into Unicode, which is used in Java, you can assume that collation of all strings containing only 7-bit ASCII symbols
remains the same.

DBCS (double-byte character set) strings are compared according to system locale settings. In Java, DBCS is translated to Unicode by the Java
compiler. A DBCS symbol in one code page might have a different code in another, but Unicode supports virtually all code pages; thus, the
character order for DBCS string on the PC might differ from the character order of the same string in Unicode. Consider these differences when
preparing and using your application in Java.

Blanks at the end of a string are ignored when comparing that string for equality to another character expression.

For example, if A, B, and C are defined as follows:

A = 'Hello'
B = 'Hello '
C = 'Hello '

then the following conditions are all true:

A = B
B = C
C = A

When comparing strings using relational operators <, >, <= or >=, the shorter string is padded with spaces (double-byte or single-byte) to the
length of the longer string. CHAR values are padded with single-byte spaces; DBCS values are padded with double-byte spaces. For MIXED
values, the blanks at the end of each string are removed and the smaller item is padded with spaces corresponding to the type of character in that
position in the longer string.

In Java, ClassicCOBOL and OpenCOBOL, you can also compare DBCS and CHAR data types with MIXED values. (DBCS and CHAR values are
implicitly converted to MIXED using the corresponding conversion function.) The comparison is performed character to character not byte to byte.
When a single-byte character is compared to a double-byte character, the double-byte character is considered greater than the single-byte
character.

CHAR and DBCS values can also be compared.

Comparing Views

It is not recommended to use view comparisons.

You can compare views using standard relational operators (<, >, <=, >=, =, and <>). When comparing views with different structures, the results
of the view comparison might be different depending on the target language because some data types are represented differently for different
languages. For example, the representation of DATE and TIME data types are different for ClassicCOBOL and OpenCOBOL generations. In
particular, do not use view comparison to check if a view has been modified; instead, use the ISCLEAR function (see).ISCLEAR Operator

For language specific information see the following:

Comparing Views in C
Comparing Views in Java
Comparing Views in ClassicCOBOL and OpenCOBOL

Identifying Illegal Comparisons

There are some restrictions when comparing different types data as described below:

A condition (even if it evaluates to true or false) is illegal if it compares two literals, or if it cannot be true due to the data types of its
expressions. For instance, 3 < 29, while conforming to the syntactic definition of a condition, is an error because it compares two literals.
A condition that compares only a literal to a set symbol is permitted, so IF MARY IN NAMESET = 4... is legal.

However, MIXED or DBCS literals compared to a literal of any other legal data type using <, >, <= or >= is considered a legal comparison
and is performed at runtime; however, a comparison of two CHAR literals is performed at compile time. This is because of possible
differences between compile-time and runtime codepages.

You cannot compare a SMALLINT field to an expression with a value greater than 32,767 or less than -32,767. If SALARY were a field of
data type SMALLINT, then the condition SALARY > 1,000,000 would be illegal, because SALARY could not contain a value enabling the
condition to be true. Similarly, you cannot compare a field of data type INTEGER to an expression whose value is not within the limits for
values storable in INTEGER fields.
You cannot compare a PIC field formatted without a negative sign to an expression whose value is negative. For example, if TOTAL were
a PIC field without a sign, you could not use the condition P < 0, because it would necessarily be false.
You cannot compare a character constant to a character field that it doesn't fit into. For example, if MONTH were CHAR (3), then the
expression X = "JULY" would be invalid. You cannot compare wildcards or ranges.

Functions

A function accepts one or more arguments, performs an action on them, and returns a value based on the action. A function is considered an
expression because it evaluates to a single value. For all functions, a space is optional between a function's name and any parentheses that
enclose its arguments.

Function Syntax

function:

 numeric_conversion_function

 mathematical_function

 date_time_function

 character_function

 error_handling_function

 support_function

This section includes information about the following functions:

Numeric Conversion Functions
Mathematical Functions
Date, Time and Timestamp Functions
Character String Functions
Double-Byte Character Set Functions
Dynamically-Set View Functions in Java
Error-Handling Functions
Support Functions

For language and release-version specific considerations on functions, refer to .Platform Support and Target Language Specifics

Numeric Conversion Functions

The numeric conversion functions INT and DECIMAL convert character strings to numeric (integer or decimal) values.

The difference between the INT function and the DECIMAL function is the return type. The INT function returns INTEGER; the DECIMAL function

returns DEC of appropriate length and scale. The result of the INT function must be an integer not exceeding 2 – 1, otherwise the result is31

unpredictable. The result of the DECIMAL function must fit into the DEC Rules data type. For restrictions, see .Restrictions on Features

Numeric Conversion Function Syntax

numeric_conversion_function:

 num_conv_func_name ‘(‘ character_data_item [, format_string] ‘)’

num_conv_func_name:

 one of INT DECIMAL

See the following topics for more information and examples:

INT and DECIMAL Functions with One Parameter
INT and DECIMAL Functions with Two Parameters
Numeric Conversion Functions: Troubleshooting

INT and DECIMAL Functions with One Parameter

A character string can contain some symbols for readability. The character string that is to be converted to a numeric value can contain the
following symbols besides digits (0-9):

leading and trailing spaces, which are ignored.
plus and minus sign at the beginning can optionally be followed by spaces before the first digit.
any number of locale-specific thousand separators in any position inside the number, which are ignored.
one locale-specific decimal separator, for DECIMAL function only.
minus sign at the end of the number itself, which makes this number negative as well as the leading minus sign; spaces before this minus
sign are not allowed.
one currency symbol in any position, which is ignored.

If the input string is empty (contains spaces only) or does not comply with the format described above, integer zero is returned.

Examples: INT and DECIMAL functions with one parameter

DCL
 I INTEGER;
 D DEC(15, 5);
ENDDCL

MAP INT("123") TO I // I=123
MAP INT("$123,456") TO I // I=123456
MAP INT(" $123,456- ") TO I // I=-123456
MAP INT(" +$123,456") TO I // I=123456
MAP INT("$123,456$") TO I // I = 0 because of two currency symbols
MAP INT("-123-456") TO I // I = 0 because of two minus signs
MAP INT("123456 -") TO I // I = 0 because of space after digit but before minus sign
MAP INT("123 credit") TO I // I = 0 because of invalid characters in the input string
SET I:= INT("123.12") // I = 0 because of decimal separator
MAP DECIMAL("123.4-") TO D // D=-123.4
MAP DECIMAL("+123.4$") TO D // D=123.4
MAP DECIMAL("123,456,7") TO D // D=1234567

INT and DECIMAL Functions with Two Parameters

When supplying the second parameter, , follow the format string tokens as described in the table below.format_string

Format string tokens

Symbol Description (what can or must appear in corresponding position of source string)

space Leading and trailing spaces are ignored; other spaces are considered "other symbols" (see).other symbols

9 A digit in corresponding position. No spaces or other symbols are allowed between the first digit and the last digit except decimal
and thousand separators. There must be one or more digits. The total number of 9s determines the maximum length of the result.
Leading zeroes and trailing zeroes in fraction part in the source string are ignored.

,
(comma)

Country-specific thousand separator. It can be placed anywhere between the first digit and the last digit. It is ignored both in the
source and the format string, thus has no effect at all.

'V' or 'v'
or '.'
(dot)

Country-specific decimal separator. It an be placed anywhere between the first digit and the last digit. Number of 9s after this token
determines the fraction of the result. Only one decimal separator is allowed.

'CR' or
'cr' or
'DB' or
'db'

If the corresponding token is found at the corresponding position in the source string, then the result is negative regardless of a sign
in the input string. It can be in any position before the first digit or after the last digit. Only one of these tokens can appear in the
format string and only once.
If the corresponding token is not found at the corresponding position in the source string, then it does not affect the result.

'+' or '-'
or 'S' or
's'

Permits sign to appear in the source string and specifies its relative position regarding other format tokens. It can be in any position
before the first digit or after the last digit. Only one of the tokens mentioned can appear in the format string and only once.

other
symbols

It can be in any position before the first digit and after the last digit. Source string must have the same symbols at the same positions
(not counting leading spaces).

This "other symbols" cannot have any of the format tokens as their part. For example, a source string "1234 credit"
and a format "9999 credit" results in -1234, because of the token 'cr', which is negative and might be unexpected.

The actual length and scale of the returned result are determined by the input string contents rather than the format string specifications. The
format string restricts length and scale of the returned value but does not specify the exact length and scale. Both INT function and DECIMAL
function accept the same input and format strings; however, the fraction part is discarded for INT function.

Country-specific settings are used in Java and C only.

List of Error Situations and Warnings

According to the format string specifications, the list of is the following:error situations

Any format symbol, except 9 . V v . , between the first and the last digit symbol.
More than one decimal separator.
More than one sign symbol.
More than one Credit/Debit symbol.
More than one currency symbol.
Wrong position of comma (used after decimal separator).

Warnings will be issued in the following situations:

Format string is empty.
Empty whole part.
No digit symbols found.
No digit signs found in a format string.

Example: INT and DECIMAL functions with two parameters

The following table describes the sample results when INT and DECIMAL functions are used with the format string (the second parameter).

DCL
 I INTEGER;
 D DEC(15, 5);
ENDDCL

MAP INT ("source_string", "format_string") TO I
MAP DECIMAL ("source_string", "format_string") TO D

Sample results of INT and DECIMAL functions with two parameters

Source
String

Format
String

Result Comments

" 123 " "999" 123 Leading and trailing spaces are ignored.

"12 3" "999" or
"99 9"

0 Spaces inside the number are not allowed.

"123,000" "9,999,999" 123000 Thousand separators are ignored.

"123.456" " 999v99" 123.45 Fraction part that does not fit into format is discarded.

"123.456" "99.99" 0 Integer part is too large to fit into format.

" (
123.4-)"

"(
999v99s)"

-123.4

"(123.4)" "(s999v99)" 0 The source string does not comply with the format string because of spaces after the opening bracket.

"123" "s999" or
"999s"

123 It is not necessary for a sign to be present in the source string.

"-123" "999s" 0 Sign in the source string is at the beginning, but the format string expects it at the end.

"-123cr"
"123cr"
"0cr"

"-999cr"
"999cr"
"999cr"

-123
-123
0

If 'cr' is specified, the return value is always negative (unless it is zero).

"0123" "9999" 123 The return type becomes DEC(3,0) (size of DEC determined by the value).

""
"123"

"-999.9"
""

0
0

Empty string implies zero result regardless of the format string, and empty format string implies zero result
regardless of the source string.

"123
dollars"

"999
dollars"

0 's' in format string implies sign, but there is no sign at the corresponding position in the input string, and 's'
is skipped after this check. But this leaves 's' in the input string unmatched.

"123c" "999crc" 123 'cr' in the format string is skipped and then 'c' matches the corresponding symbol in the input string.

Numeric Conversion Functions: Troubleshooting

The following table describes possible errors and descriptions associated with INT and DECIMAL functions:

Error situations and handling

Error Description Error Handling and Returned Result

Input string contains more than 31 digits, but less
or equal to SIZE_OF_DEC

If the integer part is longer than 31 digits, integer zero is returned.
If the integer part length is not longer than 31 digits, but the total length exceeds 31, all
digits in the fraction part that do not fit into 31 are ignored.

Either format or input string length exceeds
SIZE_OF_DEC

Integer zero is returned.
SIZE_OF_DEC is as follows:

C: 62
ClassicCOBOL: 60
OpenCOBOL: 32
Java: 64

Any error in format string (for example, more than
one decimal separator)

Integer zero is returned.

One or more input string symbols do not match
corresponding format string symbol

Integer zero is returned.

Format string integer part is less than source string
integer part (999.9 and 1234.5)

Integer zero is returned.

Format string fraction part is less than source string
fraction part (999.9 and 123.45)

Digits that do not fit into format string are discarded, resulting 123.4.

Mathematical Functions

A mathematical function returns a value by manipulating the first parameter using the value specified in the second parameter.

Mathematical Function Syntax

mathematical_function:

 math_func_for_numeric_expr

 math_func_for_var_data_item

math_func_for_numeric_expr:

 math_func_name1 ‘(‘ numeric_expression [, numeric_expression] ‘)’

math_func_name1:

 one of CEIL FLOOR ROUND TRUNC

math_func_for_var_data_item:

 math_func_name2 ‘(‘ variable_data_item [, numeric_expression] ‘)’

math_func_name2:

 one of INCR DECR

where:

numeric_expression — see .Numeric Expressions
variable_data_item is a variable data item of any numeric type.

When using CEIL, FLOOR, ROUND and TRUNC, the first expression is the value to be modified. The second expression specifies the significant
number of digits to which the function applies — a positive value referring to digits to the right of the decimal point; zero referring to the digit to the
immediate left of the decimal point; and a negative value referring to digits further to the left of the decimal point. For instance, a second
expression of 2 refers to the hundredths place, and a second expression of -2 refers to the hundreds column to the left of the decimal point. An
omitted second expression is the equivalent of 0 and applies the function to the nearest integer value. The data type of the returned value for any
of these functions is DEC.

INCR and DECR modify their arguments, but the other mathematical functions do not. CEIL, FLOOR, ROUND and TRUNC only return a value
calculated based on the arguments.

See the following for more information about each of the mathematical functions and examples:

CEIL
FLOOR
ROUND
TRUNC
INCR
DECR

CEIL

The CEIL function, which is short for ceiling, returns the next number greater than the first expression to the significant number of digits indicated
by the second expression.

CEIL Examples

MAP CEIL (1234.5678, 2) TO X *> sets X to 1234.57 <*
MAP CEIL (1234.5678, 1) TO X *> sets X to 1234.6 <*
MAP CEIL (1234.5678) TO X *> sets X to 1235 <*
MAP CEIL (1234.5678, -1) TO X *> sets X to 1240 <*
MAP CEIL (1234.5678, -2) TO X *> sets X to 1300 <*
MAP CEIL (-1234.5678, 1) TO X *> sets X to -1234.5 <*
MAP CEIL (-1234.5678) TO X *> sets X to -1234 <*
MAP CEIL (-1234.5678, -1) TO X *> sets X to -1230 <*

FLOOR

This function returns the next number less than the first expression to the significant number of digits indicated by the second expression.

FLOOR Examples

MAP FLOOR (1234.5678, 2) TO X *> sets X to 1234.56 <*
MAP FLOOR (1234.5678, 1) TO X *> sets X to 1234.5 <*
MAP FLOOR (1234.5678) TO X *> sets X to 1234 <*
MAP FLOOR (1234.5678, -1) TO X *> sets X to 1230 <*
MAP FLOOR (1234.5678, -2) TO X *> sets X to 1200 <*
MAP FLOOR (-1234.5678, 1) TO X *> sets X to -1234.6 <*
MAP FLOOR (-1234.5678) TO X *> sets X to -1235 <*
MAP FLOOR (-1234.5678, -1) TO X *> sets X to -1240 <*

ROUND

The ROUND function returns the number closest to the first expression to the significant number of digits indicated by the second expression. It
sets any rounded digits to zero. The ROUND function observes the usual rounding conventions (0 – 4 for rounding down, 5 – 9 for rounding up).
The second expression must always be greater than or equal to -10 or less than or equal to 10 (-10 x 10).

ROUND Examples

MAP ROUND (1234.5678, 2) TO X *> sets X to 1234.57 <*
MAP ROUND (1234.5678, 1) TO X *> sets X to 1234.6 <*
MAP ROUND (1234.5678) TO X *> sets X to 1235 <*
MAP ROUND (1234.5678, -1) TO X *> sets X to 1230 <*
MAP ROUND (1234.5678, -2) TO X *> sets X to 1200 <*
MAP ROUND (-1234.5678, 1) TO X *> sets X to -1234.6 <*
MAP ROUND (-1234.5678) TO X *> sets X to -1235 <*
MAP ROUND (-1234.5678, -1) TO X *> sets X to -1230 <*

TRUNC

The TRUNC function, which is short for truncate, returns a number that is the first expression with any digits to the right of the indicated significant

digit set to zero. It removes a specified number of digits from the first expression.

TRUNC Examples

MAP TRUNC (1234.5678, 2) TO X *> sets X to 1234.56 <*
MAP TRUNC (1234.5678, 1) TO X *> sets X to 1234.5 <*
MAP TRUNC (1234.5678) TO X *> sets X to 1234 <*
MAP TRUNC (1234.5678, -1) TO X *> sets X to 1230 <*
MAP TRUNC (1234.5678, -2) TO X *> sets X to 1200 <*
MAP TRUNC (-1234.5678, 1) TO X *> sets X to -1234.5 <*
MAP TRUNC (-1234.5678) TO X *> sets X to -1234 <*
MAP TRUNC (-1234.5678, -1) TO X *> sets X to -1230 <*

INCR

The INCR function, which is short for INCRement, adds its second parameter to its first parameter and returns the modified first parameter. If the
second parameter is omitted, INCR adds 1 to the first parameter and returns the modified first parameter. This function can be used in an
expression and as a statement.

Because the INCR function modifies its left operand and the order of calculation is different on different platforms, the same expression might give
different results on different platforms. See and for examples. Use this function inINCR and DECR in Java INCR and DECR in OpenCOBOL
expressions with caution.

If the type of the second parameter differs from the type of the variable (the first parameter), then the same conversions apply
as for "MAP param1 + param2 TO param1", where param1 and param2 are the first and the second parameters of the INCR
function respectively.

INCR Examples

MAP INCR(1)+1 TO I *> Wrong - first parameter must be a variable <*

MAP INCR(I+1) TO I *> Wrong - first parameter must be a variable <*

MAP 1 TO I
MAP INCR(I) TO J *> sets I and J to 2 <*
MAP INCR(I,2) TO J *> sets I and J to 4 <*
INCR(I,J) *> sets I to 8, J is left unchanged <*
INCR(I,J+1) *> sets I to 13, J is left unchanged <*

MAP 1 TO I,J
MAP J+INCR(I) TO J *> sets I to 2 and J to 3 <*

DECR

The DECR function, which is short for DECRement, subtracts its second parameter from its first parameter and returns the modified first
parameter. If the second parameter is omitted, DECR subtracts 1 from the first parameter and returns the modified first parameter. This function
can be used in an expression and as a statement.

Because the DECR function modifies its left operand and the order of calculation is different on different platforms, the same expression might
give different results on different platforms. See and for examples. Use this function inINCR and DECR in Java INCR and DECR in OpenCOBOL
expressions with caution.

If the type of the second parameter differs from the type of the variable (the first parameter), then the same conversions apply
as for "MAP param1 - param2 TO param1", where param1 and param2 are the first and the second parameters of the DECR
function respectively.

DECR Examples

1.
2.

MAP DECR(1)+1 TO I *> Wrong - first parameter must be a variable <*

MAP DECR(I+1) TO I *> Wrong - first parameter must be a variable <*

MAP 13 TO I
MAP DECR(I) TO J *> sets I and J to 12 <*
MAP DECR(I,2) TO J *> sets I and J to 10 <*
DECR(I,J) *> sets I to 0, J is left unchanged <*
DECR(I,J+1) *> sets I to -11, J is left unchanged <*

MAP 1 TO I,J
MAP J+DECR(I) TO J *> sets I to 0 and J to 1 <*

C generation restrictions

Semantic of arithmetic operation calculation and passing parameters to functions is platform dependent in Rules Language.

You should be very careful when using:

expressions with side effect in order to pass parameters to any function
expressions with side effect in complex expressions

There are two types of side effect expressions in Rules Language:

Local procedure that changes global data of a rule – see .Example 1
INCR and standard functions of Rules Language.DECR

Example 1

dcl
 i integer;
 j integer;
enddcl

proc func_with_side_effect(arg integer) : integer
 map arg to i
 proc return i
endproc

map 0 to i
map i + func_with_side_effect(1) to j

Since a function with side effect is used in the same expression with data that this function affects, the result of mighti + func_with_side_effect(1)
not be the same for all generation types. In this case, may have value or .j 1 2

Workaround

Try not to use a function that changes some global data, especially when global data itself is the range of one expression.

The code shown in and gives the same result for all platforms (use one that is correct for your application):Example 2 Example 3

Example 2

map 0 to i
map func_with_side_effect(1) to j
map i + j to j
// (j = 2)

or

map 0 to i
map i to j
map func_with_side_effect(1) + j to j
// (j = 1)

Example 3

dcl
 i integer;
 j integer;
enddcl

map 0 to i
map decr(i) + incr(i) to j

// functions with side effect ICNR and DECR operate with the same data. It is not guarantied that the
result is the same for different platforms.

Workaround

Try to use INCR and DECR functions as standalone statements where it is possible.

When the result of INCR or DECR is used in an expression, make sure that its operand is not used anywhere else in that expression. Example 4
illustrates the correct code:

Example 4

map incr(i) + incr(j) to j

// i and j are used once. It is correct.

It is also not recommended to pass expressions with side effect (INCR, DECR or a local procedure that changes global data) to the procedure
parameters (see).Example 5

Example 5

map 0 to i
map some_prec(i, incr(i))

//actual parameters passed to the procedure can be (1, 1) or (0, 1), depending on platform specific
parameter passing rules.

Workaround

It is not recommended to use a function that changes some global data and global data itself in ranges on one local procedure call. See Example
 for a correct code sample:6

Example 6

map 0 to i
map i to temp
map some_prec(temp, incr(i))

or

map 0 to i
map incr(i) to temp
map some_prec(i, temp)

//depending on the application logic.

Date, Time and Timestamp Functions

Use a DATE, TIME and TIMESTAMP function to obtain the current date, time and timestamp, to format your data, or to convert a field from a
date, time or timestamp data type to another data type.

The system date, time, and timestamp are unique to each workstation. You (or your system administrator) must synchronize your workstations if
you want the values to be consistent. Alternatively, you can run any rules that call for a date, time, or timestamp on the host.

Date, Time and Timestamp Functions Syntax

date_time_function:

 date_time_timestamp_functions_without_parameters

 date_function

 time_function

 timestamp_function

 integer_conversion_function

 character_conversion_function

 TIMESTAMP ‘(‘ , , ‘)’date_field time_field fraction

date_time_timestamp_functions_without_parameters:

 one of DATE TIME TIMESTAMP

date_function:

 date_func_with_one_parameter

 date_func_with_two_parameters

date_func_with_one_parameter

 date_func_name1 ‘(‘ ‘)’date_field

date_func_name1:

 one of DAY MONTH YEAR DAY_OF_YEAR DAY_OF_WEEK CHAR INT NEW_TO_OLD_DATE ISLEAPYEAR

date_func_with_two_parameters:

 CHAR ‘(‘ , ‘)’date_field format_string

time_function:

 time_func_with_one_parameter

 time_func_with_two_parameters

time_func_with_one_parameter:

 time_func_name1 ‘(‘ ‘)’time_field

time_func_name1:

 one of SECONDS MILSECS MINUTES HOURS SECONDS_OF_DAY MINUTES_OF_DAY CHAR INT NEW_TO_OLD_TIME

time_func_with_two_parameters:

 CHAR ‘(‘ , ‘)’time_field format_string

timestamp_function:

 timestamp_func_with_one_parameter

 timestamp_func_with_two_parameters

timestamp_func_with_one_parameter

 timestamp_func_name1 ‘(‘ ‘)’timestamp_field

timestamp_func_name1:

 one of DATE TIME FRACTION CHAR

timestamp_func_with_two_parameters:

 CHAR ‘(‘ , ‘)’timestamp_field format_string

integer_conversion_function:

 integer_conversion_func_name1 ‘(‘ ‘)’integer_field

integer_conversion_func_name1:

 one of DATE TIME TIMESTAMP OLD_TO_NEW_DATE OLD_TO_NEW_TIME

character_conversion_function:

 character_conversion_func_name1 ‘(‘ character_expression [,] ‘)’format_string

character_conversion_func_name1:

 one of DATE TIME TIMESTAMP

where:

character_expression — see .Character Expressions
date_field — see .Date and Time Data Types
time_field — see .Date and Time Data Types
integer_field — see .Numeric Data Types
format_string — see .Format String
timestamp_field — see .Date and Time Data Types

See these related topics for detailed information:

Date and Time Function Definitions
Format String
Common Separators
Date Format String
Time Format String
Timestamp Format String
Input String Restrictions
Sample Date, Time and Timestamp Functions

Date and Time Function Definitions

The following table describes the Date and Time functions:

Date and Time Functions

Function Name Determines... Returns...

DAY The date that the value in the specified date field
represents.

The day of the month for that date in a SMALLINT field.

MONTH The date that the value in the specified date field
represents.

The month of the year for that date in a SMALLINT field.

YEAR The date that the value in the specified date field
represents.

The year for that date in a SMALLINT or INTEGER field.

DAY_OF_YEAR The date that he value in the specified date field
represents.

The Julian day of the year for that date in a SMALLINT field.

DAY_OF_WEEK The date that the value in the specified date field
represents.

The day of the week for that date in a SMALLINT field.

SECONDS The date that the time in the specified date field
represents.

The number of seconds past the minute for that time in a
SMALLINT field.

MILSECS The time that the value in the specified time field
represents.

The number of milliseconds past the second for that time in a
SMALLINT field.

MINUTES The time that the value in the specified time field
represents.

The number of minutes past the hour for that time in a
SMALLINT field.

HOURS The time the value in the specified time field
represents.

The number of hours since midnight for that time in a SMALLINT
field.

SECONDS_OF_DAY The time the value in the specified time field
represents.

The number of seconds since midnight for that time in an
INTEGER field.

MINUTES_OF_DAY The time the value in the specified time field
represents

The number of minutes since midnight for that time in a
SMALLINT field.

 DATE
 and

 TIME

You can use this
function with or without
an argument

Without an argument DATE returns the current system date in a DATE field, and TIME
returns the current system time in a TIME field.

 With a value in a TIMESTAMP field as an
argument, it determines the value that the date or
time portion of that field represents.

DATE returns the date in a DATE field, and TIME returns the
time in a TIME field.

With a character value as an argument, these
functions convert the character value to a date or
a time, in a DATE field.

It interprets the character value according to a
format string. See for tokens to useFormat String
in a format string.

If you omit the format string, the default format
strings are provided. See the following for
language specific considerations:

Date and Time Functions in C
Date and Time Functions in Java
Date and Time Functions in OpenCOBOL
DATE and TIME with DBCS and MIXED
argument is available in Java and
COBOL for DBCS enabled releases. See

. \\\\Restrictions on Features

DATE returns the date in a DATE field, and TIME returns the
time in a TIME field.

 With an integer value as an argument, these
functions convert the integer value to a date or a
time.

DATE returns the date in a DATE field, and TIME returns the
time in a TIME field.

 TIMESTAMP
You can use this
function with or without
arguments.

Without arguments A timestamp created from the current date and time in a
TIMESTAMP field.

 With arguments, it concatenates the three fields. The value in a TIMESTAMP field.

 With a character value as an argument, this
function converts the character value to a
timestamp, in a TIMESTAMP field.

It interprets the character value according to a
format string. See for tokens to useFormat String
in a format string.

TIMESTAMP is available in OpenCOBOL, Java,
and CSharp.

TIMESTAMP returns the timestamp in a TIMESTAMP field.

 With an integer value as an argument, this
function converts the integer value to a timestamp
value.

TIMESTAMP returns the timestamp in a TIMESTAMP field.

FRACTION The timestamp represented by the value in the
specified timestamp field.

See for moreFRACTION in OpenCOBOL
information.

The number of picoseconds for that timestamp in an INTEGER
field.
Maximum value is 999,999,999 which represents the fraction of a
millisecond.
The entire number of milliseconds is included into the TIME
component of the TIMESTAMP.

CHAR Converts a value in a DATE, TIME or
TIMESTAMP field to a value in a CHAR field. It
formats the character value according to the
system default unless you provide a format string.
See for tokens to use in a formatFormat String
string.

The TIMESTAMP argument of the function is
available only in OpenCOBOL.

The returned value is formatted as specified in the Data Types
data types.

INT Converts the time or date in the specified time or
date field.

If the DATE/TIME value is invalid, -1 is returned.
See forDate and Time Functions in OpenCOBOL
exception.

A value in an INTEGER field.

NEW_TO_OLD_DATE Converts the date in the specified DATE field. A value in an INTEGER field. The INTEGER field represents date
in the old format. Date in the old format is integer, where the 4
first decimal digits represent year, the other 2 digits stand for the
month, and the last 2 digits indicate the day.

NEW_TO_OLD_TIME Converts the time with the specified TIME field. A value in an INTEGER field. The format of the return value is
HHMMSS in all generations except ClassicCOBOL and
OpenCOBOL for which it depends on parameter
OLD_TO_NEW_TIME_MODE (see ClassicCOBOL specific
settings in CodegenParameters section and OpenCOBOL
specific settings in CodegenParameters section).

OLD_TO_NEW_DATE Converts the value in the specified INTEGER
field. The INTEGER field represents date in the
old format. Date in the old format is integer, where
the 4 first decimal digits represent year, the other
2 digits stand for the month, and the last 2 digits
indicate the day.

A value in a DATE field.

OLD_TO_NEW_TIME Converts the value with the specified INTEGER
field.

A value in a TIME field. This function accepts values in format
HHMMSS in all generations except ClassicCOBOL and
OpenCOBOL for which it depends on parameter
OLD_TO_NEW_TIME_MODE (see ClassicCOBOL specific
settings in CodegenParameters section and OpenCOBOL
specific settings in CodegenParameters section).

IsLeapYear With a DATE value as an argument, this function
determines whether the year is leap or not.

IsLeapYear returns a BOOLEAN value.

All the date and time functions that deal with years assume by default a twentieth (20th) century when they encounter two-digit
years in their parameter (so, by default, all two-digit years are preceded by 19). You can control this behavior by setting the
Hps.ini file [AE Runtime] section DEFAULT_CENTURY key. If this key is set to "2000", all date and time functions assume
twenty-first (21st) century when dealing with two-digit years (that is, all two-digit years are preceded by 20).

For DATE function, if both %c and %Y tokens are specified then the first two digits of the value of the year token are ignored.
For example, both DATE('09/12/20/1945','%m/%d/%c/%Y') and DATE('09/12/1945/20','%m/%d/%Y/%c') return the date in
which the value of the year is 2045.

The %f and %0f do not represent the entire FRACTION field. They represent milliseconds from theTimestamp format tokens
TIME field and microseconds from the FRACTION field of the TIMESTAMP value

Format String

For a DATE, TIME or TIMESTAMP function, use a format string to tell the system how to interpret a character value when converting it to a value
in a date or time field. For a CHAR function, use a format string to format a value in a date or time field when converting it to a character field. If
you do not provide a format string, the default system format as set during installation is used. See for the defaultDate and Time Data Types
format.

A format string consists of a series of tokens enclosed in single quotation marks. You can provide these tokens either as a literal or in a character
variable. Provide one token for each element of the date or time. For a date value, for instance, provide one token for day, one for month, and one
for year. Separate the tokens with the same separators used in the provided value. If you do not use a separator, any value stored in a date or
time field might be ambiguous.

Date Format Tokens, and list the tokens you can place into a format string. The separators areTime Format Tokens Timestamp Format Tokens
common to DATE, TIME and TIMESTAMP fields, but the other tokens are not.

The following limitations also apply to these functions:

The returned value depends on the current NLS settings.
A format string is not interpreted until runtime. This means that a format string is not validated during preparation and a statement with an
incorrect format string prepares successfully.
If a function cannot convert an input string, a numeric function returns a value of -1 and a character function returns the null string.
A format string is case-sensitive.
If only one argument is specified, that argument is considered to be the input string, not the format string. Therefore, if an incorrect
template is specified as the only argument – (for example, DATE ('m%f%) – the rule prepares successfully. This is because the format
string 'm%f%y' is a valid literal string. If you do not provide a format string, the template provided in the language configuration file is
used. See for more information.Date and Time Data Types
The %x time token is ignored with either %0t, %t or %H. The AM/PM flag can be specified in the following forms:

 AM/PM, A M/P M, A.M./P.M.

-1 is returned as a result where a format string contains two tokens in sequence that are not delimited by a separator and first of the
tokens is

%m, %d, %y, %c, %j for DATE function

or

%h, %t, %m, %s, %f for TIME function.

This occurs because these tokens accept an unlimited number of digits.

Any symbol can be used as a delimiter. For example:

Procedure

 returns 1:25 TIME ('1 25', '%h %m')

 returns -1 because 1998 is considered century and %c accepts an unlimited number ofDATE ('12.01.1998', '%d.%m.%c%0y')
digits, so there is no value for the year.

 is ambiguous and can be interpreted as 12:05 or 1:25 because the tokens are defined asTIME ('125', '%h%m')
%h = Hour, numeric (0..12)
%m = Minute, numeric (0..59)

This restriction currently applies only to DATE and TIME functions; it is not enforced for the CHAR function.

One token must be specified for year, month, and day in the DATE function and one token must be specified for hours and minutes in the
TIME function. Otherwise, -1 is returned as a result.

The exception to this rule appears when the Julian specifier is submitted. A Julian date value inherently specifies month and day,
therefore only a Year should be required.

If the century token is specified and the year token is not, the result is the first year of that century.

DATE ('12/1998', '%m/%Y') is invalid because the value for the day is missing.
TIME (':25', ':%m') is invalid because the value for the hour is missing.
TIME (":25", '%h:%m') is invalid because %h means there should be at least one digit in the hour value (0..12).
If more than one token of the same type is specified (%y and %Y or %D and %d) in the DATE or TIME functions, then an error with the
result of -1 is returned.
DATE ('12/23/01/1998', '%m/%d/%0d/%Y') is invalid because the value of the day token is ambiguous; it can be either 1 or 23
The AM/PM flag can be specified in the TIME function in the form:

 AM/PM, A M/P M, A.M./P.M.

For TIMESTAMP function, there are 3 different tokens for month: %o, %0o, and %O. These tokens replace %m, %0m, and %M, used for
minutes in a TIMESTAMP function.

See also .Date and Time Functions in OpenCOBOL

For locale-specific format tokens %M, %W, %D and %O, the length of the resulting string cannot be accurately predicted at the time of rule
preparation; so it is assumed to be 256 symbols. If the real length of a destination string is less than 256, a warning is generated that the result
may be truncated.

Common Separators

Use the separators in the following table for both date and time values.

Format String Separators

-

/

:

,

.

;

Date Format String

Use the tokens in the following table when formatting a DATE value.

Date Format Tokens

Token Description Example

%m Month, numeric (1...12) 2

%0m Month, numeric, with leading zero (01...12) 02

%M Month, word (January...December) February

%d Day, numeric (1...31) 28

%0d Day, numeric, with leading zero (01...31) 28

%D Day, ordinal (1st...31st) 28th

%j Day, Julian (1...366) 59 (Feb. 28)

%0j Day, Julian, with leading zero (01...366) 59 (Feb. 28)

%c Year, numeric, first 2 digits (century minus 1) 19

%0c Year, numeric, first 2 digits with leading zero (century minus 1) 19

%y Year, numeric, last 2 digits (00...99), with the first two digits implied to be 191 95

%0y Year, numeric, last 2 digits, with leading zero (00...99) 95

%Y Year, numeric, all 4 digits (0000...9999) 1995

%W Weekday, word (Sunday...Saturday) Tuesday

1. If the last digits of the year are in the following range: 00 - 09, the CHAR function truncates the leading zero in part of the result corresponding
to "%y" token. "%y" token in the format string of DATE function accepts any number of digits and uses the first two of them.

Time Format String

Use the tokens in the following table when formatting a TIME value.

Time Format Tokens

Token Description Example

%h Hour, numeric (1...12) 2

%0h Hour, numeric, with leading zero (01...12) 02

%t Hour, numeric (0...23) 14

%0t Hour, numeric, with leading zero (00...23) 14

%T Hour, word (one...twelve) Eleven

%H Hour, word (zero...twenty-three) Fourteen

%m Minute, numeric (0...59) 45

%0m Minute, numeric, with leading zero (00...59) 45

%M Minute, word, (zero...fifty-nine) Forty-five

%s Second, numeric (0...59) 9

%0s Second, numeric, with leading zero (00...59) 09

%S Second, word (zero...fifty-nine) Nine

%f Millisecond, numeric (0...999) 89

%0f Millisecond, numeric, with leading zeroes (000...999) 089

%x Ante (AM) or post (PM) meridiem PM

Timestamp Format String

Use this tokens in the following table when formatting a TIMESTAMP value.

Timestamp Format Tokens

Token Description Example

%o Month, numeric (1...12) 2

%0o Month, numeric, with leading zero (01...12) 02

%O Month, word (January...December) February

%d Day, numeric (1...31) 28

%0d Day, numeric, with leading zero (01...31) 28

%D Day, ordinal (1st...31st) 28th

%j Day, Julian (1...366) 59 (Feb. 28)

%0j Day, Julian, with leading zero (01...366) 59 (Feb. 28)

%c Year, numeric, first 2 digits (century minus 1) 19

%0c Year, numeric, first 2 digits with leading zero (century minus 1) 19

%y Year, numeric, last 2 digits (00...99), with the first two digits implied to be 192 95

%0y Year, numeric, last 2 digits, with leading zero (00...99) 95

%Y Year, numeric, all 4 digits (0000...9999) 1995

%W Weekday, word (Sunday...Saturday) Tuesday

%h Hour, numeric (1...12) 2

%0h Hour, numeric, with leading zero (01...12) 02

%t Hour, numeric (0...23) 14

%0t Hour, numeric, with leading zero (00...23) 14

%T Hour, word (one...twelve) Eleven

%H Hour, word (zero...twenty-three) Fourteen

%m Minute, numeric (0...59) 45

%0m Minute, numeric, with leading zero (00...59) 45

%M Minute, word, (zero...fifty-nine) Forty-five

%s Second, numeric (0...59) 9

%0s Second, numeric, with leading zero (00...59) 09

%S Second, word (zero...fifty-nine) Nine

%f Microsecond, numeric (0...999999) 8934

%0f Microsecond, numeric, with leading zeroes (000...999999) 008934

%x Ante (AM) or post (PM) meridiem PM

2. If the last digits of the year are in the following range: 00 - 09, the CHAR function truncates the leading zero in part of the result corresponding
to "%y" token. "%y" token in the format string of DATE function accepts any number of digits and uses the first two of them.

Input String Restrictions

Some restrictions apply for input strings when using the DATE, TIME and TIMESTAMP functions:

Input strings must comply to the format string.

 is invalid because the value of the day token is missing.DATE ('12/1998', '%m/%d/%Y')
 is invalid because the wrong delimiter is in the input string.DATE ('12/1 1998', '%m/%d/%Y')

 is invalid because the year should contain four digits. DATE ('12/1/98', '%m/%d/%Y')

All token values must be valid for corresponding format string elements. For more information, see , Date Format Tokens Time Format
 and . Tokens Timestamp Format Tokens

 is invalid because the value of the day token is invalid. DATE ('12/0/1998', '%m/%d/%Y')

If %W token is specified in the DATE function, weekday must correspond to the date being specified by all the other tokens. Otherwise -1
is returned as a result. For example:

 is invalid because December 28, 1961 was Thursday. DATE ('12/28/1961 Saturday', '%m/%d/%Y %W')

For TIMESTAMP function, there are 3 : %o, %0o, and %O. These tokens replace %m, %0m, and %M, used fordifferent tokens for month

minutes in a TIMESTAMP function.

Sample Date, Time and Timestamp Functions

The following Rules code illustrates the use of most of the date and time functions. It assumes a country specification for the United States and
assumes that the current system date and time are 7:26:03 P.M., January 26, 1995.

DCL
 DATE_VAR DATE;
 TIME_VAR TIME;
 TIMESTAMP_VAR TIMESTAMP;
 FRACTION_VAR INTEGER;
 INT_VAR INTEGER;
 SMALL_INT_VAR SMALLINT;
 CHAR_VAR CHAR (30);
ENDDCL

MAP DATE ('05/03/99', '%0m/%0d/%0y') TO DATE_VAR
MAP DATE ('5-3-99', '%m-%d-%y') TO DATE_VAR
MAP DATE ('Monday, May 3rd, 1999', '%W, %M %D, %Y') TO DATE_VAR
MAP DATE ('123;99', '%j;%y') TO DATE_VAR
> All of these are equivalent; they place the value <
*> May, 3 1999 into DATE_VAR. <*for

MAP TIME ('1:22:03 PM', '%h:%0m:%0s %x') TO TIME_VAR
MAP TIME ('13/22/3', '%t/%m/%s') TO TIME_VAR
MAP TIME ('One twenty-two three PM', '%T %M %S %x') TO TIME_VAR
*> All of these are equivalent; they place the value <*for
> 1:22:03 PM into TIME_VAR. <

MAP 0 TO FRACTION_VAR
> Places the value 0 into FRACTION_VAR. <

MAP TIMESTAMP (DATE_VAR, TIME_VAR, FRACTION_VAR) TO TIMESTAMP_VAR
*> Places the value May 3, 1999 into the date portion of <*for
*> the TIMESTAMP_VAR, the value 1:22:03 PM into the time <*for
> portion, and the value 0 into the fraction portion. <

MAP DATE TO DATE_VAR
*> Places the value the system date, January 26, 1995, <*for
> into DATE_VAR. <

MAP TIME TO TIME_VAR
*> Places the value the system time, 7:26:03 PM, <*for
> into TIME_VAR. <

MAP TIMESTAMP TO TIMESTAMP_VAR
*> Places the value system timestamp into TIMESTAMP_VAR. <*for

MAP CHAR (DATE_VAR, '%0m--%0d--%y') TO CHAR_VAR
> Places the value '01--26--95' into CHAR_VAR. <

MAP CHAR (DATE_VAR, '%M/%d, %c%y') TO CHAR_VAR
> Places the value 'January/26, 1995' into CHAR_VAR. <

MAP CHAR (TIME_VAR, '%H') TO CHAR_VAR
> Places the value 'Nineteen' into CHAR_VAR. <

MAP DAY (DATE_VAR) TO SMALL_INT_VAR
> Places the value 26 into SMALL_INT_VAR. <

MAP MONTH (DATE_VAR) TO SMALL_INT_VAR
> Places the value 1 into SMALL_INT_VAR. <

MAP YEAR (DATE_VAR) TO SMALL_INT_VAR
> Places the value 1995 into SMALL_INT_VAR. <

MAP DAY_OF_YEAR (DATE_VAR) TO SMALL_INT_VAR
> Places the value 26 into SMALL_INT_VAR. <

MAP SECONDS (TIME_VAR) TO INT_VAR
> Places the value 3 into INT_VAR. <

MAP MINUTES (TIME_VAR) TO INT_VAR
> Places the value 26 into INT_VAR. <

MAP HOURS (TIME_VAR) TO INT_VAR
> Places the value 19 into INT_VAR. <

MAP SECONDS_OF_DAY (TIME_VAR) TO INT_VAR
> Places the value 69963 into INT_VAR. <

MAP MINUTES_OF_DAY (TIME_VAR) TO INT_VAR
> Places the value 1166 into INT_VAR. <

MAP INT (DATE_VAR) TO INT_VAR
>Places 728685 (number of days since Jan 1, 0001) into INT_VAR<

The following Rules code illustrates the use of time, date and timestamp functions.

dcl
 ts TIMESTAMP;
 dt DATE;
 tm TIME;
 vc,vc1,vc2,vc3,vc4 VARCHAR(120);
enddcl

TRACE()"Start"

map TIME(,) to tm"11.11.11.111" "%0t.%0m.%0s.%f"
TRACE(tm)

map TIME(,) to tm"12.12.12.2" "%0t.%0m.%0s.%f"
TRACE(tm)

map TIME(,) to tm"13.13.13.0" "%0t.%0m.%0s.%f"
TRACE(tm)
TRACE('%f: ', CHAR(tm,))"%0t.%0m.%0s.%f"
TRACE('%0f: ', CHAR(tm,))"%0t.%0m.%0s.%0f"

map TIMESTAMP(,) to ts"00-00-0000.00.00.00.000000" "%0o-%0d-%Y.%0t.%0m.%0s.%f"
TRACE(ts)

map TIMESTAMP(,) to ts"00-00-0000.00.00.00.000000" "%0o-%0d-%Y.%0t.%0m.%0s.%0f"
TRACE(ts)

map TIMESTAMP() to ts"12-14-2005.12.13.14.445678"
TRACE(ts)

map TIMESTAMP(,) to ts"12-04-2005.12.23.45.550000" "%0o-%0d-%Y.%0t.%0m.%0s.%0f"
TRACE(ts)

map TIMESTAMP(,) to ts"12-04-2005.11 A M 23.45.111111" "%0o-%0d-%Y.%0h %x %0m.%0s.%f"
TRACE(ts)

map CHAR(ts, '%0o-%0d-%Y.%0h %x %0m.%0s.%f') to vc4
TRACE('%f: ', vc4)
TRACE('%f: ', CHAR(ts, '%0o-%0d-%Y.%0h %x %0m.%0s.%f'))
TRACE('%0f: ', CHAR(ts, '%0o-%0d-%Y.%0h %x %0m.%0s.%0f'))

map TIME(,) to tm"21.15.38" "%0m.%0t.%0s"
TRACE(tm)

map TIME(,) to tm"21.15.38" "%0m.%0t.%s"
TRACE(tm)

map timestamp ('03-20-1977.15.21.38.321678', '%0o-%0d-%Y.%0t.%0m.%0s.%0f') to ts
TRACE(ts)

map timestamp ('03-20-1977.15.21.38.3216', '%0o-%0d-%Y.%0t.%0m.%0s.%f') to ts
TRACE(ts)

map CHAR(TIME,) to vc"hours: %h minutes %m second: %s"
map CHAR(ts, "day: %d month: %o year: %Y hour: %h appm: %x minutes: %m sec: %s ms: %f Julian: %j

) to vc1century: %c"
map CHAR(tm,) to vc2" string: hour: %h, minutes: %m, seconds: %s, milliseconds: %f"long
map CHAR(ts,) to vc3"O: %O D: %D W: %W H: %H T: %T S: %S"

map CHAR(ts) to vc

TRACE(ts)
TRACE(vc)
//TRACE(vc1)
//TRACE(vc2)
//TRACE(vc3)

The result that the code returns is the following:

Start
11:11:11:111
12:12:12:002
13:13:13:000
%f: 13.13.13.0
%0f: 13.13.13.000

.* ******* ...

.* ******* ...
2005-12-14.12.13.14.445678
2005-12-04.12.23.45.550000
2005-12-04.11.23.45.111111
%f: 12-04-2005.11 AM 23.45.111111
%f: 12-04-2005.11 AM 23.45.111111
%0f: 12-04-2005.11 AM 23.45.111111
15:21:38:000
15:21:38:000
1977-03-20.15.21.38.321678
1977-03-20.15.21.38.003216
1977-03-20.15.21.38.003216
03-20-1977.15.21.38.3216

Character String Functions

Use these functions to modify a character string (any valid character value). All character functions return a character value except for STRLEN,
STRPOS, and VERIFY, which return an integer. In addition to the character string functions described in the syntax below, you can use the
concatenation function to combine two character strings (see for more information).++ (Concatenation)

Character String Function Syntax

character_string_function:

 character_string_function_with_one_parameter

 character_string_function_with_two_parameters

 substring_function

 conversion_of_numeric_data_to_char

character_string_function_with_one_parameter:

 char function_1_name ‘(‘ character_expression ‘)’

char_function_1_name:

 one of RTRIM UPPER LOWER STRLEN

character_string_function_with_two_parameters:

 char_function_2_name ‘(‘ character_expression, character_expression ‘)’

char_function_2_name:

 one of STRPOS VERIFY

substring_function:

 SUBSTR ‘(‘ character expression, num_expression [, num_expression] ’)’

conversion_of_numeric_data_to_char:

 CHAR ‘(‘ num_expression [, format_string] ’)’

format_string:

 character_expression

where:

character_expression — see .Character Expressions
num_expression — see .Numeric Expressions

++ (Concatenation)

This function returns the concatenation of the two input strings.

For example, concatenating a string having the value "Cash: " (with four trailing blanks) with a string having the value "dollars and cents" returns
a string having the value "Cash: dollars and cents".

MIXED and DBCS values can be operands of concatenation in Java, ClassicCOBOL, and OpenCOBOL. The following table shows type and size
of concatenation result for different platforms:

Mixed and DBCS Operands

Operands Result type and size

in Java

 Result type and size
in ClassicCOBOL and OpenCOBOL

CHAR(n) ++ CHAR(m) CHAR(n+m) CHAR(n+m)

DBCS(n) ++ DBCS(m) DBCS(n+m) DBCS(n+m)

DBCS(n) ++ CHAR(m) MIXED(n+m) MIXED(2*n+m+2)

DBCS(n) ++ MIXED(m) MIXED(n+m) MIXED(2*n+m+2)

MIXED(n) ++ MIXED(m) MIXED(n+m) MIXED(n+m)

MIXED(n) ++ CHAR(m) MIXED(n+m) MIXED(n+m)

where:

n and m are length of character value.

For more information about the concatenation of unsigned integer pictures, see the description.PIC

RTRIM

This function returns the input string with any trailing blanks removed.

For example, trimming a string having a value "odd integer " (five trailing blanks), returns a string having the value "odd integer" (no trailing
blanks).

On some platforms, this function can be applied to MIXED and DBCS strings. See . For DBCS strings, double-byteRestrictions on Features
trailing blanks are removed; for MIXED strings, both single-byte and double-byte trailing blanks are removed.

For specific considerations, refer to the following:

RTRIM in Java
RTRIM in ClassicCOBOL
RTRIM in OpenCOBOL

UPPER and LOWER

These functions return the input string with all alphabetic characters converted to uppercase or lowercase respectively. The resulting string
remains the same type, size, and length.

For example,

 returns UPPER ('12 E 49th Street') '12 E 49TH STREET'

 returns LOWER ('12 E 49th Street') '12 e 49th street'

On some platforms, these function can be applied to MIXED and DBCS strings. See .Restrictions on Features

Characters are converted to uppercase according to the specified codepage. For additional information, refer to .Supported Codepages

For specific considerations, refer to the following:

UPPER and LOWER in Java
UPPER and LOWER in ClassicCOBOL
UPPER and LOWER in OpenCOBOL

STRLEN

This function returns a positive integer that specifies the length of the input string, not counting any trailing blanks. If the input string is all blanks or
null, STRLEN returns a value of zero (0).

For example, using STRLEN on a string having a value "CASE Tools " (with six trailing blanks) returns the integer value 10, which is the last
non-blank position in the character string.

On some platforms this function can be applied to MIXED and DBCS strings. See . For DBCS and MIXED strings, itRestrictions on Features
returns its length in characters not bytes; this is true for both single-byte and double-byte.

For specific considerations, refer to the following:

STRLEN in Java
STRLEN in ClassicCOBOL
STRLEN in OpenCOBOL

STRPOS

The STRPOS function searches for a second string in the first string and returns the position from which the second string starts. If the second
string occurs more than once in the first string, the position of the first occurrence is returned. A zero is returned if the second string is not in the
first string. This function is case-sensitive.

For example, if the value of LONGSTRING is "A short string in the long string" and the value of SHORTSTRING is "short string", then

 STRPOS (LONGSTRING, SHORTSTRING)

returns the integer value 3, which is the position in LONGSTRING that contains the first character of SHORTSTRING.

On some platforms, this function can be applied to MIXED and DBCS strings. See . The position returned is the numberRestrictions on Features
of characters not bytes.

The following parameter types are accepted:

STRPOS(char, char)
STRPOS(dbcs, dbcs)

STRPOS(mixed, char)
STRPOS(mixed, mixed)
STRPOS(mixed, dbcs)

A zero is returned if the second string is an empty string. In particular, STRPOS(s1,s2) = 0 if both s1 and s2 are empty strings.

For specific considerations, refer to the following:

STRPOS in ClassicCOBOL
STRPOS in OpenCOBOL

Position returned by this function measured in characters, not bytes.

VERIFY

This function looks for the first occurrence of a character in the first string that does not appear in the second string. Position returned by this
function is measured in characters, not bytes. If all characters from the first string are found in the second string, then 0 is returned. The order of
characters in the second string and the number of times one of those characters appears in the first string is irrelevant. This function is
case-sensitive.

For example, if the variable NUMBERS_AND_SPACE is "0123456789 " (containing a space after the 9), then

 VERIFY ('8000 Main Street', NUMBERS_AND_SPACE)

returns the position of the first character in the indicated string that is not a number or space. In this case, the integer value 6 is returned, which is
the position of the M.

On some platforms, this function can be applied to MIXED and DBCS strings. See .Restrictions on Features

The following parameter types are accepted:

VERIFY(char, char)
VERIFY(dbcs, dbcs)
VERIFY(mixed, char)
VERIFY(mixed, mixed)
VERIFY(mixed, dbcs)

For specific considerations, refer to the following:

VERIFY in Java
VERIFY in ClassicCOBOL
VERIFY in OpenCOBOL

SUBSTR

The SUBSTR function returns a substring of the input string that begins at the position the first expression indicates for the length the second
expression indicates. That is, the first expression is a positive integer that specifies the substring's starting position in the character string; that
character becomes the first character of the resulting substring. The second expression is a positive integer that specifies the number of
characters desired in the resulting substring. If the second expression is omitted, all the characters are copied from the specified starting position
to the end of the string.

For example, if the value of LONGSTRING is "A substring in the long string", then

 SUBSTR (LONGSTRING,3,12)

returns a string having the value "substring in", which includes the twelve characters starting at the third position in LONGSTRING.

On some platforms, this function can be applied to MIXED and DBCS strings. See . In this case position and length mustRestrictions on Features
specified in characters not bytes.

For specific considerations, refer to the following:

SUBSTR in Java
SUBSTR in ClassicCOBOL

SUBSTR in OpenCOBOL

CHAR

The CHAR function supports conversion from numbers to character strings.

The following table outlines the characters that can appear in a format string, descriptions and examples of each.

CHAR Symbols and Descriptions

Symbol Description Examples Value Formatted
Value

9 Echoes any digit (0-9) 9999.99
999.99

123.4
1234.543

0123.40
1234.54

$ Echoes "$" 3 $9999 1234 $1234

Z or z Echoes any digit (1-9) and removes leading "0". Trailing zeros that
are within the format character range on the right side of the decimal
separator is not suppressed.

ZZZ99.ZZ 123.4 123.40

- Echoes a minus (-) for negative numbers.
Nothing is printed for positive numbers

-9999
-9999
9999-

-1234
1234
-1234

-1234
1234
1234-

+ Prints positive numbers with a plus (+) sign, minus (-) sign is printed
for negative numbers

+9999
+9999

1234
-1234

+1234
-1234

S or s Country specific for C runtime. Java supplies country-specific values.
They are used for Java applications.

S9999.99
C runtime: negative number format
is set to (1.1) – number enclosed in
parenthesis.
Java runtime:
Country Germany

-1234.12

1234.12

-1234.12

1234.12

(1234.12)
1234.12

-1234,12
1234,12

CR or
cr

Negative numbers get "CR" suffix.
Nothing is printed for non-negative numbers

9999CR
9999cr
9999cr
9999cr

-1234
-1234
1234
0

1234CR
1234cr
1234
0000

DB or
db

Negative numbers get "DB" suffix.
Nothing is printed for non-negative numbers

9999DB
9999db
9999db
9999db

-1234
-1234
1234
0

1234DB
1234db
1234
0000

* "Check protection" character to avoid leading spaces **99 123 *123

. Decimal separator (country settings are used, they are read from the
system for C and from Java settings for Java)

999.99 12.3 012.30

V or v Decimal separator
(country settings are used)

999V99 12.3 012.30

, Thousands separator
(country settings are used)

9,999v99 1234.5 1,234.50

Any
other
symbol

Echoes the symbol (~S999.99)
C runtime: negative number format
is set to (1.1) – number enclosed in
parenthesis.

-123.4 (~(123.40))

3. In Java, the currency symbol of current locale will be printed.

Most of the character function results do not have a predetermined length; instead, the AppBuilder environment determines the length at runtime.

The null string has a length of zero and is denoted with two single quotation marks without an intervening space ().''

Calling a character function does not change the value of the original character string.

For Java specific considerations, see .CHAR in Java

CHAR function with one argument

If no format string is provided to the CHAR function, it formats the number according to the following rules:

CHAR applied to INTEGER or SMALLINT data items returns string number representation prefixed with '-' sign, if the argument is
negative.
CHAR applied to DEC and PIC data items returns string number representation containing no leading or trailing zeros prefixed with '-'
sign, if the argument is negative. If the integer part of the number is zero, the result string starts with "0." or "-0." depending of the
argument sign.
If CHAR function argument contains invalid (overflowed) DEC or PIC data item, the result is empty string.
CHAR applied to zero argument of any numeric type returns "0" string.

Example: CHAR function with one argument

 returns CHAR(-11.7107) "-11.7107"
 returns CHAR(11.7107) "11.7107"

 returns CHAR(0.7107) "0.7107"
 returns CHAR(-0.7107) "-0.7107"

 returns CHAR(-1107) "-1107"
 returns CHAR(1107) "1107"

Format string validation

Format string validation occurs for numeric functions only, meaning that it should be applied to a string only in case where the first parameter is
numeric. The validation is performed when format strings are represented by string literals (not variables).

For the validation of a format string (when compiling) there are two possible choices, both involving the use of CHECK_DEC_FORMAT codegen
parameter (for functions such as CHAR, INT and DEC):

Preparation time validation
Runtime validation.

CHECK_DEC_FORMAT controls only the validation for numeric functions.

Preparation time validation examines the string for conformity with the new format string specification. The corresponding flag that
controls this validation is CHECK_DEC_FORMAT from [CodegenParameters] section of hps.ini.

When set to YES (default value), format string validation is performed.

When is performed, new runtime for CHAR function is used (i.e. new algorithm for dec to string conversion works).runtime validation
Runtime format string validation is controlled by CHECK_DEC_FORMAT flag from [AE Runtime] section of hps.ini that uses C runtime.
Runtime validation for Java is controlled by CHECK_DEC_FORMAT parameter from [NC] section of appbuilder.ini.

The default value is NO. When set to YES, the new algorithm for CHAR function is used.

CHAR Symbols and Descriptions when CHECK_DEC_FORMAT is set to YES illustrates the results returned by CHECK_DEC_FORMAT, when
set to YES. For the results returned by CHECK_DEC_FORMAT when set to NO, see .CHAR Symbols and Descriptions

CHAR Symbols and Descriptions when CHECK_DEC_FORMAT is set to YES

Symbol Description Example Result

9 Echoes a digit char(123,"9999") 0123

Z z Echoes a digit but removes leading zeros. These symbols can be used
only before first occurrence of symbol 9 and only before decimal
separator.

' ' is used in a string,' and 'z' 'Z' symbols are mutually exclusive. If '
then no 'z' or 'Z' symbol is allowed, and vice versa.

Note: While the AB2033 indicates that Zs afterRules Language Manual
the decimal position are accepted, they are technically invalid and thus
fail verification.

char(123,"zZ99")

char(0,"z9z")

char(0,"error:.zzz")

123

Error:
"Wrong
format string.

Z (z) is not
allowed after
9"

Error:
"Wrong
format string.

Z z * are not
allowed after
decimal
separator"

* "Check protection" symbol.

Echoes a digit, but replaces leading zeroes with '' characters. These
symbols can be used only before the first occurrence of symbol 9

' and 'z' 'Z'and only before decimal and thousands separators. '
symbols are mutually exclusive.

If '*' is used in a string, then no 'z' or 'Z' symbol is allowed, and vice
versa.
If '*' is used, then thousands separator is preserved in the output string.

char(123,"**99")

char(0,"z*9")

char(0,"error:.zz***")

DCL
 vch1 varchar (20);
 d1 dec (12,2);
ENDDCL

map 12345.67 to d1
map char(d1, "*.99")
to vch1
trace(vch1)
map char(d1,
"***,***,***,***.99")
to vch1
trace(vch1)

*123

Error: "Z (z)
and * are
alternative."

Error:
"Wrong
format string.

Z z and * are
not allowed
after decimal
separator"

This rule
output must
be:
12345.67
**,
**,*12,345.67

9 Z z * Digit symbols

No other format symbols except decimal separator and thousand
separators can be located between first digit symbol occurrence and
last one. Other symbols (non format) are allowed.

If none of the digit symbols appears in the format string it implies that 'Z'
symbol is located at the end of the format string and a warning is logged
by Codegen.

char(123,"99DB99")

char(8124284896, "phone:(999)
999-99-99")

char(8124284896, "phone:(999)
999_99_99")

char(1230771,"ID:zz9999_9999")

Error: Wrong
format token
"DB" in a
digit
sequence.

Error: '-' is a
format token.
It is not
allowed
between
signed digits.

phone:(812)
428_48_96

ID:
0123_0771

V v . Decimal separators

Country specific decimal separator. Only one decimal separator is
allowed per format string. A warning is generated in the case when
there is no digit symbol occurrence before decimal separator. In this
case it implies that the 'z' symbol is located just before decimal
separator.

char(123.1,"Price:9,999v99.")

char(123,"~~.999")

Error: Only
one decimal
separator is
allowed.

~~123.000

Warning: If
no digit
symbols are
found before
the decimal
separator, Z
is assumed.

S s Country specific sign. char(-123,"s999") -123 (United
States)

+ - Sign

For ' ' is printed for positive and '' format token, ' ' for negative. In case of '
' format token, nothing is printed for positive numbers and '-' is printed
for negative.

Char(+123,"+999")

char(-123,"999+")

char(+123,"999-")

char(-123,"-999")

+123

123-

123

-123

S s - + Signs

Only one sign is allowed per format string. Sign symbol can be located
in any position of a format string before the first digit symbol occurrence
or after the last one.

char(123,"State:-999")

Character S is interpreted as symbol sign:

char(-123,"s[999.999]")

Error: Only
one sign is
allowed per
format string.

-[123.000]

CR cr
DB db

Credit/Debit symbols

Any of these format tokens can be located in any position before the
first digit sign occurrence or after the last one. Negative numbers can
have these suffixes. Nothing is printed for non-negative value. Only one
of these tokens can appear in the format string.

char(123,"9999cr")

char(-123,"9999cr")

char(123,"9999db")

char(-123,"9999db")

char(-123,"cr9999db")

0123

0123 cr

0123

0123db

Error: Only
one
Credit/Debit
symbol is
allowed per
format string.

,
(comma)

Thousand separator

Country specific thousand separator. This symbol should be surrounded
by digit signs. It can be located only before decimal separator. The
country specific thousand separator is generated only when a digit
symbol exists to the left of this symbol.

Char(123456,"999,999,999")

char(123456,"ZZZ,ZZZ,999")

char(123456,"ZZZ,,ZZZ,,999")

char(123456,"ZZZ,ZZZ.99,99")

000,123,456

123,456

Error: Wrong
position of
comma

Error: Wrong
position of
comma

$ Country specific currency symbol

Country specific currency symbol is printed. Only one currency symbol
is allowed per format string. It can be located in any position before first
digit symbol or after last digit symbol.

char(1,",***999$CR")

char(1,"zzz")

***001$

Error: only
one currency
symbol is
allowed.

Other
Symbol

Symbols that are not described above.

Echoes the symbol.

Char(8124284896, "phone:(999)
999_99_99")

phone:(812)
428_48_96

1.

2.

If the number of digits in the integer part of formatted value exceeds the number of used before decimaldigit symbols
separator in the format string (i.e. some of the leading digits do not have associated any format symbol), then the first

 is used to display these leading digits. digit symbol

For the locales where negative numbers are enclosed in the parenthesis, the position of the "s" or "S" symbol denotes
the position of the left parenthesis. Right parenthesis is printed after the last or after the , ifdigit symbol currency symbol
this one immediately follows the last . digit symbol

 will produce for some European countries (Germany, forExample: CHAR (-13.45, "SZ99.99$") "(13.45)"
example).

Call of CHAR function with empty format string is equivalent to call of CHAR function with one argument.

 will issue the following result Example: CHAR(123,"") 123 Warning: Empty format string.

List of Error Situations and Warnings

According to the format string specifications, the list of is the following:error situations

Any format symbol, except 9 z Z * . V v . , between the first and the last digit symbol.
More than one decimal separator.
More than one sign symbol.
More than one Credit/Debit symbol.
More than one currency symbol.
Wrong position of comma (used after decimal separator).
'Z' 'z' '*' occurrence after '9' token.
'Z' 'z' '*' occurrence after decimal separator.
'Z' ('z') and '*' symbols cannot be used together.

Warnings will be issued in the following situations:

Format string is empty.
No digit symbols found in the integer. Empty whole part.
No digit signs found in a format string.
Format string does not contain any of the format symbols.

Format String Validation Error Handling

Some format strings might cause preparation errors because they are considered invalid by the new rules introduced for format string verification.
In order to make them preparable, you should set CHECK_DEC_FORMAT to NO.

However, for the successfully prepared and executed applications written prior to AppBuilder 2.1.3, using format strings considered invalid
according to the new rules, you should set CHECK_DEC_FORMAT to YES. If you receive an error message, do one of the following:

Set Codegen and Runtime flag to NO. In this case, the application executes as it was prior to AppBuilder 2.1.3, fully backward
compatible.
Try to fix the format string and continue to use preparation settings switched to YES. Please notice that in this particular case additional
testing might be required, if the format string is a variable. This means it cannot be verified at preparation time and any possible error will
be issued only at runtime.

Double-Byte Character Set Functions

The DBCS-enabled versions of AppBuilder also include three functions that cause AppBuilder to treat a character value of one data type as
though it were a character value of another data type:

CHAR () character_value

Treats the character value as a CHAR data item

MIXED () character_value

Treats the character value as a MIXED data item

DBCS () character_value

Treats the character value as a DBCS data item

You can have any character data types as arguments to these functions. For example, you can map the DBCS function applied to any string
literal containing a valid DBCS value into a field of type DBCS.

If you provide these functions with a string literal, they are verified during the preparation process. If you provide them with a variable, they are not
checked until execution. You will get an exception at runtime if a character string contains DBCS characters, which are not valid in runtime
codepage.

You can also use the other character functions with a field of a DBCS or MIXED data type. See for moreDBCS and MIXED Data Types
information about the use of these data types.

Validation and Implementation of Double-Byte Character Set

Conversion functions MIXED and DBCS perform validations of their arguments. They determine whether or not the argument is actually a valid
MIXED or DBCS value according to the specified codepage.

Refer to the topics below for more information:

Double-Byte Character Set Functions in Java
Double-Byte Character Set Functions in ClassicCOBOL and OpenCOBOL

Using CHAR, MIXED, and DBCS Data Types

When using variables and literals of CHAR, MIXED, and DBCS in the relational conditions, any combination of the operands in the relational
condition is allowed; that is, each operand can be a variable or a literal of any character type: MIXED, CHAR or VARCHAR; however, a DBCS
variable or literal can only be compared to another DBCS variable or literal. A warning is generated in the case of incompatible types of operands.
See also in the Conditions section.Comparing Character Values

When using variables and literals of CHAR, MIXED, and DBCS in a MAP statement, the following rules apply:

If the map destination is CHAR or VARCHAR variable, then the source can be CHAR, VARCHAR or MIXED variables or a literal of any
character type. MIXED and DBCS literals are implicitly converted to CHAR data type.
If the map destination is DBCS variable, then the source can be DBCS variable or DBCS literal.
If the map destination is MIXED variable, then the source can be a variable or literal of any character type.

Error-Handling Functions

Three functions can be used to analyze errors during program execution:

HPSError Function
HPSResetError Function
HPSErrorMessage Function

See for restrictions.Supported Functions by Release and Target Language

HPSError Function

The HPSError function returns an integer value. If the value is 0, then no error occurred. Otherwise, the value is the error code of the first error
that occurs. The error code is set for arithmetic operations (division by zero, numeric overflow, and so on), for method invocations of
AppBuilder-supplied window objects, for memory allocation problems, and for some other runtime errors.

To check for an error, do the following:

IF HPSError <> 0
 PERFORM ErrorHandler
ENDIF

If there are several errors, then the error code corresponds to the first error that occurred. Until the error code is reset with HPSResetError, this
function returns the same value. Refer to the for a list of the error codes returned by HPSError, along with theMessages Reference Guide
associated text strings returned by HPSErrorMessage.

HPSResetError Function

The HPSResetError function resets the error code to 0 after one or more error conditions have occurred.

HPSErrorMessage Function

The HPSErrorMessage function takes an error code as an argument and returns the text string containing a short description of the error
condition. If an error description is not found, then the string is empty.

Refer to the for a list of the error codes returned by HPSError, along with the associated text strings returned byMessages Reference Guide
HPSErrorMessage.

Support Functions

These miscellaneous functions support various features of AppBuilder.

Support Functions Syntax

support_function:

 support_function_without_parameters

 data_item_support_function

 set_support_function

 expression_support_function

 field_support_function

 view_support_function

support_function_without_parameters:

 one of HIGH_VALUES LOW_VALUES SET_ROLLBACK_ONLY GET_ROLLBACK_ONLY GETRULESHORTNAME GETRULELONGNAME
GETRULEIMPNAME

data_item_support_function:

 data_item_supp_func_name1 ‘(‘ data_item ‘)’

data_item_supp_func_name1:

 one of SIZEOF LOC

set_support_function:

 SETDISPLAY ‘(‘ set_name, expression [, language] ‘)’

 SETENCODING ‘(‘ set_name, character_exppression [, language] ‘)

expression_support_function:

 TRACE ‘(‘ (,)* ‘)’expression expression

field_support_function:

 field_supp_func_name1 ‘(‘ ‘)’field

field_supp_func_name1:

 one of ISNULL CLEARNULL

view_support_function:

 CLEARNULL ‘(‘ ‘)’view

where:

character_expression — see .Character Expressions
expression — see .Expression Syntax
view — see .View
data item — see .Data Items

See for language-specific considerations on some of the functions.Platform Support and Target Language Specifics

SIZEOF

This function takes any Rules Language data item as its argument and returns its length in bytes in a field of type INTEGER.

SIZEOF Built-in Function Values by Platform

The following table lists the sizes of each Rules Language data type.

Platform-specific Data Type Sizes

Data Type C C# Java ClassicCOBOL OpenCOBOL

BOOLEAN 2 2 2 2 2

SMALLINT 2 2 2 2 2

INTEGER 4 4 4 4 4

PIC (signed)4 Length+1 Length+1 Length+1 Length+1 Length+1

PIC (unsigned)4 Length Length Length Length Length

DEC (length, scale) Length+1 Length+1 Length+1 Length div 2 + 1 Length div 2 + 1

DATE 4 4 4 4 10

TIME 4 4 4 4 12

TIMESTAMP 12 12 12 12 26

TEXT 256 256 256 256 256

IMAGE 256 256 256 256 256

OBJECT - 4 4 - -

CHAR (length) Length Length Length Length Length

VARCHAR (length) Length+2 Length+2 Length+2 Length+2 Length+2

DBCS (length) Length*2 Length*2 Length*2 Length*2 Length*2

MIXED (length) Length Length Length Length Length

VIEW Sum of SIZEOF applied to each field and each sub-view field

4. Length is the number of digits in PIC's storage picture. For example, the length of PIC 'S999V99' is 5.

In C and ClassicCOBOL generations only view can be used as argument of SIZEOF function.

SIZEOF function in C and CLASSICCOBOL is supported only for views.

Example: Using SIZEOF Function

MAP SIZEOF (VIEW_1) TO SIZE_LONG OF HPS_READ_FILE_LOCATE_MODE_I

Using SIZEOF flag helps you to calculate the SizeOf function call as

sizeof (one_view_occurrence)*number_of_occurence.

If this flag is not used, then SizeOf is calculated as

sizeof (one_view_occurrence).

When applied to a view with more than one occurrence, the SIZEOF function produces different results in C than on other platforms, like in the
example below, where, for the view V:

DCL
 i integer;
 v view contains i;
 vv view contains v(10);
ENDDCL

the SIZEOF function returns 4 (size of the INTEGER field) in ClassicCobol, OpenCobol and in Java modes, while in C it returns 40, which is 4
multiplied by the number of occurrences, i.e. 10.

Without the SIZEOF flag, the SIZEOF of a view is NOT multiplied by the number of occurrences (in the previous example, the result will be 4 in C
mode too); with this flag specified, the result is always multiplied by the number of occurrences and is 40 for all the platforms.

LOC

The LOC function takes a view as an argument and returns its location in a CHAR (8) field. It is used in conjunction with the following system
components: HPS_READ_FILE_LOCATE_MODE, HPS_WRITE_FILE_LOCATE_MODE, and several HPS_BLOB components.

MAP LOC (VIEW_1) TO LOCATE_RECORD OF HPS_READ_FILE_LOCATE_MODE_I

In ClassicCOBOL, OpenCOBOL, and C, this function performs only object reference mapping, as shown in the example below:

dcl
 o object;
 i integer;
enddcl

map LOC(i) to o

LOC function accepts the parameter of any Rules Language type.

See the for more information.System Components Reference Guide

For Java specific considerations, see .LOC in Java

HIGH_VALUES

The HIGH_VALUES represents one or more characters that have the highest ordinal position in the collating sequence used and is useful for
initializing database fields or for comparisons. Although designed for the mainframe LOCATE I/O mode system components, you can use it in all
operating environments; however, you can map its value only to a field of type CHAR or VARCHAR.

Example: Using HIGH_VALUES Function

MAP HIGH_VALUES TO HI_CHAR_FIELD

On some platforms exact value could be used instead of HIGH_VALUES. For example, '0xff' literal could be assumed to have
the highest ordinal position for character data type. However, this makes code to be unportable to other platforms. Thus it is
highly recommended to use HIGH_VALUES instead of exact values literals.

For instance, the following code:

dcl
 x char(1);
enddcl
map HIGH_VALUES to x
if x <> "\xFF"
 trace("error")
endif

will be successful if prepared for OpenCOBOL but will fail for Java.

However, the following code:

if x <> HIGH_VLAUES
 trace("error")
endif

will work correctly on all platforms.

LOW_VALUES

The LOW_VALUES represents one or more characters that have the lowest ordinal position in the collating sequence used and is useful for
initializing database fields or for comparisons. Although designed for the mainframe LOCATE I/O mode system components, you can use it in all
operating environments; however, you can map its value only to a field of type CHAR or VARCHAR.

Example: Using LOW_VALUES Function

MAP LOW_VALUES TO LO_CHAR_FIELD

SETDISPLAY

The SETDISPLAY function supports the use of sets. Its first argument is the name of a Lookup Table set. Its second argument is the value to look
up in the set and must be of the correct type for that set. The last argument is needed only for an Multiple Language Support (MLS) application
and is the language entity to use for getting the representation of the encoding (the second argument). This argument defaults to the language
entity of the active process.

This function returns a value in a CHAR (80) field even if the SET is MIXED or DBCS. You can use the corresponding conversion function to treat
the returned value as a MIXED or DBCS value. If it does not find the encoding, it returns all spaces.

In Java, ClassicCOBOL, and OpenCOBOL, the lookup value can be MIXED or DBCS. Because this function looks for an identical value, MIXED
with different types of trailing spaces or shift characters sequences are considered non-equal, and SETDISPLAY returns all spaces.

For additional considerations, see .SETDISPLAY in ClassicCOBOL and OpenCOBOL

This function is supported on UNIX servers.not

Example: Using SETDISPLAY Function

MAP SETDISPLAY (STATES_IN_US, 1) TO STATE_NAME
MAP SETDISPLAY (STATES_IN_US, OHIO IN STATES_IN_US) TO STATE_NAME

Example - Using SETDISPLAY Function with MIXED and DBCS Sets

MAP SETDISPLAY (MIXED_SET, 1) TO CHAR_VAR
MAP MIXED(CHAR_VAR) TO MIXED_VAR
MAP SETDISPLAY (DBCS_SET, 1) TO DBCS_VAR
MAP DBCS(RTRIM(CHAR_VAR)) TO DBCS_VAR

SETENCODING

The SETENCODING function supports the use of sets. Its first argument is the name of a Lookup Table set. Its second argument is the
representation to look up in the set and can be any valid character value. In Java, ClassicCOBOL, and OpenCOBOL, the second argument can
be MIXED or DBCS also. The last argument is needed only for an Multiple Language Support (MLS) application and is the language entity used
for getting the display (the second argument). This argument defaults to the language entity of the active process.

SETENCODING returns a value of the same type and length as the set in the first argument. If that set is an INTEGER (31) set, the function
returns an INTEGER (31) value. If it does not find the display, it returns zero (0) for a numeric set and all spaces for a character set. In Java,
ClassicCOBOL, and OpenCOBOL, the representation value can be MIXED or DBCS. Since this function looks for an identical value, MIXED with
different types of trailing spaces or shift characters sequences are considered non-equal, and SETENCODING will not find the corresponding
encoding.

This function is supported on UNIX servers.not

Example: Using the SETENCODING Function

MAP SETENCODING (STATES_IN_US, 'OHIO') TO STATE_CODE
MAP SETENCODING (STATES_IN_US, STATE_NAME) TO STATE_CODE

TRACE

The TRACE function can be used to output the Rules Language data items to an application trace file. Fields, views, occurring views, and results
of any expressions can be printed to the application trace. If the view is output to trace, field names, along with their values are output as well. The
TRACE function has no return value and therefore, it cannot be used inside an expression.

The way each data type is printed with the TRACE statement depends on target language and might differ from one language to another. In other
words, a variable in C generation can produce different output than same variable having the same value in OpenCOBOL generation.

See also .TRACE in Java

Example: Using TRACE Function

DCL
 I INTEGER;
 V VIEW CONTAINS I;
ENDDCL
MAP 27 TO I
TRACE(I) *> Outputs "27" <*
TRACE(I+3) *> Outputs "30" <*
TRACE(V) *> Outputs "Field I: 27" <*

Example: Using TRACE Function with multiple arguments

DCL
 I INTEGER;
ENDDCL
MAP 27 TO I
TRACE(I, I+1) *> Outputs in Java generation "27 28", in other generations "2728" <*

The output in this example depends on the generation: in Java generation, a space between two arguments is printed; in other generations, there
is no space between arguments. That is in the example, the output in Java generation will be “27 28”, and the output in other generations will be
“2728”.

GETRULESHORTNAME, GETRULELONGNAME, GETRULEIMPNAME

In order to capture the implementation name of the rule you are executing and to store it in error details, you can use the following functions:
 – to get short name of the rule.getRuleShortName()
 – to get long name of the rule.getRuleLongName()
 – to get implementation name of the rule.getRuleImpName()

The corresponding macros are:
 – this macro is replaced by rule's long name.CG_RULE_SHORT_NAME
 – this macro is replaced by rule's long name.CG_RULE_LONG_NAME
 – this macro is replaced by rule's long name.CG_RULE_IMP_NAME

For details about the use of these predefined macros, see also .Using Name Macros

Declarations

The name and data type of a variable or a procedure must be declared before it can be used. Use a declarative statement (DCL) to declare a:

Local Variable Declaration
Local Procedure Declaration
Event Procedure Declaration

Declaration Syntax

declartion:

 DCL (declarations_list)* ENDDCL

declarations_list:

 one of local_variable_list local_procedure_list event_procedure_list

The following topics are also discussed in this chapter:

Using Entities with Equal Names
Choosing and Setting Signatures
Using System Identifiers
Controlling Compile Time Subscript

Local Variable Declaration

Use a DCL statement to declare a variable data item or view locally. A variable declared in a DCL statement is not contained in the repository, so
it is not available to any rules or components the declaring rule uses. For usage information, review the following sections:

Usage
Valid Data Types
Using LIKE Clause
Using VIEW CONTAINS Clause

Local Variable Syntax

local_variable_list:

 local_variable ; (local_variable ;)*

local_variable:

 (,)* item_name_data_typeitem_name item_name

 (,)* view_name_typeview_name view_name

item_name_data_type:

 data_type

 LIKE variable_data_item

view_name_type:

 LIKE view_name

 VIEW CONTAINS view_name_fields_and_views

view_name_fields_and_views:

 variable_data_item (, variable_data_item)*

 (,)*view_name view_name

where local_variable_list is:

where local_variable is:

where:

data_type — see .Data Types
variable_data_item — see .Variable Data Item

An item_name or a view_name cannot start with the underscore symbol (_). Variable qualification (both OF and dot
specification) cannot be used in LIKE clause.

Usage

Use a DCL statement at the beginning of a rule to declare variables local to the rule or inside a procedure to declare variables local to the
procedure.

If you use a DCL statement at the beginning of a rule, the name of a locally-declared variable must not duplicate the name of any other variable in
the data universe of the rule, either locally or in any subview. It also must not duplicate the class name used in the rule or the alias created with
PRAGMA CLASSIMPORT.

If you use a DCL statement inside a procedure, the variable is local to the procedure even if the same name occurs elsewhere in the rule. That is,
if a name is declared inside a procedure but also occurs outside the procedure, use of the name inside the procedure refers to the local variable
and not to the variable existing outside the procedure.

You can have zero, one, or many DCL statements in a rule or procedure, but they must precede all other statements in that rule or procedure.

The DCL statement sets aside a temporary area of memory storage for use only during the execution of the declaring rule. When a rule or
procedure is invoked, all locally declared fields are cleared (for example, character fields are set to the null string and numeric and date and time
fields are set to 0). The reasons you might want to declare a data item locally include:

Storing temporary data, such as during a swap procedure
Breaking up data (for example, if you need only part of an employee record (say, the employee number) from a record in a flat file)
Adjusting the size of a list box to reflect the number of records it contains

Valid Data Types

The following is a list of valid data_types that can be used in a variable declaration:

character_data_type
numeric_data_type
data_and_time_data_type
object_data_type
boolean_data_type
large_object_data_type

For a description of data_types, see Data Types

Using LIKE Clause

Use the LIKE keyword locally to define a field to be identical to another field in the data universe of the rule, or a view to be identical to another
view in the data universe of the rule. Any variable after LIKE must have been declared previously, either locally or in a subview in the rule
hierarchy, except the name of the new local variable.

If you declare a data item locally as being LIKE another, you can use the local data item exactly as you can use the original, but only within the
declaring rule. A view declared locally has the same subviews and fields as the original view. A view declared with a LIKE clause can be
subscripted so that it is multiple-occurring; a field cannot be subscripted.

Example: LIKE Keyword in DCL Statement

DCL
 COUNTER_1,COUNTER_2 SMALLINT;
 SUBTOTAL INTEGER;
 NAME_TEMP CHAR(30);
 ITEM_CODE VARCHAR (20);
 PRICE DEC (6,2);
 SHOW_PRICE PIC '9999V99';
 DATE_OF_PURCHASE DATE;
 TIME_OF_PURCHASE TIME;
 CUSTOMER_TEMP (20) LIKE NAME; *> NAME is a view declared in rule hierarchy <*
ENDDCL

This DCL statement creates nine local fields and one local view. Each field can be used in the rule code exactly as if it were a field entity of that
type in the data universe of the rule.

CUSTOMER_TEMP is declared LIKE NAME and is also declared as occurring 20 times. You can use it in the rule code exactly as if it were a
multiple-occurring view with the same subviews and fields as the NAME view. You do not have to qualify the view name to specify one instance of
NAME because you are referring to the single definition of the view in the repository.

If NAME is declared as a view or subview, then the code is syntactically correct. If NAME is a field, the preparation of the rule results in a syntax
error because CUSTOMER_TEMP, as shown above, is subscripted, and a field cannot be subscripted.

If NAME is redefined by an R_NAME view and some subview of NAME called SUB_NAME is redefined by R_SUB_NAME view, then subview of
CUSTOMER_TEMP called SUB_NAME is considered to be redefined by R_SUB_NAME view; however CUSTOMER_TEMP is not considered to
be redefined.

Using VIEW CONTAINS Clause

Use a VIEW CONTAINS clause to build a local view from lower-level views and fields. Building a local view with this clause is equivalent to
building a View Field or View View relationship in a repository. Unlike the name of the new local variable, any variable afterincludes includes
VIEW CONTAINS must have been declared previously, either locally or in a subview. Thus, local declaration of views is "bottom up" or "inside
out."

All the identifiers to the left of VIEW CONTAINS represent views, each of which relates to each of the field or subview entities to the right of VIEW
CONTAINS. Order is important when building a view locally, just as it is when building a view within the repository. The order in which the
elements appear indicates their position in the hierarchy of the view, with left most element being the highest in the hierarchy, down to the right
most, which is lowest. However, the order in which those fields and subviews were originally built does not matter as long as they exist before you
attempt to relate them to the higher-level view.

A VIEW CONTAINS clause has a parent view on the left and a child view or field on the right.

As discussed in , you can omit the names of some of the ancestral views of a field in a statement. However,Variable Data Item
you must always include the occurrence number of a multiple-occurring subview in a statement even if the view name does not
appear.

Local Procedure Declaration

Declaration of a local procedure in a DCL statement is useful if the procedure might be used before it is defined. For example, consider two
procedures that call each other: the first one calls the second, which is not defined, its definition located below the first procedure. This situation
can be resolved by declaring the second procedure in a DCL statement of the rule.

The declared procedure must be defined somewhere in the rule (where the procedure definition is allowed). See for theCommon Procedure
syntax diagram and description of a procedure.

Local Procedure Syntax

local_procedure_list:

 local_procedure ; (local_procedure ;)*

local_procedure:

 PROC [parameter_list] [: output_type]proc_name

parameter_list:

 '(' [parameter_name_type] (, [parameter_name_type])* ')'parameter_name parameter_name

parameter_name_type:

 data_type

 LIKE field_name

output_type:

 data_type

 LIKE variable_data_item

 LIKE view_name

where local_procedure_list is:

where local_procedure is:

where:

proc_name is the name of a procedure to be declared.
parameter_list is:

where:

data_type — see .Data Types

A proc_name or a parameter_name cannot start with the underscore symbol (_).
The output type can be any data type, except objects.
Alias declaration can never be used as a procedure formal parameter.
For platform specific information, see .Local Procedure Declaration in Java

Example: Declared Procedure

DCL
 > Procedures declaration <
 PROC1 PROC(I INTEGER);
 PROC2 PROC(I INTEGER) : INTEGER;
ENDDCL

PROC1(10)

> Procedures definition <
PROC PROC1(I INTEGER)
 DCL
 Result INTEGER;
 ENDDCL

 MAP PROC2(I) TO Result
 PRINT Result *> "100" is printed <*
ENDPROC

PROC PROC2(I INTEGER) : INTEGER
 PROC RETURN(I*I)
ENDPROC

Event Procedure Declaration

An event procedure is invoked when an event you have chosen to respond to is triggered for an object. For a list of available events, see the
.ObjectSpeak Reference Guide

Event Procedure Syntax

event_procedure_list:

 event_procedure ; (event_procedure ;)*

event_procedure:

 PROC FOR [LISTENER] event_name_typeproc_name event_name listener_name

event_name_type:

 OBJECT object_name

 TYPE ' 'class_identifier

 TYPE [OF]object_type subsystem

where event_procedure_list is:

where event_procedure is:

where:

proc_name is the name of a procedure to be declared.
event_name is the name of the declared object event.
listener_name is the name of the interface that implements event triggering (Java only).
object_name can of any of the following:

The system identifier (HPSID) of the object.
The alias of the object — see .Alias
A pointer to the object — see .Object Data Types

class_identifier is a string that identified the class. It might be CLSID or OLE objects or fully qualified class name for Java classes. The
identification string is considered case-sensitive.
object_type is the type of the object whose events the procedure receives — see .Object Types
subsystem is the group that the object belongs to. The following are supported:

GUI_KERNEL, the set of window controls supplied with AppBuilder.
JAVABEANS, for any Java class.

A proc_name cannot start with the underscore symbol (_).

Object Types

An object_name cannot be the same as an AppBuilder predefined object_type name. A full list of object_type names can be found in the
.ObjectSpeak Reference Guide

Usage

You must define an event procedure inside the rule that converses the window that contains the objects whose events the procedure responds to.
See .Event Handling Procedure

For more details about the automatic handler assignment, see the description.Event Handler Statement in Java

A declaration (DCL) statement is necessary to define an event procedure. Use a DCL statement to specify the same procedure for multiplenot
events, objects, or object types. For example, suppose the following procedure is defined in a rule:

PROC clickControl
 ...
ENDPROC

Using this procedure and the appropriate DCL statement, you can use the procedure for:

One Event Procedure for Multiple Events (for multiple events of the same object)
One Event Procedure for Multiple Objects
One Event Procedure for Multiple Object Types
LISTENER Clause (Java only)

One Event Procedure for Multiple Events

If you want the same procedure to handle the Click and DoubleClick events for the same object, include the following DCL statement at the
beginning of the rule that contains the procedure:

DCL
 clickControl PROC FOR Click OBJECT myListBox;
 clickControl PROC FOR DoubleClick OBJECT myListBox;
ENDDCL

One Event Procedure for Multiple Objects

If you want the same procedure to handle an event for multiple objects, include the following DCL statement at the beginning of the rule:

DCL
 clickControl PROC FOR Click OBJECT myListBox;
 clickControl PROC FOR Click OBJECT myPushButton;
 clickControl PROC FOR Click OBJECT myRadioButton;
ENDDCL

One Event Procedure for Multiple Object Types

If you want the same procedure to handle an event for multiple object types, include the following DCL statement:

DCL
 clickControl PROC FOR Click TYPE ListBox;
 clickControl PROC FOR Click TYPE PushButton;
 clickControl PROC FOR Click TYPE RadioButton;
ENDDCL

LISTENER Clause

The LISTENER clause is only available for Java. Use the LISTENER clause to avoid conflicting situations when an object has two events with the
same name.

If an object has no conflicting events, this clause can be omitted.

See also .Example: Java LISTENER Clause

Using Entities with Equal Names

It is possible to have several different entities with the same name in a rule scope; however, in some cases, one entity might another (makinghide
that entity unusable in a rule), and in other cases, even when names of entities are the same, it is clear from the syntax which of the two must be
used. For example, if there is a Procedure and a Field with the name "I", and there is a procedure call, it is clear that a Procedure must be used
instead of a Field, as shown in the .Example: Entities Using the Same Name

In general, if two entities have the same order of precedence, their names must not coincide. For example, if a Rule object and a Window object,
having the same order of precedence, have the same name, then the last one on the list becomes visible and the other becomes hidden.

If two entities have the same name and their order of precedence is not equal, the one that is higher in the order of precedence (that is, with
smaller order number - see) is selected and the other becomes inaccessible in the Rule; however, there are a number ofEntity Precedence
exceptions to this rule as listed below:

A Field can have the same name as a View if the Field is declared in the Rule hierarchy (not in the Rule code) and it is not a direct child
of the View.

A View and a Field can have the same name as a Set or Set Symbol, but only if it is declared in the Rule hierarchy. In this case, the Set
object created for the Set cannot be used in the Rule.
A Field and a View can have the same name as a Rule, but only if it is declared in the Rule hierarchy. In this case, the Rule object
created for the Rule cannot be used in the Rule.
A Set and Set Symbols can have the same name as a Rule. In this case, the Set object created for the Set cannot be used in the Rule.
A Set and Set Symbol can have the same name, but in this case the Set object created for the Set cannot be used in the Rule.
When the Window object, Rule object, System identifier (HPSID), MENUITEM or Set Object have the same name, then only the Window
object can be used in the Rule.

AppBuilder follows the order of precedence in the following table.

Entity Precedence

Order Entities

1 Fields, views, sets and set symbols

2 Procedures

3 Rules

4 Window object, Rule object, System identifier (HPSID), MENUITEM, Set Object

Example: Entities Using the Same Name

In this example, both the procedure and the field have the name "I".

DCL
 I, J INTEGER;
ENDDCL
PROC I : INTEGER
 > ...some code... <
ENDDPROC
MAP 1 TO I *> Variable <*
I *> Procedure (return value is lost) <*
MAP I TO J *> Variable (according to order of precedence) <*
PERFORM I *> Procedure (return value is lost) <*

Choosing and Setting Signatures

When choosing between a field and a procedure or between different procedures, the names and the signatures are compared to each other.

The signature of a procedure is its name and a list of parameters.
The signature of a field or view is its name, list of occurrence indices, and the qualification (of the view name).
The signature of a set symbol is its name and the qualification (in the set name).

Two signatures are equal if the names and the number of parameters are equal, the parameter types are compatible, and the qualifications are
the same.

The following table lists compatible types. Types listed on the same row are compatible.

List of Compatible Parameter Types

Parameter Types

INTEGER, SMALLINT

DEC, PIC

CHAR, VARCHAR, TEXT, IMAGE

DBCS

MIXED

DATE

TIME

TIMESTAMP

OBJECT

To distinguish between fields and set symbols with the same name, use a qualification. To distinguish between procedure, set symbol, field, or
view, use a unique parameter type for each.

Although you cannot declare a local variable with the same name as a set symbol, you can use a field with the same name as a
set symbol that exists in an external view created in a Hierarchy diagram.

Examples: Choosing and Setting Signatures

The following is an example of choosing and setting signatures:

DCL
 I INTEGER;
 V VIEW CONTAINS I;
 V1 VIEW CONTAINS V(10);
ENDDCL

PROC I(D DATE) *> This procedure is visible - it has a different
 * signature with variable I <*
 ...
ENDPROC

PROC V1(I INTEGER) *> This procedure is visible - as view V1
 * does not have subscripts it has a different
 * signature with this procedure <*
 ...
ENDPROC

PROC V1 : INTEGER *> This procedure conflicts with view V1 -
 * see examples below on how to use it <*
 ...
ENDPROC

PROC V1(D DEC(10,1)) : INTEGER
 ...
ENDPROC

PROC V1(D DEC(10,2)) *> This causes a compile error:
 * V1(DEC(10,1)) may not be redefined
 * for example, in procedure call V1(1.1)
 * it is impossible to distinguish
 * which one is meant <*
 ...
ENDPROC

PROC V1(SI SMALLINT) *> This causes a compile error:
 * V1(INTEGER) may not be redefined
 * for example, in procedure call V1(27)
 * it is impossible to distinguish
 * which one is meant <*
 ...
ENDPROC

PERFORM V1 *> Procedure V1 without parameters is called -
 * variable can not be used in PERFORM
 * clause <*
V1 *> Procedure V1 without parameters is called - variable can not occur
here <*
V1(0) *> V1(INTEGER) is called, because argument is integer <*
V1(0.0) *> V1(DEC) is called because argument is decimal <*
MAP V1 TO SomeVariable *> View V1 is mapped to SomeVariable,
 * according to order of precedence,
 * not return value of procedure V1 <*
MAP V1(1.1) TO SomeVariable *> Here the return value of V1(DEC)
 * is mapped to SomeVariable <*

Example - Ambiguity Error

In the following example, it is impossible to use the return value of procedure V1.

*> Hierarchy:
 Set K
 Value J
 Value L
 Value M
 View IO_VIEW
 Field M
<*
DCL
 J INTEGER; *> Incorrect - same name as set symbol <*
 I, K INTEGER;
 V1 VIEW CONTAINS I;
 V2 VIEW CONTAINS I, K;
 L INTEGER; *> Incorrect - can't distinguish between set symbol and local variable <*
 DISPLAY CHAR(10);
ENDDCL

MAP 1 TO I *> Ambiguity error - I OF V1 or I OF V2? <*
MAP 27 TO I OF V1 *> OK <*
MAP 15 TO M *> OK - M is a variable, set symbol
 * cannot be used here <*
MAP 15 TO M OF IO_VIEW *> OK <*
MAP M TO I OF V2 *> Ambiguity error - set symbol M or J OF V1? <*
MAP M IN K TO I OF V2 *> OK - M is a set symbol <*
MAP M OF IO_VIEW TO I OF V2 *> OK - I is a field <*
MAP K TO I OF V1 *> OK <*
MAP I OF V1 TO K *> OK <*
MAP ROUND(K, -2) TO I OF V1 *> OK - set K can not be used in ROUND, so this
 * line is equal to the next line <*
MAP ROUND(K OF V2, -2) TO I OF V2 *> OK <*
MAP SETDISPLAY(K, J IN K) TO DISPLAY *> OK <*

Using System Identifiers

The system identifier (HPSID) that coincides with a name of some other entity is always hidden. However, the object with this HPSID can still be
used if an alias is declared for this HPSID using an OBJECT 'HPSID' DCL statement clause.

The system identifier (HPSID) is case-sensitive, but other rules identifiers are not. If a system identifier differs from some other
identifier only in case, then two identifiers are considered to be the same.

If there are two system identifiers (HPSIDs) with the same name or their names differ only in case, only one of them can be used in a rule. The
one that can be used is chosen according to the order of precedence in the following list in descending order: (the system identifier in uppercase
is chosen).

WINDOW of GUI_KERNEL
RULE of GUI_KERNEL
Other object type
MENUITEM of GUI_KERNEL

Controlling Compile Time Subscript

A subscript is a symbol or number used to identify an element in an array. At compile time, subscript control is performed for all constant
subscripts in the rule. If a constant subscript is less than one, or it is greater than the view size, a preparation error occurs. (Refer to the

 for descriptions of error messages). If the subscript expression contains a variable data item, it cannot be verified atMessages Reference Guide
compile time.

Refer to the following topics for descriptions of subscript control for different languages:

Subscript Control in C
Subscript Control in Java
Subscript Control in ClassicCOBOL
Subscript Control in OpenCOBOL

Subscript control at compile time does perform in Java because of dynamic views support. See not Dynamically-Set View
 for more information.Functions in Java

Example: Subscript Control

DCL
 I INTEGER;
 V(10) VIEW CONTAINS I;
 INDX INTEGER;
ENDDCL

MAP 1 TO I(0) *> Compile time error, I(0) doesn't exist, subscript is less than one <*
MAP 0 TO INDX
MAP 1 TO I(INDX) *> Runtime error <*

Preparing a Rule Declaration Example

In the following example of a local Rule declaration, VIEW_6 is a view that consists, among other items, of VIEW_2, which occurs 10 times within
VIEW_6, of VIEW_1, and of VARCH_1. The rule also contains VIEW_2, which consists of PIC_1 and DEC_1 defined as PIC 'S999V99' and DEC
(9, 3) fields. VIEW_1 consists of CHAR_1 and CHAR_2, which themselves are declared as CHAR (1) fields. VARCH_1 is a VARCHAR field of
(maximal) length 6.

Views VIEW_3, VIEW_4, and VIEW_5 are all constructed the same way; each consists of FLD1 followed by FLD2. The rule does not prepare
correctly unless FLD1 and FLD2 already exist in the data universe of the rule.

Sample Local Rule Declaration

DCL
 CHAR_1, CHAR_2 CHAR;
 VARCH_1 VARCHAR (6);
 PIC_1 PIC 'S999V99';
 DEC_1 DEC (9, 3);

 VIEW_1 VIEW CONTAINS
 CHAR_1,
 CHAR_2;
 *> Note the "Inside out" principle: The building blocks CHAR_1 and
 * CHAR_2 must have been declared before the containing view VIEW_1
 * can be declared <*

 VIEW_2 VIEW CONTAINS
 PIC_1,
 DEC_1;

 VIEW_3, VIEW_4, VIEW_5 VIEW CONTAINS
 Fld1,
 Fld2;

 VIEW_6 VIEW CONTAINS
 - - - -
 - - - -
 VIEW_2 (10),
 - - - -
 - - - -
 VIEW_1,
 VARCH_1;
ENDDCL

In this example, the following statement in the rule:

MAP VARCH_1 TO CHAR_2

is interpreted as:

MAP VARCH_1 OF VIEW_6
TO CHAR_2 OF VIEW_1 OF VIEW_6

In other words, there are no local variables CHAR_2, VIEW_1, or VARCH_1 that exist by themselves. They exist only as subviews of VIEW_6.

In addition, the following declaration:

DCL
 VIEW_7 VIEW CONTAINS
 CHAR_1, CHAR_2;
ENDDCL

is equivalent to:

DCL
 VIEW_7 LIKE VIEW_1;
ENDDCL

assuming that this declaration is made after that of VIEW_1.

The first MAP statement is now invalid because it is not clear whether CHAR_2 refers to CHAR_2 OF VIEW_1 OF VIEW_6 or to CHAR_2 OF
VIEW_7. To avoid this kind of ambiguity, qualify a name. For example, CHAR_2 OF VIEW_6 is acceptable.

Setting Number of Occurrences

Right-Side Subscript

A subscript on the child view indicates the number of times that view occurs within the parent view. The child in this case can only be a View; it
 be a Field.cannot

In the following example, View A consists of 10 occurrences of View B:

DCL
 A VIEW CONTAINS B (10);
ENDDCL

Left-Side Subscript

A subscript on the child view or field indicates the number of times that view or field occurs within the parent view (if this left side parent viewonly
does not itself become a building block for a higher-level view). If the parent view does become a part of a higher-level view, you are not prompted
with a syntax error but subscripts are ignored.

Example: Assume that the following constitutes local declarations for a rule.all

DCL
 A (7) VIEW CONTAINS B;
 P (5) VIEW CONTAINS B;
 X (3) VIEW CONTAINS P;
ENDDCL

A is not used as a building block and you can reference A(1), A(2),..., A(7). P is used as a building block for X, so you cannot subscript P five
times. X is not used as a building block and you can reference X(1), X(2), X(3).

However, if you assume that the last declaration is

X (3) VIEW CONTAINS P (4);

the left side subscripting P(5) is again ignored, but the right side subscripting P(4) is not. In this situation, you can qualify

P of X (m, n)

where 1 m 3 and 1 n 4.

Procedures
A procedure is defined using the PROC and ENDPROC keywords.

Define a to encapsulate portions of code.Common Procedure
Define a to respond to events from objects.Event Handling Procedure

Procedure Syntax

procedure:

 one of common_procedure_def event_procedure_def error_procedure_def

Common Procedure

You can define a procedure anywhere within a rule except within another procedure body. However, because a procedure must be defined before
you can invoke it, a natural placement for a procedure definition is near the top of a rule. See for information about invokingPERFORM Statement
a procedure.

A procedure can consist of any number of Rules Language statements. You can invoke a procedure only in the rule in which the procedure is
defined.

Common Procedure Syntax

common_procedure_def:

 PROC common_procedure proc_statements ENDPROC

common_procedure:

 [parameter_list] [: output_type]procedure_name

parameter_list:

 ‘(’ (,)* [parameter_name_type] (, (,)* [parameter_name_type])* ‘)’parameter_name parameter_name parameter_name parameter_name

 ‘(’ (,)* [LIKE] ‘)’view_name view_name view_name

parameter_name_type:

 data_type

 LIKE field_name

output_type:

 data_type

 LIKE variable_data_item

 LIKE view_name

proc_statements:

 DCL local_variable_list ENDDCL statement_list

where proc_statements are:

where common_procedure is:

where can be:parameters

If the parameter view does not use the LIKE clause, the view must be declared in the procedure's DCL section.view_name

where can be:output_type

where:

data_type — see .Data Types
DCL_local_variable — see .Local Variable Declaration
variable_data_item — see . Note that OBJECT array cannot be a parameter.Variable Data Item
statement — any Rules Language statement, except procedure declaration.

The output type can be any data type, objects.except

Alias declaration can never be used as a procedure formal parameter.

Platform Specific Considerations

You cannot declare a procedure return result using the LIKE clause for ClassicCOBOL.

For additional information about common procedure parameters, see and .Defining Views in Java Common Procedures in C

Common Procedure Usage

You can pass individual data items, or literals as parameters to procedures. If you pass a view to a procedure, the view must be declared inside
the procedure receiving it (see).Example 3: Passing a View to a Procedure

A procedure can return a value or a view. If the procedure returns a value, the procedure is treated like a function and can be used in any context
in which a function can be used (see). At the preparation time AppBuilder verifies that all possibleExample 2: Using a Procedure as a Function

execution paths return a value, if a procedure was declared as returning value. If the procedure returns a view, the view must also be declared in
the rule DCL section or exist within the rule data hierarchy. If one of the procedure's parameters is a view that was not declared through the LIKE
clause, it must be declared in the procedure. The four examples shown below illustrate how to use common procedures.

Examples: Common Procedures

Example 1: Simplifying Error Code Processing

By defining a procedure with code common to multiple error code processing, the coding of each process is simplified.

PROC handleError(errorCode SMALLINT)
DCL
 errorDescr VARCHAR(255);
ENDDCL
IF errorCode <= 0
 MAP "SUCCESS" TO errorDescr
 ELSE IF errorCode <= 2
 MAP "WARNING" TO errorDescr
 ELSE
 MAP "SEVERE ERROR" TO errorDescr
 ENDIF
ENDIF
PRINT errorDescr
ENDPROC
.
handleError(code)
.
handleError(dbCode)

Example 2: Using a Procedure as a Function

The procedure "cubed" receives one parameter (an integer) and returns the cube of that number. The procedure can be used in any context in
which a function can be used — in this case in a MAP statement.

PROC cubed (inputNumber INTEGER): INTEGER
 PROC RETURN (inputNumber * inputNumber * inputNumber)
ENDPROC
.
MAP cubed(anyNumber) to y

Example 3: Passing a View to a Procedure

The procedure returns a numeric value:

PROC getTaxableIncome (income VIEW): DEC(31,12)
 DCL
 baseSalary DEC(31,2);
 bonus, commissions DEC(31,2);
 income VIEW CONTAINS baseSalary,bonus,commissions;
 ENDDCL
 PROC RETURN (baseSalary + bonus + commissions)
ENDPROC
.
MAP getTaxableIncome(income) * taxRate to tax

Example 4: Returning a View from a Procedure

DCL
 CUSTOMER_NAME CHAR(30);
 ORDER_NO INTEGER;
 ORDER_RECORD VIEW CONTAINS CUSTOMER_NAME, ORDER_NO;
 LAST_NO INTEGER;
ENDDCL

PROC CREATE_ORDER(NAME CHAR(30)) : LIKE ORDER_RECORD
 DCL
 V LIKE ORDER_RECORD;
 ENDDCL
 MAP LAST_NO + 1 TO ORDER_NO OF V, LAST_NO
 MAP NAME TO CUSTOMER_NAME OF V
 PROC RETURN (V)
ENDPROC

PROC NEW_ORDER(V LIKE ORDER_RECORD) : LIKE ORDER_RECORD
 MAP LAST_NO + 1 TO LAST_NO
 PROC RETURN ({ CUSTOMER_NAME OF V, LAST_NO })
ENDPROC

Event Handling Procedure

There are two ways to handle events:

Event Procedures
HPS_EVENT_VIEW Method

See also the following related information:

Event Parameters
Specific Restrictions for Constructing an Event Handler in C
Specific considerations and restrictions for Constructing an Event Handler in Java

Event Procedure Syntax

event_procedure_def:

 PROC event_procedure proc_statements ENDPROC

event_procedure:

 proc_name [FOR event_name_type] parameter_listevent_name

event_name_type:

 OBJECT object_name

 TYPE [OF]object_type subsystem

where event_procedure is:

where:

object_name can be any of the following:
The HPSID of the object.
The alias of the object — see .Alias
A pointer to the object — see .Alias

data_type — see .Data Types
variable_data_item — see .Variable Data Item
parameters — see .Common Procedure
proc_statements — see .Common Procedure
object_type is the type of object whose event(s) the procedure receives.
subsystem is the group to which the object pointed to belongs.

For a list of available object types, see the .ObjectSpeak Reference Guide

The following subsystems are supported:

GUI_KERNEL is the set of window controls supplied by AppBuilder.
JAVABEANS is used for any Java class.

It is necessary to specify a subsystem only if there is an ambiguity.

Event Procedures

To use an event procedure, include it in the rule that converses the window. Do use Window Painter to select the events to be handled. Younot
must write a procedure for an event to be handled.

An event procedure is invoked when an event is triggered for an object. When the event procedure finishes or when a PROC RETURN statement
is encountered, the rule continues conversing the window, waiting for another user event to occur.

Control does not return to the statement following the CONVERSE until an event is returned in HPS_EVENT_VIEW. This includes any event
triggered by AppBuilder-supplied (GUI_KERNEL) window control.

Event procedures are supported only for AppBuilder-supplied window objects in Java. To handle events from AppBuilder-supplied window objects
in C, test the contents of HPS_EVENT_VIEW in statements following the CONVERSE statement.

You must define an event procedure inside the rule that converses the window containing the Java objects whose events the procedure responds
to. All Rules Language statements are allowed inside event processes, :except

CONVERSE
USE RULE
USE COMPONENT
POST EVENT
PERFORM

You cannot modify a window view (a view whose parent is a window) inside an event procedure for that window. To perform tasks that are not
allowed in an event procedure, you can invoke the ThisRule's PostEvent method (see) to return control to the rule at theData Types in Java
statement following the converse.

HPS_EVENT_VIEW Method

The HPS_EVENT_VIEW method is supported only for consistency in handling events for AppBuilder-supplied window controls.

When an event is triggered, the following information is returned in HPS_EVENT_VIEW:

EVENT_SOURCE - the HPSID of the control
EVENT_QUALIFIER - the name of the event
EVENT_PARAM - the parameters returned by the event, converted to a character string, and separated by commas

Event Parameters

Many events include parameters. To see what parameters are returned to an event procedure when the event is triggered, refer to the
.ObjectSpeak Reference Guide

You can use DCL statements to declare the same procedure for multiple events, objects, or object types (see).Event Procedure Declaration

If you define one event procedure for a type of object and another event procedure for a particular object of that type, the procedure with the
narrowest scope is invoked — the procedure for the particular object. For example, if Procedure X handles the click event for any push button,
and Procedure Y handles the click event for push button Z, then if a user clicks push button Z, only Procedure Y is invoked.

The following two examples show how to define and handle events for specific objects.

Examples: Setting Event Parameters

Example 1: Defining a Particular Event of a Particular Object

The following procedure can be defined to handle the Initialize event of a Window control named MY_WINDOW:

PROC windowInitialize FOR Initialize OBJECT MY_WINDOW (p OBJECT TYPE InitializeEvent)
...
ENDPROC

Example 2: Handling a Particular Event of a Type of Object

The following procedure can be defined to handle the Initialize event for any Window control:

PROC windowInitialize FOR Initialize TYPE WINDOW OF GUI_KERNEL (p OBJECT TYPE InitializeEvent)
...
...
ENDPROC

Control Statements

This chapter describes the following types of control statements:

Comment Statement
ObjectSpeak Statement
File (Database) Access Statements
Post Event Statement
Compiler Pragmatic Statements

Control Statement Syntax

control_statement:

 comment_statement

 method_invocation_statement

 file_access_statement

 post_event_statement

 pragmatic_statement

 event_handler_statement

 assignment_statement

 condition_statement

 transfer_statement

Comment Statement

A comment describes the purpose of a Rules Language statement and is useful for other developers who look at the source code. (an asterisk*>
and a greater-than sign) denotes the beginning and (a less-than sign and an asterisk) denotes the end of a multiline comment. Any text within<*
these delimiters is ignored when the rule is prepared. Comments might continue across more than one line, but you cannot nest comments.

// (double forward slash) denotes single line comments.

Comment Syntax

comment_statement:

 > any_text <

 // one_line_of_text

where:

any_text is any possible character sequence, including line breaks.
one_line_of_text is any character sequence limited to one line without any line breaks.

Examples: Comment Statements

Examples 1 and 2 are valid comment statements, and examples 3 and 4 are invalid comment statements.

Example 1: Valid Comment Statement

> assign the value 3.14 to the variable PI <

MAP 3.14 TO PI

Example 2: Valid Comment Statement

> This rule was last modified on January 26, 1995 <

MAP 3.14 TO PI // Assign the value 3.14 to the variable PI

Example 3: Invalid Comment Statement

*> This rule was last modified *> by adding line 5 <* on January 26, 1995 <*

The compiler closes the comment after " ". The remainder of the comment then causes a syntax error.line 5

Example 4: Invalid Comment Statement

// This rule was last modified on
January 26, 1995

The compiler does not recognize this comment because it is on more than one line. Use instead for multi-line comments.*> <*

ObjectSpeak Statement

The ObjectSpeak extension to the Rules Language invokes methods for objects supplied with AppBuilder.

For a list of available objects, methods, and properties, refer to the .ObjectSpeak Reference Guide

ObjectSpeak Syntax

objectspeak_statement:

 object_name [. objectspeak_reference (. objectspeak_reference)*] . method_name

objectspeak_reference:

 property_name

 method_name [‘(‘ (expression)* ‘)’]

where ObjectSpeak_reference is:

where object_name can be:

The system identifier (HPSID) of the object.
The alias of the object---see for information about alias of an object.Alias
An object---see for information about an object.Object Data Types
An array---see for information about an array.Array Object

where:

expression---see .Expression Syntax

Referencing Properties

You can use ObjectSpeak expressions to reference an object's properties. The simplest expression is the name of an object, followed by a period,
followed by the name of the property. You can use such an expression in any statement in which an ordinary expression can be used. For
example:

MAP 12 TO myAnimatedButton.TextXPos

MAP myAnimatedButton.Speed TO saveSpeed

Nested Properties

Sometimes a property of a control is "buried" inside the control. For example, a property that is returned by a method of the control or a property
of a property of the control are nested. In theory, the nesting can go to any level. When a property is nested, simply use a period to separate each
"nesting level." For example:

myGauge.Picture.Handle

In this example, is a property of the property of the Gauge control named .Handle Picture myGauge

When a property is deeply nested inside a control, you can use an object to abbreviate the property reference. For example, suppose there is a
property named that is nested in this way (where returns an object of type BitMapButton):Text method2

Object_name.method1(parm,parm).method2(parm).Text

If you declare an object as follows (where is an arbitrary name):theBitMapButton

DCL theBitMapButton OBJECT TYPE BitMapButton of GUI_KERNEL ENDDCL

then you can abbreviate references to the property, as follows:Text

theBitMapButton.Text

Object Method Call

Object Method Call Syntax

object_method_call:

 object_data_item . method_name [actual_parameters_list]

where:

actual_parameters_list is a list of actual parameters delimited with commas and enclosed in parentheses. If the list is empty, parentheses
can be omitted. If a method does not have parameters, empty parentheses (()) can be written. For more information, see:
Object Method Call in Java

For information about the conversion between Java standard data types and Rules Language data types when passing parameters to and
accepting return values from Java methods, refer to .ObjectSpeak Conversions in Java

ObjectSpeak is no longer supported for C generation.

Invoking Methods for Objects

The simplest method invocation is the object name followed by a period, and then the method name.

Do include parentheses if the method has no parametersnot

For example:

CommonDialog.ShowHelp

If the method takes parameters, they are enclosed within parentheses following the method name, and separated with commas. For example:

treeView.HitTest(100,200)

Invoking Nested Methods

Sometimes a method of a control is "buried" inside the control; for example, it might be a method of a property that is returned by a method of the
control. In theory, the nesting can go to any level. When a method is nested, simply use a period to separate each "nesting level." For example:

myWindow.Size.setWidth(newWidth)

The method is a method of the property of the Window control named .setWidth Size myWindow

File (Database) Access Statements

The following statements are used for file access (or database access):

SQL ASIS Support
START TRANSACTION
COMMIT TRANSACTION
ROLLBACK TRANSACTION

For information about Java development, refer to .Transaction Support in Java

File (Database) Access Syntax

file_access_statement:

 SQL ASIS sql_code ENDSQL

 START TRANSACTION

 COMMIT TRANSACTION

 ROLLBACK TRANSACTION

SQL ASIS Support

The Rules Language supports access to various databases using SQL code embedded directly in a rule. A rule accesses a database directly by
executing embedded SQL code specified as an argument to the SQL ASIS statement. All literals in the SQL ASIS statements must be written
using the DBMS notation, not the Rules Language syntax. SQL DBMSs also distinguish between single and double quotes, but they have
different meanings.

Literals in SQL code are not parsed, but are passed to the DBMS unchanged. So, during preparation, in order to avoid semantic confusions,
single-quoted strings are SQL character literals, and double-quoted ones are quoted SQL identifiers.

DB double quoted identifiers are often used when naming DB objects with keywords (e.g. table "column" with column "table" in CREATE TABLE
"COLUMN" ("TABLE" integer)). Therefore, all code within SQL ASIS block must follow SQL syntax, not Rules Language syntax. For example,
you cannot use the double quotes instead of the single quotes to define a string literal.

Example: Correct and Incorrect SQL code

1. Correct SQL code sample

SQL ASIS

 * into cur1select
 customerfrom
 customer.firstname = :custfname andwhere

 . = 'Jones'"customer" "lastname"

ENDSQL

2. Incorrect SQL code sample
(Double-quoted "Jones" can be used as character literal in the rule, but not within SQL ASIS block where it will be treated as DB identifier):

SQL ASIS

 * into cur1select
 customerfrom
 customer.firstname = :custfname andwhere

 . = "customer" "lastname" " Jones "

ENDSQL

Because it passes the embedded SQL directly to the underlying database's SQL compiler, the AppBuilder environment
supports whatever ANSI version the underlying database supports. Thus, you can use non-standard extensions supported by
your database. However, doing so might cause problems when porting the code to another database.

Refer to for special considerations in Java.SQL ASIS Support in Java

Usage

SQL statements cannot be nested. The code between the keywords SQL ASIS and ENDSQL is copied "as is" into the generated code. The
following are exceptions to this:

Host variables
Comments
SQL Communication Area (SQLCA)

Most SQL ASIS statements reference database tables that are created by right-clicking the File object in the Hierarchy and selecting Prepare, or
by selecting Prepare from the Build menu. For these statements, you must use the implementation names of the files and fields used to create the
table. But host variables (expressions beginning with a colon) correspond to variables in your rule, not to any database object, so they must be
coded using the long name.
The SQL code can use any non-multiple-occurring view or field in the rule's data universe or any locally-declared variable as a host variable.

A field name must be clearly specified. In SQL code within a rule, qualify a field name by writing the view name first, and then the field name,
separating them by a period rather than by the keyword OF. (This is similar to the syntax used in PL/I or C to identify the components of a
structured variable.) Thus, a field that might appear elsewhere in a rule as LAST_NAME OF CUSTOMER must appear in embedded SQL code
as:

:CUSTOMER.LAST_NAME

SQL supports only one level of qualification. That is, you must redefine the view to "flatten" it. To access a structure that requires multiple levels of
qualification, declare a local variable LIKE your target structure and reference the variable in the SQL code. You can then map data from your
variable to the "real" data structure.

Because SQL code cannot access multiple-occurring views, you cannot simply SELECT data into an AppBuilder array. However, by declaring an
SQL cursor into a selection, you can loop through the selection so that each iteration of the loop can FETCH the row under the cursor INTO a
locally declared view acting as a host variable. Then you can MAP that view into one occurrence of a multiple-occurring view.

In order for the loop to know when it has fetched all of the rows that the SELECT returns, SQLCODE and the rest of the SQL Communication
Area's variables are accessible to any rule that uses the SQL ASIS command, just as if they were locally declared fields. You can view the
SQLCA in the RuleView to examine the SQL return codes. And you can use the SQL return code values in your rule.

The SQLCA view is automatically appended to any rule that has DB2 usage, so you do not need to attach it to the rule yourself.

Do not check the SQLCODE field after a DCL CURSOR, INCLUDE, or WHENEVER statement because such statements do
not affect the SQLCA.

Do not use in embedded SQL; enhancements to the table structure might make your host variables incompatible with the rows of theSELECT *
table.

Do not use or in embedded SQL statements because these special symbols are used for suppressing macro substitution for strings (see <: :>
). However, you can use or with a space between (or) and symbols, and a variable.Using Quoted Strings in Macros < : : > < > :

You must write and invoke a user component to access any file that does not support SQL statements. Refer to forDeveloping Applications Guide
instructions for writing a user component.

Using SQL host variables in the rules for Classic COBOL, OpenCOBOL, and C generation.

During code generations, only limited analysis of the SQL code within SQL ASIS ENDSQL blocks is performed. Mainly, the host variables used in
the code are analyzed. The rest of the code is generated in the COBOL program AS IS, without changes.

ClassicCOBOL DATE, TIME, TIMESTAMP, and DEC fields do not have the same representation as corresponding DB2 column types. To solve
this problem, all host variables of these types are converted to DB2 representation. The converted value is stored in the temporary variable, and
this temporary variable is used as a host variable in the generated COBOL code. Values are converted before and after each SQL ASIS block. All
host variables used in the block are converted to DB2 types before SQL block. All host variables are converted back to COBOL representation
after SQL block is executed. No analysis is performed to determine which variable is input variable and which one is output.
In OpenCOBOL no conversion is necessary because data types used in COBOL programs are the same as DB2 with the exception of TIME
fields. This conversion problem is solved using REDEFINE fields.

DB2 does not allow DATE value 0000/00/00, which is the initial value for DATE fields in AppBuilder. Values with year 0 are not valid values in
DB2; however, in AppBuilder they are valid values. To solve this problem, each host variable of DATE type containing the value less than 367
(year 0 in AppBuilder) is replaced with the value 367 or 0001/01/01, then converted to a DB2 representation. After each SQL block, all data values
that are less than or equal to 367 are replaced with value 0. This verification is done in ClassicCOBOL and OpenCOBOL. OpenCOBOL has an
option to use string comparison instead of converting the date to a number and comparing it with a value 367.

Examples: SQL ASIS Statements

Example 1: Using SQL ASIS with host variables

DCL
 myDate date;
ENDDCL

SQL ASIS
 Declare myCursor cursor for
 Select
 Column1,
 Column2
 From myTable
 Where Column3 = :myDate
ENDSQL

SQL ASIS
 open myCursor
ENDSQL

If we generate ClassicCOBOL code for that, it will be as follows (simplified for clarity):

* SQL ASIS
* CONVERSIONS BEFORE SQL
* DATE TO CHAR
IF (V--LOC-DATE-0001 OF V-SQLRULE-LOCAL-VARS < 367) THEN MOVE
 367 TO V--LOC-DATE-0001 OF V-SQLRULE-LOCAL-VARS.
CALL 'CGDT2CH' USING DFHEIBLK DFHCOMMAREA V-SMT-SQL-1, V--
LOC-DATE-0001 OF
V-SQLRULE-LOCAL-VARS

EXEC SQL
 Declare myCursor cursor for
 Select
 Column1,
 Column2
 From myTable
 Where Column3 = :V--SMT-SQL-1
END-EXEC

* CONVERSIONS AFTER SQL
* CHAR TO DATE
CALL 'CGCH2DT' USING DFHEIBLK DFHCOMMAREA V--LOC-DATE-0001 OF
V-SQLRULE-LOCAL-VARS, V-SMT-SQL-1
IF (V--LOC-DATE-0001 OF V-SQLRULE-LOCAL-VARS < 368) THEN MOVE
 0 TO V--LOC-DATE-0001 OF V-SQLRULE-LOCAL-VARS.

EXEC SQL
 open myCursor
END-EXEC

This code works because the value of , which is implicitly used in OPEN statement has not changed between EXEC SQLV--SMT-SQL-1
statements. However, if we change the original rule code to be:

DCL
 myDate date;
ENDDCL

SQL ASIS
 Declare myCursor cursor for
 Select
 Column1,
 Column2
 From myTable
 Where Column3 = :myDate
ENDSQL

set myDate := date ()

SQL ASIS
 open myCursor
ENDSQL

Then COBOL code will be:

* SQL ASIS
* CONVERSIONS BEFORE SQL
* DATE TO CHAR
IF (V--LOC-DATE-0001 OF V-SQLRULE-LOCAL-VARS < 367) THEN MOVE
 367 TO V--LOC-DATE-0001 OF V-SQLRULE-LOCAL-VARS.
CALL 'CGDT2CH' USING DFHEIBLK DFHCOMMAREA V--SMT-SQL-1, V--LOC-
DATE-0001 OF V-SQLRULE-LOCAL-VARS

EXEC SQL
 Declare myCursor cursor for
 Select
 Column1,
 Column2
 From myTable
 Where Column3 = :V--SMT-SQL-1
END-EXEC

* CONVERSIONS AFTER SQL
* CHAR TO DATE
CALL 'CGCH2DT' USING DFHEIBLK DFHCOMMAREA V--LOC-DATE-0001 OF
V-SQLRULE-LOCAL-VARS, V--SMT-SQL-1
IF (V--LOC-DATE-0001 OF V-SQLRULE-LOCAL-VARS < 368) THEN MOVE
 0 TO V--LOC-DATE-0001 OF V-SQLRULE-LOCAL-VARS.

CALL 'CGDATE' USING DFHEIBLK, DFHCOMMAREA, TMP0 OF
V-SQLRULE-TEMP-VARS.
MOVE TMP0 OF V-SQLRULE-TEMP-VARS TO V--LOC-DATE-0001 OF
V-SQLRULE-LOCAL-VARS.

EXEC SQL
 open myCursor
END-EXEC

This code will produce the wrong result, because has changed, but has not been updated. This happenedV-LOC-DATE-0001 V-SMT-SQL-1
because OPEN statement has no host variables and there is no conversion.
To solve this problem the code generation option -H was introduced. When it is used, all host variables used in any SQL ASIS block in the rule
are converted and verified before and after each SQL block. This might be unnecessary overhead, but it is the only way to solve the problem
without implementing the SQL parser.

Example 2: SQL Sample
The following rule reads all the customers with a given last name from the database into a multiple-occurring view called CUSTOMER_TABLE

. The name to look for is in the field of the rule's input view. The SELECT statement lists the DB2 column namesCUSTOMER_LIST SEARCH_NAME
equivalent to the fields of interest.

DCL
 I INTEGER;
 CUSTOMER_TEMP LIKE CUSTOMER;
ENDDCL

SQL ASIS
 DECLARE CURS_1 CURSOR FOR
 SELECT LAST_NAME, FIRST_NAME, ID_NUM
 FROM CUSTOMER_TABLE
 WHERE LAST_NAME = :RULE3I.SEARCH_NAME
ENDSQL

DO FROM 1 TO 25 INDEX I
 SQL ASIS
 FETCH CURS_1 INTO :CUSTOMER_TEMP
 ENDSQL
WHILE SQLCODE = 0
 MAP CUSTOMER_TEMP TO CUSTOMER_LIST OF RULE3O (I)
ENDDO

START TRANSACTION

Use START TRANSACTION to explicitly start a database transaction. A transaction is started implicitly when you use a remote rule (one running
on a server machine) that accesses a database.

If a transaction is started explicitly, you can commit or roll back changes to both local and remote databases subsequent to the START
TRANSACTION using COMMIT TRANSACTION or ROLLBACK TRANSACTION.

If a transaction is started implicitly, changes to remote databases are committed or rolled back depending upon settings in the DNA.INI file.
Unless a transaction is committed explicitly using COMMIT TRANSACTION, changes to local databases are not committed until the AppBuilder
process terminates.

COMMIT TRANSACTION

Use COMMIT TRANSACTION to commit changes to local and remote databases since the previous START TRANSACTION statement.
Although you can also commit a database using SQL ASIS COMMIT, the advantages of using COMMIT TRANSACTION include the following:

It is database independent. (AppBuilder translates it for the database being used.)
It works on local databases as well as remote databases. By contrast, implicit commits affect only remote databases on server machines.

The commits performed by a COMMIT TRANSACTION are not coordinated among multiple locations. For example, a remote
database commit could succeed while a local one fails.

ROLLBACK TRANSACTION

Use ROLLBACK TRANSACTION to roll back changes to local and remote databases since the previous START TRANSACTION statement.
Although you can also roll back a database using SQL ASIS ROLLBACK, the advantages of using ROLLBACK TRANSACTION include the
following:

It is database independent. (AppBuilder translates it for the database being used.)
It works on local databases as well as remote databases. By contrast, implicit rollbacks affect only remote databases on server
machines.

Post Event Statement

Use a POST EVENT statement to post a message to another application or to a different rule in the same application. The message text is
contained in the view attached to the event. See for information about posting and receiving global-eventCONVERSE for Global Eventing
messages.

POST EVENT Syntax

post_event_statement:

 POST EVENT event_name (event_name)*

For example:

POST EVENT CUTOFF_REACHED START_NEW

Compiler Pragmatic Statements

Compiler PRAGMA statements are special commands that control certain features of the compiler.

PRAGMA Syntax

pragmatic_statement:

 PRAGMA pragma_name

pragma_name:

 one of KEYWORD PARAMETER CLASSIMPORT AUTOHANDLERS ALIAS PROPERTY COMMONHANDLER CENTURY

The compiler PRAGMA statement can be used between any language constructions but cannot be used inside of a construction, such as IF,
CASEOF, DO, or PROC statements. The PRAGMA statement affects subsequent statements within the same rule code, therefore, the PRAGMA
statement should not be the last statement in the rule.
This section describes the PRAGMA KEYWORD and PRAGMA PARAMETER statement. For other PRAGMA statements, refer to the following:

PRAGMA CLASSIMPORT in Java
PRAGMA AUTOHANDLERS in Java
PRAGMA ALIAS PROPERTY in Java
PRAGMA COMMONHANDLER in Java
PRAGMA CENTURY for OpenCOBOL

PRAGMA KEYWORD

Use the PRAGMA KEYWORD to switch selected Rules Language keywords on or off. The default value is ON for all of the keywords listed.

PRAGMA KEYWORD Syntax

pragma_keyword_statement:

 PRAGMA KEYWORD keyword_switcher ‘(‘ keyword_list ‘)’

keyword_switcher:

 one of ON OFF

keyword_list:

 keyword (, keyword)*

where:

keywords_list is the parameters list of keywords to switch on or off. Separate individual keywords using commas (spaces are ignored)
and place the entire list in parentheses. The PRAGMA KEYWORD clause is case-sensitive, so keywords can be lower or uppercase.not

If the PRAGMA KEYWORD OFF (PRAGMA) clause is used, it must be the last PRAGMA statement in a rule.

Not all keywords can be turned on or off. The Rules Language keywords that can be switched on or off with the PRAGMA clause are listed in the
following sections:

Keywords for Java that can be Disabled with PRAGMA KEYWORD
Keywords for C that can be Disabled with PRAGMA KEYWORD
Keywords for ClassicCOBOL that can be Disabled with PRAGMA KEYWORD
Keywords for OpenCOBOL that can be Disabled with PRAGMA KEYWORD,

Example: Using PRAGMA to Switch Keywords On and Off

Keywords true and false are switched on and off.

PRAGMA KEYWORD on (true)
PRAGMA KEYWORD off (true)
PRAGMA KEYWORD on (true,false)
PRAGMA KEYWORD off (false,true)

PRAGMA PARAMETER

PRAGMA PARAMETER Syntax

pragma_parameter_statement:

 PRAGMA PARAMETER ‘(‘ parameter_name, parameter_value ‘)’

where:

parameter_name – is a name of some codegen parameter or keyword FLAG
parameter_value – is a new value of this parameter or the corresponding flag.

This pragma allows you to overwrite or specify new parameters or codegen flags from [CodegenParameters] section of HPS.INI file directly from
the rule code. These parameters are effective only for the rule where PRAGMA statement is used.
For example, the following statement

PRAGMA PARAMETER (JAVA_PERSISTENT_CURSOR, YES)

enables persistent cursor generation.

In the following example, the statement

PRAGMA PARAMETER (FLAG, "RTCALL")

determines the generation of all Date/Time function calls as runtime calls (for Open Cobol generation).
The restriction is that PRAGMA PARAMETER statements are processed during the rule code parsing stage, thus they, for instance, are not
affecting the bind file parsing stage or panel file parsing. Also some parameters, requiring additional configuration before rule code parsing, could
not be affected by this PRAGMA.
There is a full list of all flags and parameters which are allowed to be used inside PRAGMA PARAMETER clause:

flags:
A
I
OVE
MEXCI
DYNCALL
CUSTCALL
MOVEC
GENPERIOD
GENNOSUFF
RTCALL
NEWDT
VERDT
RTDTI
NCOCC
VCTRACE
ROCRS
NATIONAL

parameters:
CompareDatesAsString
OCC_VIEW_SIZE_THRESHOLD
INLINE_VIEW_COPY
INLINE_VIEW_COPY_FIELDS_LIMIT

COPYFROM_NULL_PARAMETERS_THRESHOLD
LAZY_INSTANTIATION_ENABLED
INITIALIZE_VIEW
GENERATE_NO_SUFFIX
CHECK_DEC_FORMAT.

Assignment Statements
Assignment statements allow you to assign a new value to a variable data item. These statements include:

Assignment Statements
CLEAR Statement
OVERLAY Statement

Besides using the three statements listed above, you can also assign new data to a view by using the special redefine capability. You can also
assign variables of the Object data type. These alternatives are discussed in the following sections:

Redefining Views
Assigning Object Data Type Variables in Java

Assignment Statement Syntax

assignment_statement:
 one of assign_statement clear_statement overlay_statement

assign_statement:
 one of map_statement set_statement

map_statement:
 MAP expression TO variable_data_item (, variable_data_item)*
 MAP source_for_view TO view (, view)*

set_statement:
 SET variable_data_item (, variable_data_item)* set_operator expression
 SET view (, view)* := source_for_view

source_for_view:
 view
 aggregate
 rule_name ['(' rule_comp_parameter ')']
 component_name ['(' rule_comp_parameter ')']

rule_comp_parameter:
 view
 aggregate
 expression (, expression)*

set_operator:
 one of := +:= -:=

Assignment Statements

A MAP statement copies the value of the source item to the target item. You can map any valid expression to a field variable, provided that the
expression and the field are of compatible data types. Refer to the following related topics:

Increment and Decrement SET Statements
Using Aggregates
Data Type Mapping Errors
Mapping Data

MAP and SET Syntax

Aggregate Syntax

aggregate:
 { (aggregate_element)* }

aggregate_element:
 expression
 aggregate
 view_name
 rule_name ['(' rule_comp_parameter ')']
 component_name ['(' rule_comp_parameter ')']

rule_comp_parameter:
 view
 aggregate
 expression (, expression)*

where:

expression – see .Numeric Expressions
variable_data_item – see .Variable Data Item
view – see .View

Usage

If the source item is a numeric expression and the target item is multiple data items (separated by a comma), the value of the source expression
is calculated separately before each mapping. This allows for a slightly different value to be mapped to each target data item depending upon the
type (precision) of the target item.

If the variable is a view, you can only map another view to it. This maps the data in any field under the first view to a field with the same name
under the second view. In addition, it maps data from a field in a subview of the first view to a field in the subview of the second view under the
following circumstances:

Subviews are directly attached to the views being mapped.
Names of the subviews are identical.

You can also map to or from a multiple-occurring view. If both views are multiple-occurring, this maps the same numbered view from the first view
to the other as for a regular view. Thus,

MAP VIEW_A TO VIEW_B

maps to , to , and so on, until one of the two views runs out of occurrences. If only one of theVIEW_A(1) VIEW_B(1) VIEW_A(2) VIEW_B(2)
views is multiple-occurring, the data in the non-occurring view maps to or from the first occurring view. Thus, in the statement above, if isVIEW_A
not multiple-occurring but is, the statement maps to . Conversely, if is multiple-occurring and is not,VIEW_B VIEW_A VIEW_B(1) VIEW_A VIEW_B
the statement maps the first occurrence of to .VIEW_A VIEW_B

The source of a MAP statement can be a RULE call; that output view is mapped to the destination after the rule call. In this case, the rule name
should be used without USE. For example:

MAP integer_sum (1, 32500) to V
MAP res of v TO f3

The source of the MAP can be any method call or any variable from the object. If the object is a window object, then its system identifier (HPSID)
can be used without declaring this object in the rule's DCL section.

Assume there is a window attached to the rule, and this window contains the object PUSHBUTTON with the system identifier (HPSID) of
'OK_BUTTON'. Use the following syntax in Java:

MAP OK_Button.Foreground to OK_Button.Background
MAP 'OK' TO OK_Button.Text

and in C, use:

MAP OK_Button.ForeColor to color
MAP OK_Button.Text TO ButtonText

The SET statement is an analog of the MAP statement with certain limitations, which can be seen on the syntax diagram.

Increment and Decrement SET Statements

A SET statement can be used to increment or decrement a numeric variable by any value without writing addition or subtraction. To do this, write
+:= or -:= . The right side expression will be added or subtracted from the . For example:variable_data_item

SET I:=1
SET I+:=1 *>sets I to 2<*
SET I-:=1 *>sets I to 1<*

Using Aggregates

The source of MAP can be aggregate. Using an aggregate allows you to map several values with a single map statement.

Example: Using aggregate in MAP statement

DCL
 last_name, first_name varchar (20);
 birthday date;
 age integer;
 age_view view contains birthday, age;
 person_view view contains last_name, first_name, age_view;
 my_age like age_view;
ENDDCL

The following example uses an aggregate to map three values to person_view:

MAP {"last name", "first name", my_age } to person_view

The following example uses nested aggregates to map to person_view:

MAP {"last name", "first name", {DATE('12/29/61','%m/%d/%y'),34}} to person_view

Data Type Mapping Errors

Any attempt to map a field or constant to a field of an incompatible data type produces an error when you try to prepare the rule. In addition, you
get a warning message for any MAP statement whose source field data type is potentially incompatible with the data type of its destination field.
These messages flag statements that might, under certain conditions, lead to errors or unpredictable results at runtime.

For example, it is perfectly legal to map an INTEGER field to a SMALLINT field because the two data types are compatible. However, when the
rule is executed, any INTEGER field containing a value greater than 32,767 or less than -32,767 maps incorrectly to the SMALLINT field. For
example, if the source field equals +32,768, the target field becomes -1. If you have a rule that maps an INTEGER field to a SMALLINT field, a
warning message is added to your preparation results file.

Mapping Data

Mapping of data are described in the following sections:

Mapping To and From a PIC Field
Mapping To a DEC Field

Mapping Between Fields of Different Lengths
Mapping To and From a VARCHAR Field
Mapping To and From a TEXT or IMAGE Field
Mapping To or From a DBCS or MIXED Field
Mapping a View to a View

Example: Mapping Data to a Field

The following rules code illustrates the most common form of mapping data to a field:

MAP 10 TO NUMBER_OF_PEOPLE
> Copies the value of the numeric literal 10 into the field <

MAP '223 West 21st Street' TO ADDRESS OF CUSTOMER_DETAIL
> Copies the value of the character literal <
> '223 West 21st Street' into the field ADDRESS <

MAP ADDRESS OF CUSTOMER_DETAIL TO ADDRESS OF SHOW_CUSTOMER_DETAIL
> Copies the value of the first ADDRESS field into the second <
> ADDRESS field <

MAP (PRICE - DISCOUNT) * TAX_RATE TO SALES_TAX
> Copies the value to which the expression resolves <
> into the field SALES_TAX <

MAP JAN IN MONTHSET TO WHICH_MONTH
> Copies the value of the symbol Jan [not the symbol name] <
> into the field WHICH_MONTH <

Mapping To and From a PIC Field

You can map an unsigned PIC field to either a character or a numeric field, but you cannot map a character value to any PIC field. You cannot
map a PIC field containing either a sign code ('S') or a decimal placeholder ('V') to a CHAR or VARCHAR field. When mapping a valid PIC field to
a CHAR or VARCHAR field, the value of the character field is set to a string representing the number in the PIC field. Any string longer than the
character field to which it is mapped is truncated.

A warning is issued in the preparation results if you map a field of format SMALLINT, INTEGER, or DECIMAL to a PIC field whose picture does
not begin with an 'S' to allow for a negative sign.

Mapping To a DEC Field

Mapping more digits than allowed to a DEC field results in a runtime error, causing RuleView to display asterisks in the field.

Mapping Between Fields of Different Lengths

Although the data types are compatible, an error is issued if you attempt to map a numeric constant to a DECIMAL or PIC field that either does
not have enough places to the left of the decimal to hold its integer part, or does not have enough places to the right of the decimal to hold its
fractional part.

An error is not issued for Java generation in only one case, when the source value is a set symbol. This is needed in order to support separate
generation of sets and rules.

Similarly, a CHAR or VARCHAR destination field might be too short to contain a source field that is mapped to it. In this case, the destination field
stores only as many characters as can fit from the start of the string. Conversely, a string is left justified if the length of its destination field is
greater than the length of the source field. The remaining positions are filled with blanks.

Mapping To and From a VARCHAR Field

Mapping to a VARCHAR field is a complicated procedure because a VARCHAR field contains a length property. When a string is mapped into a
VARCHAR field, the length associated with that VARCHAR field is set to the length of the string, and the remaining character spaces in the
VARCHAR field are set to blanks. For example, assume the length of a VARCHAR field is 5, and the field contains the string . If it is'Hello'
mapped to a VARCHAR field with a maximum length of 10, then the destination field is set to ', and its length is set to 5.'Hello

If a source string is longer than the maximum length of a target VARCHAR field, the characters that fit into the field are mapped and the length is
set to the maximum length of the field. For example, if the string ' is mapped to a VARCHAR field with a maximum length of 3, the'Hello
destination field is set to and its length is set to 3. If a source string is shorter than a target VARCHAR field, any positions in the target not'Hel',
containing new data are set to blanks, and the length of the target is set to the length of the source.

When a CHAR field is mapped to a VARCHAR field, the length associated with the VARCHAR field is set to the defined length of the CHAR field,
even if the string in the CHAR field is shorter. Thus, if the string is stored in a CHAR (10) field and then mapped to a VARCHAR (20) field,'Hello'
the length of the VARCHAR field is set to the length of the CHAR field (10) and not to the length of the string (5).

In summary, assume B is a variable of type VARCHAR and A is a character value (a variable, a literal of type VARCHAR or type CHAR, or a
symbol of type CHAR). The length of B is determined from the length of A in a MAP A TO B statement as follows:

If length of A <= maximum length of B, then Length of B = length of A. The contents of B equals the contents of A padded with spaces to
the right.
If length of A > maximum length of B, then Length of B = maximum length of B. The contents of B equals the first "max length of B"
characters of A.

Example: Mapping Data to a VARCHAR Field

The following Rules code example illustrates how mapping data to a VARCHAR field affects its contents and length:

DCL
 CHAR_VAR_1 CHAR (10);
 CHAR_VAR_2 CHAR (20);
 VARCH_VAR_1 VARCHAR (15);
 VARCH_VAR_2 VARCHAR (20);
ENDDCL

MAP 'ABC ' TO CHAR_VAR_1
MAP '* MY LENGTH IS 20 *' TO CHAR_VAR_2
MAP 'ABC ' TO VARCH_VAR_1
> Copies the value 'ABC ' into varch_var_1 and <
> sets the length of varch_var_1 to 4, the length of 'ABC ' <

MAP CHAR_VAR_1 TO VARCH_VAR_1
> Copies the value 'ABC ' into varch_var_1 and <
> sets length of varch_var_1 to 10, the length of char_var_1 <

MAP CHAR_VAR_2 TO VARCH_VAR_1
> Copies the value ' MY LENGTH IS' into varch_var_1 and <*
> sets length of varch_var_1 to 15, the length of VARCH_VAR_1 <

MAP CHAR_VAR_2 TO VARCH_VAR_2
> Copies the value ' MY LENGTH IS 20 *' into varch_var_2 and<*
> sets length of varch_var_2 to 20, the length of VARCH_VAR_2 <

MAP VARCH_VAR_2 TO VARCH_VAR_1
> Copies the value ' MY LENGTH IS' into varch_var_1 and <*
> sets length of varch_var_1 to 15, the length of VARCH_VAR_1 <

MAP VARCH_VAR_1 TO VARCH_VAR_2
> Copies the value ' MY LENGTH IS ' into varch_var_2 and <*
> sets length of varch_var_2 to 15, the length of VARCH_VAR_1 <

Mapping To and From a TEXT or IMAGE Field

Fields of these types are stored as CHAR (256) fields, so the conditions that apply to CHAR fields also apply to TEXT and IMAGE fields. In
addition, mapping is the only operation you can perform on a TEXT or IMAGE field. That is, you can map a value between two TEXT fields or
between a TEXT field and a character field. Similarly, you can map a value between two IMAGE fields or between an IMAGE field and a character
field. You cannot map a value from a TEXT field to an IMAGE field, nor can you map a value from an IMAGE field to a TEXT field.

Example: Mapping to and from a TEXT or IMAGE Field

Assume that a rule contains the following statements:

DCL
 LOGO_FILE IMAGE;
 INFO_FILE_1 TEXT;
 INFO_FILE_2 TEXT;
 CHAR_FIELD CHAR (256);
ENDDCL

You can perform the following operations on these variables:

MAP 'd:\bitmaps\our_logo' TO LOGO_FILE
> Copies the indicated string to logo_file <

MAP LOGO_FILE TO CHAR_FIELD
> Copies the value in logo_file to char_field <

MAP INFO_FILE_1 TO INFO_FILE_2
> Copies the value in info_file_1 to info_file_2 <

Mapping To or From a DBCS or MIXED Field

You can map a MIXED field to another MIXED field or a DBCS field to another DBCS field. However, to map between data types where
assignment is not directly allowed, you must use the appropriate conversion function, either CHAR, MIXED, or DBCS. The MIXED and DBCS
data types are discussed in , and the conversion functions are discussed in .DBCS and MIXED Data Types Double-Byte Character Set Functions
Standard warnings about possible truncation still apply in any situation.

Whenever a value of any acceptable type is being assigned to a MIXED or DBCS variable, it is validated.

In Java and ClassicCOBOL, validation determines whether or not the source actually is a valid MIXED or DBCS value according to the specified
codepage. In OpenCOBOL, assignment does not perform such validation. It only verifies that the shift control characters are balanced for MIXED
fields.
In Java, the validation codepage is specified by the DBCS_VALIDATION_CODEPAGE parameter in the [VALIDATION] section of the
appbuilder.ini file. This ini setting can be changed without recompilation. If validation fails, an exception is raised at runtime.

In ClassicCOBOL, validation verifies that the shift control characters are balanced and both bytes of each DBCS character are either 0x40 (DBCS
space) or in the 0x41-0xFE (inclusive) range. If validation fails, the function returns spaces and in the case of DBCS data types an error message
is issued at runtime.

Example: Mapping to and from a DBCS or MIXED Field

This example applies to C, assuming that a rule contains the following statements:

DCL
 C1 CHAR (10);
 M1 MIXED (10);
 D1 DBCS (10);
ENDDCL

Assume also that the repository contains a:

Set SET_C of type CHAR (10) with symbols SYM_C_1
Set SET_M of type MIXED (10) with symbols SYM_M_1
Set SET_D of type DBCS (10) with symbols SYM_D_1

In that case, you use the following statements:cannot

MAP D1 TO C1
MAP D1 TO M1
MAP M1 TO C1
MAP M1 TO D1
MAP C1 TO M1
MAP C1 TO D1
MAP SYM_D_1 TO C1
MAP SYM_D_1 TO M1
MAP SYM_M_1 TO C1
MAP SYM_M_1 TO D1
MAP SYM_C_1 TO M1
MAP SYM_C_1 TO D1

Instead, you use these statements:must

MAP CHAR(D1) TO C1
MAP MIXED(D1) TO M1
MAP CHAR(M1) TO C1
MAP MIXED(C1) TO M1
MAP CHAR(SYM_D_1) TO C1
MAP MIXED(SYM_D_1) TO M1
MAP CHAR(SYM_M_1) TO C1
MAP DBCS(SYM_M_1) TO D1
MAP MIXED(SYM_C_1) TO M1
MAP DBCS(SYM_C_1) TO D1

The analogy holds true for character literals as well:

MAP CHAR ('ABCDE') TO C1
MAP MIXED ('ABCDE') TO M1
MAP DBCS ('#@') TO D1

These statements could also be written as:

MAP 'ABCDE' TO C1
MAP 'ABCDE' TO M1
MAP '#@' TO D1

Mapping a View to a View

AppBuilder uses two methods to map one view to another. The code generation utility selects the method to use; however, it is helpful to
understand how it chooses the methods and how they work.

Map Same-Named Fields
Map Same-Typed Fields

The first one is chosen by the code generation facility when there is at least one field in the source view that has the same name as the field in the
target view. If all the fields in the source and target views have different names, the second method is used.

Map Same-Named Fields

With this method, a field in the source view is copied to a field in the target view if both fields have the same name and occupy the same relative
position (only have same-named parents) in both views.

For example, assume you have two views, and , as shown in the following figure:APPLICANT EMPLOYEE

Two views for MAP example

The statement

MAP APPLICANT TO EMPLOYEE

copies the data in the fields:

CITY OF EMP_ADDR OF APPLICANT
STATE OF EMP_ADDR OF APPLICANT
NAME OF DOCTOR OF APPLICANT

to the corresponding fields:

CITY OF EMP_ADDR OF EMPLOYEE
STATE OF EMP_ADDR OF EMPLOYEE
NAME OF DOCTOR OF EMPLOYEE

The value in is not copied anywhere, because does not directly include any view named COMPANY of LAST_JOB of APPLICANT EMPLOYEE
. Nothing is copied into because does not directly include any view named LAST_JOB OFFICE of DEPARTMENT of EMPLOYEE APPLICANT

.DEPARTMENT
 is not copied to , because the source and destination views do not NAME of APP_NAME of APPLICANT NAME of EMP_NAME of EMPLOYEE

 include the fields and the views that include them are named differently.directly NAME

At this, fields not only should have the same name but in case when they are defined in the rule or in the procedure then the target and the source
must contain the same field. In the example below error is generated because fields of view are different from of view i, j v_glob i, j

.v_proc

Example: Mapping of fileds from different contexts is not allowed.

 DCL
 i,j INTEGER;
 v_glob VIEW CONTAINS i,j;
 ENDDCL

 PROC proc_view : INTEGER
 DCL
 i,j INTEGER;
 v_proc VIEW CONTAINS i,j;
 ENDDCL

 MAP v_proc TO v_glob
 *> ERROR: 13305-S View V_PROC cannot be mapped to view V_GLOB.
 Same-typed fields view map is deprecated feature. <*

 PROC RETURN(0)
 ENDPROC

Map Same-Typed Fields

This feature is deprecated since RFX CG0500.

For example, a SMALLINT field is converted to an INTEGER and copied to an INTEGER field if both fields are the first (or second, or third...)
fields in their respective views.

CLEAR Statement

A CLEAR statement sets the value of the specified variable to its initial value. Refer to for information about initial values. IfInitializing Variables
CLEAR is applied to a view, the result is the same as if CLEAR were applied to every field and subview of that view.

CLEAR Syntax

clear_statement:
 CLEAR variable_data_item
 CLEAR view

where:

variable_data_item – see .Variable Data Item
view – see .View

OVERLAY Statement

An OVERLAY statement copies the value of the first item into the second item. The system determines the starting memory location of the first
variable, copies that data into one block, determines the starting memory location for the second variable, and moves the block of data to that
location. Thus, an OVERLAY action is a blind, byte-by-byte, memory copy. Although bypassing the safety mechanism of a MAP statement is one
of the main purposes to use the OVERLAY statement, be aware of the platform-dependent storage differences. For example, because DEC data
items are packed on the host, they have more bytes on the workstation than on a host.

OVERLAY Syntax

overlay_statement:
 OVERLAY view TO field
 OVERLAY source_for_view TO view

source_for_view:
 one of view expression field

where:

variable_data_item – see .Variable Data Item
view – see .View
character_literal is a Character literal – see .Character Value

Valid combinations of OVERLAY statements are:

OVERLAY view TO view

OVERLAY view TO field
OVERLAY expression TO view
OVERLAY field TO view, where field is of type CHAR or VARCHAR.

Where can be any expression resulting in the value of type CHAR or VIEW except:expression

HIGH_VALUE and LOW_VALUE
aggregate

Regardless of the platform, the data items of the following types are allocated the same amount of memory, and it is safe to overlay one data item
with another of the same type, they have the same memory offset in the source and the destination:if

SMALLINT
INTEGER
DATE
TIME
TIMESTAMP
CHAR

Special considerations exist when using the OVERLAY statement with the following data types:

Using OVERLAY Statement with VARCHAR Data Types
Using OVERLAY Statement with DEC and PIC Data Types
Using OVERLAY Statement with Data Items of Different Length
Using OVERLAY Statement in Multiple-Occurring Views

For language-specific considerations of the OVERLAY statements, refer to the following topics:

OVERLAY Statements in C
OVERLAY Statements in Java
OVERLAY Statements in ClassicCOBOL
OVERLAY Statements in OpenCOBOL

Example: Using OVERLAY with SMALLINT, INTEGER, and TIMESTAMP

If a rule contains the following declarations and initialization statements:

DCL
 V_int INTEGER;
 V_small_1, V_small_2 SMALLINT;
 V_stamp TIMESTAMP;
 V_view_1 VIEW CONTAINS V_int, V_stamp;
 V_view_2 VIEW CONTAINS V_small_1, V_small_2, V_stamp;
ENDDCL

MAP timestamp TO V_stamp OF V_view_1

It is safe to assume that the statement OVERLAY TO results in the correct value in OF and that thisV_view_1 V_view_2 V_stamp V_view_2
value is the same as the value of OF because both fields have the same memory offset 4 in the source and in theV_stamp V_view_1
destination.

In AppBuilder 2.1.3 and 2.0.3.4, you can use any function returning a value without being a view as a source of an OVERLAY
statement.

Example: SUBSTR () function as source of the OVERLAY statement for all platforms

OVERLAY SUBSTR(str_1, 1, 31) TO VIEW_1

Using OVERLAY Statement with VARCHAR Data Types

Use extreme caution when using an OVERLAY statement with VARCHAR data items. Internally, a VARCHAR length information is stored in its
first two bytes. This is accounted for when you use a VARCHAR variable in a MAP statement, so this length information does not cause any
problems. However, you must compensate for this fact when using an OVERLAY statement with a VARCHAR variable. Using an OVERLAY

statement with VARCHAR data is platform-dependent.

If the destination is a VARCHAR field, then an OVERLAY statement copies bytes from the source (where is the lesser of the two values:n n
source length and maximum length of VARCHAR field) into the destination field, starting from the third byte. The first two bytes of the destination
field contain value .n

Example: Using OVERLAY with VARCHAR Data Types

Example 1: OVERLAY Statement with VARCHAR data types
If a rule contains the declarations and initialization statements:

DCL
 V_varchar_5_1 VARCHAR(5);
 V_varchar_5_2 VARCHAR(5);
 V_varchar_9 VARCHAR(9);
 V_view_1 VIEW CONTAINS V_varchar_5_1;
 V_view_2 VIEW CONTAINS V_varchar_5_2;
 V_view_3 VIEW CONTAINS V_varchar_9;
ENDDCL

MAP 'Hello' TO V_varchar_5_1

then the statement

OVERLAY V_view_1 TO V_varchar_5_2

results in having a length of 5 and containing '##Hel', where ## stands for two ASCII characters representing the ASCII value ofV_varchar_5_2
the number of bytes copied from the source view . The number of bytes cannot exceed the length of the destination, which is 5 in thisV_view_1
instance. These ASCII characters would have binary values of 5 and 0.

Although tolerated by the Rules Language, putting the binary value 0 in a VARCHAR can cause some undesirable results. For
example, the apparent truncation of data on display can affect system routines that treat the 0 as a string terminator.

The statement

OVERLAY V_view_1 TO V_varchar_9

results in having a length of 7 and containing '##Hello', where ## stands for two ASCII characters representing the ASCII value ofV_varchar_9
the length of field. In this case, the ASCII characters would have binary values of 5 and 0.V_varchar_5_1

However, the statements

OVERLAY V_view_1 TO V_view_2
OVERLAY V_view_1 TO V_view_3

result in and containing the same value 'Hello'. This happens because here the destination is seen as a ,V_varchar_5_2 V_varchar_9 view
rather than as a VARCHAR, and no offsetting is done to deal with the first two bytes of the VARCHAR.

Example 2: Comparing the results of MAP statement and OVERLAY statement

Suppose a rule contains the following declaration:

DCL
 CHAR_VAR_1 CHAR (5);
ENDDCL

and also includes the following view:

Then the statements:

MAP 'Hello' TO CHAR_VAR_1
MAP CHAR_VAR_1 TO VARCHAR_VAR_1

result in VARCH_VAR_1 containing 'Hello'. However, if you were to then use the following statement:

OVERLAY VIEW_C TO CHAR_VAR_1

the variable would contain '??HEL', where ?? stands for the ASCII value of the binary length of the VARCHAR variable. In this case,CHAR_VAR_1
the ASCII equivalent of binary 5 would be null-ENQ.

Using OVERLAY Statement with DEC and PIC Data Types

Use extreme caution when using the OVERLAY statements with PIC and DEC data items. Only DEC or PIC data items that have the same length
and scale should be used in the OVERLAY statements. No assumption can be made about the amount of memory allocated for the storage of
DEC and PIC data items.

For example, although it might seem that DEC(27,20) and DEC(27,25) have the same representation because they have the same amount of
memory allocated for their storage, the representation and contents are different; overlays between the two types result in invalid representation
and corrupt data. AppBuilder is not designed to work with corrupted PIC and DEC data items.

For details about the Java generation of the OVERLAY statement with DEC and PIC data types, see also .OVERLAY Statements in Java

Using OVERLAY Statement with Data Items of Different Length

Use extreme caution when overlaying data items that have different lengths. If a data item used as destination in an OVERLAY statement is
longer than the source data item, the semantics of the OVERLAY statement can vary on different platforms.

On some platforms, OVERLAY performs a byte-by-byte copy of the source then fills the rest of the target with blanks. On other platforms,
however, the rest of the target remains unchanged. If the source is longer than the destination, then only the number of bytes equal to the length
of the destinations is copied. This behavior should be taken into consideration when overlaying multiple-occurring views.

The OVERLAY statement for multiple-occurring views does not use the same algorithms as the MAP statement, and performs memory copy of all
occurrences of the source view to the destination address.

For details about the Java generation of the OVERLAY statement with data items of different length, see also .OVERLAY Statements in Java

Example: OVERLAY Statement with data items of different length

The following example describes a situation where the OVERLAY statement fails. If a rule contains the following declarations and initialization
statements:

DCL
 V_char_3 CHAR(3);
 V_char_2 CHAR(2);
 V_char_5 CHAR(5);
 V_smallint SMALLINT;
 V_view_1 VIEW CONTAINS V_char_3, V_char_2;
 V_view_2 VIEW CONTAINS V_char_5;
 V_view_11 VIEW CONTAINS V_view_1(10), V_smallint;
 V_view_22 VIEW CONTAINS V_view_2(9), V_smallint;
 I smallint;
ENDDCL

MAP 32 TO V_smallint OF V_view_22
DO TO 9 INDEX I
 MAP 'Hello' TO V_char_5 OF V_view_22 (I)
ENDDO

Then the statement

MAP V_view_22 TO V_view_11

results in V_smallint OF V_view_11 containing the value 32, and the rest of the fields in V_view_11 remain unchanged. However, the statement

OVERLAY V_view_22 TO V_view_11

results in:

The first nine occurrences of in contain the value 'Hel' in the field and the value 'lo' in the field V_view_1 V_view_11 V_char_3
 .V_char_2

The tenth occurrence in contains the value '##' in the field (note that the third character is a blankV_view_1 V_view_11 V_char_3
symbol and '##' stands for two ASCII characters that represent binary value 32) and character value contains blanks in the field

.V_char_2
V_smallint contains value 8224 on the PC, which is an integer representation of the two bytes containing blanks.

The value of field after the overlaying to is 0 in Java generation.V_smallint V_view_22 V_view_11

Using OVERLAY Statement in Multiple-Occurring Views

The OVERLAY statement deals with multiple-occurring views in exactly the same way it does for non-multiple-occurring data items. In both cases,
a block copy of memory occurs.

Results of OVERLAY VIEW_A TO VIEW_B shows the results of an OVERLAY from to .VIEW_A VIEW_B

Results of OVERLAY TO VIEW_A VIEW_B

1.

2.
3.

The data in the fields of is copied and the copied data replaces the stored representation of . Where the structures of the twoVIEW_A VIEW_B
views differ, the data is divided differently into fields. For instance, the first ten characters of the stored representation of store theVIEW_A
contents of the fields , , and : the strings 'aaaaa', 'bbbb', and 'c', respectively. However, when is overlaid on , those firstA1 A2 A3 VIEW_A VIEW_B
ten characters in storage are used to fill fields , , and .B1 B2 B3

Because only the first three characters fit into , the last two characters of and the first character of are used for , and ends upB1 A1 A2 B2 B2
holding 'aab'.

B3 is defined to hold four characters: 'bbbc', which consist of the remaining three characters from and the single character of . OVERLAY isA2 A3
left justified, and characters that exceed the length of an overlaid field are truncated.

You can also OVERLAY a character expression to a view and a view to a character field. If in VIEW_A Results of OVERLAY VIEW_A TO VIEW_B
was a character literal or a character field that contained the string 'aaaaabbbbcdddeeeee', would end up with the same data in the sameVIEW_B
fields. If was as shown, and was a character field at least 18 characters long, would be set to 'aaaaabbbbcdddeeeee'.VIEW_A VIEW_B VIEW_B

Redefining Views

You can have one view redefine another view, meaning that the data contained in the two views are stored at the same address in memory.
Essentially, the two views are just different names for the same collection of data allowing you to use multiple definitions for the same memory
space. This is an alternative to overlaying views, which copies the data from one area in memory to another thus creating two copies of the same
data.

Java does support redefining views.not

Procedure - Redefining a View with Another View

Follow these steps to have a view redefine another view:

Open the Construction Workbench and the Hierarchy window.

Create a "View Includes View" relationship between the two views, making the original view as the parent and the redefined view as the
child.

Although these two views are created as parent and child, they are really clones – two names for the same view.

Double-click the relationship line between the two views to bring up the "Edit view includes" window.
Change the Null indicator property to Redefines View.

The following restrictions apply to using redefined views:

The first view cannot be a locally-declared view.
The length of the second view must be less than or equal to the length of the first view. This is not enforced, but you encounter errors if
the second view exceed the length of the first view.

Condition Statements

Condition statements direct processing control within a rule to one group of statements or another depending on the value of a condition. The
following statements are described in this chapter:

IF Statement
CASEOF Statement
DO Statement

Condition Statement Syntax

condition_statement:

 one of if_statement caseof_statement do_statement

IF Statement

An IF statement routes control between two groups of statements, depending on the truth or falsity of a condition. If the condition is true,
processing continues with the statements following the condition but before the ELSE clause (or before ENDIF, if there is no ELSE clause). If the
condition is false, processing continues with any statements following the optional ELSE. If the condition is false and there is no ELSE, no
statements are executed.
Upon completion, processing continues with the statement following ENDIF.
It is possible to nest IF statements. The nest depth depends on the target language (COBOL, C, or Java) compiler possibilities.

IF Statement Syntax

if_statement:

 if_part [else_part] ENDIF

if_part:

 IF condition statement_list

else_part:

 ELSE statement_list

where:

condition---see .Condition Operators
statement is any Rules Language statement, except a declarative statement.

Examples: IF Statement and Nesting IF Statements

The following are examples of IF statement and nesting IF statements.

Example 1: IF Statement

IF EVENT_SOURCE OF HPS_EVENT_VIEW = 'UPDATE'
MAP CUSTOMER_DETAIL TO UPDATE_CUSTOMER_DETAIL_I
USE RULE UPDATE_CUSTOMER_DETAIL
ELSE
MAP 'NO_CHANGE' TO RETURN_CODE OF
DISPLAY_CUSTOMER_DETAIL_O
ENDIF

Example2 : Nesting IF Statements

IF EVENT_SOURCE OF HPS_EVENT_VIEW='UPDATE'
IF CUSTOMER_DETAIL <> UPDATE_CUSTOMER_DETAIL_I
MAP CUSTOMER_DETAIL TO UPDATE_CUSTOMER_DETAIL_I
USE RULE UPDATE_CUSTOMER_DETAIL
ELSE
MAP "No changes detected" TO UPDATE_STATUS OF CUSTOMER_WND_I
ENDIF
ELSE
MAP 'NO_CHANGE' TO RETURN_CODE OF DISPLAY_CUSTOMER_DETAIL_O
ENDIF

CASEOF Statement

A CASEOF statement routes control among any number of groups of statements, depending on the value of a field. The CASEOF statement is a
shorter way of expressing the same flow of control that nested IF statements produce.
A CASEOF statement determines which one, if any, of the literals or symbols in its subordinate CASE clauses equals the value in the field in the
CASEOF clause. Processing continues with the statements following that CASE clause. If none of the CASE clauses equal the value in the field,
processing continues with the statements following the optional CASE OTHER. If none of the CASE clauses equal the value in the field and there
is no CASE OTHER clause, no statements are executed.
Upon completion, processing continues with the statement following ENDCASE.

CASEOF Statement Syntax

caseof_statement:

 CASEOF field_name (case_clause_part)* [caseother_part] ENDCASE

case_clause_part:

 CASE selector (selector)* statement_list

caseother_part:

 CASE OTHER statement_list

selector:

 ‘character_literal’

 numeric_literal

 symbol_name [IN set_name]

 ‘(‘ object_variable . static_field_name ‘)’

 ‘(‘ class_alias . static_field_name ‘)’

where selector has the following form:

The last form of selector is available only in Java.
where:

symbol_name – see .Symbol
statement is a sequence of any Rules Language statement, except a declarative statement.
static_field_name is the name of the field of a suitable type, that is, a type with constants that can appear as a selector. Allowable types
are:
Numeric
Character

Usage

The literals or symbols in the CASE clauses must be compatible with the type of field in the CASEOF clause. In Java, ClassicCOBOL,
OpenCOBOL, and C#, selector can be given by FUNC ('character_literal'), where FUNC is one of MIXED, DBCS or CHAR.
A literal or symbol can appear only once within the CASE clauses of a single CASEOF statement.
Thus, it is illegal to have:

CASE 5
statements
CASE 5
statements

in the same CASEOF statement. However, the CASE clauses need not contain or cover all possible values. In addition, as with any use of a
string literal, a CASE clause is case-sensitive.

Also note that when a symbol has the same name as a rule, an ambiguity can arise in a CASE statement as to whether the symbol is meant or a
rule. Such an ambiguity is always resolved in favor of set symbol. If rule call is intended, then USE RULE statement should be used. For example,
code this:

CASE AMBIGUOUS_NAME
USE RULE AMBIGUOUS_NAME

rather than this:

CASE AMBIGUOUS_NAME
AMBIGUOUS_NAME

For specific considerations, refer to .CASEOF in Java

Example: CASEOF statements

In the statement

CASEOF LETTER
CASE 'A' 'E' 'I' 'O' 'U' 'a' 'e' 'i' 'o' 'u'
MAP 'Vowel' TO LETTER_TYPE
CASE 'Y' 'y'
MAP 'Sometimes vowel' TO LETTER_TYPE
CASE OTHER
MAP 'Consonant' TO LETTER_TYPE
ENDCASE

the character field LETTER_TYPE is set to one of the character literals 'Vowel', 'Sometimes vowel', or 'Consonant', depending on the value of the
character field LETTER. The statement

CASEOF YEARS_AS_EMPLOYEE
CASE 5
MAP 'Certificate' TO BONUS_ITEM
CASE 10
MAP 'Plaque' TO BONUS_ITEM
CASE 25
MAP 'Watch' TO BONUS_ITEM
ENDCASE

sets BONUS_ITEM to the gift appropriate for an employee bonus after the indicated years of employment.

The following shows a skeleton example of the use of a CASEOF construct along with the semantically identical translation to a set of nested IF
statements.

CASEOF TRANS_CODE
CASE 'A' 'C'
statement 1
statement 2
CASE 'M' 'U'
statement 3
CASE 'X'
statement 4
statement 5
CASE OTHER
statement 6
ENDCASE

The IF statement equivalent of the above is:

IF TRANS_CODE = 'A' OR TRANS_CODE = 'C'
statement 1
statement 2
ELSE
IF TRANS_CODE = 'M' OR TRANS_CODE = 'U'
statement 3
ELSE
IF TRANS_CODE = 'X'
statement 4
statement 5
ELSE
statement 6
ENDIF
ENDIF
ENDIF

DO Statement

A DO statement provides control for repetitive loops. If a DO statement contains a WHILE clause, any statements between DO and ENDDO are
executed repetitively as long as the condition in the WHILE clause is true and the TO bound is not reached. When one of the conditions
mentioned becomes false, control passes from the WHILE clause to the statement following the ENDDO.

DO Statement Syntax

do_statement:

 DO do_clauses [statement_list] [while_clause] ENDDO

do_clauses:

 [FROM numeric_expression] [TO numeric_expression] [BY numeric_expression] [INDEX field_name]

while_clause:

 WHILE condition [statement_list]

where:

condition---see .Condition Operators
numeric_expression---see .Numeric Expressions
statement is any Rules Language statement, except a declarative statement.

Usage

A DO statement provides control for repetitive loops. If a DO statement contains a WHILE clause, any statements between DO and ENDDO are
executed repetitively as long as the condition in the WHILE clause is true. When the condition becomes false, control passes from the WHILE
clause to the statement following the ENDDO. The WHILE clause can be at the top of the loop, at the bottom of the loop, or anywhere in the
middle. Nevertheless, if the WHILE condition is true but the ending value of a counter is reached (see), the loop finishes and controlTO clause
passes from the WHILE clause to the statement following the ENDDO.
A DO statement does not have to contain a WHILE clause. However, if it does not, it must contain at least one of the following four counter
clauses that govern execution of the loop:

FROM clause

Specifies the starting value for a counter.

TO clause

Specifies the ending value of a counter.

BY clause

Specifies how much to increment the counter with each execution of the loop.

INDEX clause

Specifies the name of a field to use as the counter. Its value changes with each execution of the loop. FLOAT and DOUBLE fields are not
allowed.

A DO statement with one of these clauses is called an indexed DO.

Indexed DO Statements

The following restrictions apply to an indexed DO statement:

It must contain at least one FROM, TO, BY, or INDEX clause.
If INDEX clause is present the expression following a FROM, TO, and BY must resolve to a counter type. If it does not, then the system
converts the expression value to the counter type. If INDEX clause is not present then the type of the counter provided by system
depends on the type of the expression following a FROM, TO, and BY.
The system provides a default value for any FROM, BY, or TO clause if you do not provide one. The following table lists these default

values.

Statement Default value

FROM 1

BY 1

TO 32,766

The INDEX clause is optional. The system provides its own counter variable if you do not.
The value in the TO clause is inclusive. Thus, a loop containing

DO FROM 1 TO 10

executes ten times.

If a BY clause forces the counter above the TO value, the loop is finished. Thus, a loop containing

DO FROM 1 TO 10 BY 4

executes three times (for the values 1, 5, and 9).

Upper bounds of FROM and BY clauses are defined by the type of the loop counter as follows: constants specified in these clauses cannot
exceed the maximum value allowed for the type of the loop counter. For example, if SMALLINT counter is specified then constants in FROM and
BY clauses cannot exceed value 32766. In other case an error is generated. Constants specified in the TO clause can exceed the maximum
value for the type of the counter but in this case a warning is generated.

Platform specific information

For platform specific information, see . Indexed DO Statements in Java

DO Statement Restrictions

When generating the target code, the goal is to produce the most efficient and the most readable code, using the constructions of the target
language as much as possible.
None of the target languages (COBOL, Java and C) supports detection of the overflow condition for the loop index. Because of this restriction, the
Rules Language also does not support overflow detection.
For example, the execution of the following loops will never stop:

DO TO 32767 ENDDO
DO BY 3 TO 32765 ENDDO
DO BY 100 ENDDO

All of the above loops will have internal loop counter generated as 2-byte integer (SMALLINT type in Rules Language), which at some point will
become a negative number because of the undetected overflow when adding BY value to the index.

This problem can only be seen in the following cases:

when FROM, BY and TO values are such that after iteration number N:

BY > 0 and
FROM+BY*N <= TO and
FROM+BY*(N+1) > MAX

or

BY < 0 and
FROM+BY*N >= TO and
FROM+BY*(N+1) < MIN

where:

MAX is the maximum value for the data type used for the index: 32767 for smallint, 2147483647 for integer, 999 for DEC(3,0) and so on.
MIN is the minimum value for the data type used for the index.

For platform specific restrictions, see .DO Statements in OpenCOBOL

Examples: Using DO Statements

For the first two examples, assume that = 2 and = 1 before the loop executes.TOTAL_AMOUNT TOTAL_LIMIT

Example 1
In Example 1, the preceding DO statement executes statements 1 and 2 once before leaving the loop.

DO
WHILE TOTAL_AMOUNT > TOTAL_LIMIT
statement 1
statement 2
MAP (TOTAL_AMOUNT - 1) TO TOTAL_AMOUNT
ENDDO

Example 2
In Example 2, the preceding DO statement executes statements 1 and 2 twice before leaving the loop.

DO
statement 1
statement 2
WHILE TOTAL_AMOUNT > TOTAL_LIMIT
MAP (TOTAL_AMOUNT - 1) TO TOTAL_AMOUNT
ENDDO

Example 3
In Example 3, the preceding DO statement executes from 1 to the value contained in LOOP_END by the value in STEP_VAR, incrementing
COUNTER_VAR as it does so.

DO TO LOOP_END BY STEP_VAR INDEX COUNTER_VAR
statement 1
statement 2
ENDDO

Example 4
In Example 4, the FROM clause and statements 1 and 2 execute, and then the condition for the WHILE loop is checked. So long as the WHILE
condition is true, the FROM loop controls processing. When the WHILE condition becomes false, control continues with the statement following
the ENDDO.

DO FROM START_LEVEL INDEX COUNTER
statement 1
statement 2
WHILE CODES (COUNTER) <> TERM_CODE IN VALID_CODES
ENDDO

Transfer Statements
Transfer statements switch control of an application from one rule to another to perform another task, from a rule to a window to have the window
appear on the screen, from a rule to a report to print the report, or from a rule to an internal procedure. Return statements return control to a rule.
The following transfer statements are described in this chapter:

USE Statements
CONVERSE Statements
RETURN Statement
PERFORM Statement
PROC RETURN Statement

Transfer Statement Syntax

transfer_statement:

 use_statement

 converse_statementF

 return_statement

 perform_statement

 proc_return_statement

USE Statements

A USE statement transfers the logic flow of an application to another rule or to a component. You can specify the input view directly in a RULE
call. The called rule or component then directs control of the application. After it and any rules or components it calls finish processing, control
returns to the calling rule. The calling rule resumes processing at the statement after the USE statement that invoked the called rule or
component. The following topics are discussed in this section:

USE RULE Statement
USE RULE ... NEST Statement
USE RULE ... DETACH Statement
Passing Data to a Rule
USE RULE ... INIT Statement
USE COMPONENT Statement

USE Statement Syntax

use_statement:

 [USE RULE] rule_name [‘(‘ rule_comp_parameter ‘)’] [nest_detach_init_part]

nest_detach_init_part:

 NEST [INSTANCE file_name]

 DETACH [INSTANCE file_name] [OBJECT field_name]

 INIT [TERMINAL character_expression] [start_clause numeric_value]

start_clause:

 one of STARTTIME STARTINTERVAL

rule_comp_parameter:

 view

 aggregate

 expression (, expression)*

where:

character_expression---see .Character Expressions
numeric_expression---see .Numeric Expressions
numeric_value---see .Numeric Value
view---see .View

USE RULE Statement

A USE RULE statement transfers control, or , to another rule. There are several variations of the USE RULE statement:calls

A simple USE RULE statement invokes another rule without any special instructions. If the called rule converses a window, all other
windows in its application are removed before its window appears. Its window is modal; that is, users cannot return to the previous
window until they perform some action in that window.
A USE RULE..NEST statement invokes another rule, and if the called rule converses a window, it instructs the called rule to overlay its
window over other windows of the application that are currently visible. That is, the windows displayed to the user are "nested" one on top
of the other. A nested window is also modal.
A USE RULE..DETACH statement invokes another rule and instructs the called rule to share control with the calling rule. Any window the
called rule converses is still nested, but is non-modal. Thus, a user can switch between that window and any other currently visible
window at any time by simply selecting something in the desired window. An INSTANCE clause after a USE RULE?DETACH statement
allows "multiple occurrences" of the same window to be displayed at the same time. A window conversed by a detached rule is also
called a non-modal secondary window. Refer to "Event-driven Processing" in the for more information.Developing Applications Guide
A USE RULE..INIT statement spawns an independently running AppBuilder host online rule.

The using clause is optional, depending on the existence of an input or an output view.
The called rule defines the input and output views in its linkage section and creates the linkage using the procedure division statement.

Invoking Subrules

Rules Language provides two methods to invoke subrules:

USE RULE statement
a "procedure call"-like expression

If a field, view or procedure hides the rule name, it can still normally be used in a USE RULE statement.

Notes for USE RULE

When a rule is invoked, data item initialization is performed. For details about data item initialization, refer to .Initializing Variables
See for OpenCOBOL specific information.USE RULE Statement in OpenCOBOL

For information about using display rules for the thin client, refer to the .Developing Applications Guide

A rule can always use another rule if they both have the same execution environment. However, a rule generally cannot use a rule with a different
execution environment, except as shows.Rule Using Rule Support

Execution Environments shows the abbreviations used in .Rule Using Rule Support

 shows the possible combinations of Rule using Rule when the execution environment of each rule isRule Using Rule Support
specified as a property of the Rule. You can also specify the execution environment of a rule by using a Partition. If you attach a
Rule to a Partition (through its parent process), the rule's execution environment is that of the Machine entity that is associated
with the Partition. When you prepare a Rule in configuration mode (using Partitions), the execution environment specified for
the Partition overrides the execution environment specified for any rule attached to the Partition.

You can prepare client-side rules of a distributed application without using Partitions only if the ALWAYS_USE_DNA key in the [AE runtime]
section of the client side Hps.ini file is set to YES at runtime. Because this setting causes a significant performance degradation, we recommend
using it only in a development environment while testing small portions of your application.

Execution Environments

Abbreviation Execution environment Explanation

PC PC Workstation Workstation online rule

PCCICS on PC PC & IBM Mainframe (CICS) When prepared on a workstation, this kind of rule is treated like a PC Workstation rule

PCCICS on MVS PC & IBM Mainframe (CICS) When prepared on the host, this kind of rule is treated like an IBM Mainframe (CICS) rule

CICS IBM Mainframe (CICS) MVS host online rule

CICS&Batch IBM Mainframe (CICS & Batch) Either MVS batch or CICS, depending upon the environment of the calling rule

Batch IBM Mainframe Batch (MVS) Batch mode under MVS

IMS IBM Mainframe (IMS) MVS host online rule

PCIMS on PC PC & IBM Mainframe (IMS) When prepared on a workstation, this kind of rule is treated like a PC Workstation rule

PCIMS on MVS PC & IBM Mainframe (IMS) When prepared on the host, this kind of rule is treated like an IBM Mainframe (IMS) rule

Rule Using Rule Support

 Called
Rule

Calling rule PC PCCICS on
PC

PCCICS on
MVS

CICS CICS&Batch Batch IMS PCIMS on
PC

PCIMS on
MVS

PC Y Y Y Y Ya N Y Y Y

PCCICS on PC Yb Y Y Y C N Y Y Y

PCCICS on MVS N N Y Y C N N N N

CICS N N Yb Y C N N N N

CICS&Batch N N N Wc Ya Wc N N N

Batch N N N N B Y N N N

IMS N N N N N N Y N Yb

PCIMS on PC Y Y Y N N N Y Y Y

PCIMS on MVS N N Y N N N Yd N Y

Y=Yes (valid combination)
C=CICS
B=Batch
N=No (invalid combination)
W=Warning (valid but be
careful)

a)The way a called rule with an execution environment of CICS&Batch is executed depends on its calling rule. If the calling rule is online (PC,
PCCICS, or CICS), the called rule is executed as a CICS program. If the calling rule is Batch, the called rule is executed as an MVS batch

program. If the calling rule is itself CICS&Batch, then the execution mode of the called rule is determined by going up the application hierarchy
 until a calling rule is found that is either online or Batch.

b)This combination runs but is not recommended because it is not portable. If the calling rule is prepared instead on the MVS host, then it cannot
 call the PC rule because a host rule cannot call a workstation rule.

c)A warning is issued if a CICS&Batch rule calls either a CICS rule or a Batch rule. This is because a CICS&Batch rule inherits its execution mode
from its calling rule (see note 1); therefore, the following combinations can result but would not run: An online rule calls a PCCICS rule, which calls

 a Batch rule. A Batch rule calls a PCCICS rule, which calls a CICS rule.
d)This combination runs but is not recommended because it is not portable. If the calling rule is prepared instead on the MVS host, then it cannot
call the PC rule because a host rule cannot call a workstation rule.

USE RULE ... NEST Statement

Use NEST only with a rule that converses a window. There is no imposed limit on the number of windows that can be nested on a workstation,
although memory determines the practical limit. Typically, 15 nested windows is a practical limit. In 3270 Converse applications, you can nest only
one window.

USE RULE ... DETACH Statement

Use DETACH only with a rule that converses a window. Both the calling rule and the called rule must be PC Workstation rules.

An INSTANCE clause creates a unique instance of the rule. The character value in the INSTANCE clause is the instance name and must be a set
symbol, a literal, a MIXED field, or a character field up to 30 characters long.

The following restrictions apply to detached rules:

There can be only five levels of detached rules.
Detached rules cannot use Dynamic Data Exchange (DDE).
3270 Converse applications do not support modeless windows.

USE RULE ... DETACH and USE RULE ... NEST statements for OpenCOBOL generate a normal rule call, also issuing a
WARNING message that informs you what had been done.

See for Java specific information.Use RULE ... DETACH OBJECT statement in Java

Passing Data to a Rule

AppBuilder Rules Language supports two methods of passing data to a rule invoked with a USE RULE statement:

Mapping Data to the Input View
Passing Data in the USE RULE Statement

Mapping Data to the Input View

One method of passing data to a rule is to map the data into the input view of the called rule in a previous assignment statement, as shown in the
following example:

MAP CUSTOMER_DETAIL TO UPDATE_CUSTOMER_DETAIL_I
USE RULE UPDATE_CUSTOMER_DETAIL
 IF RETURN_CODE1 OF UPDATE_CUSTOMER_DETAIL_O <> 'FAILURE'
 MAP 'UPDATE' TO RETURN_CODE OF
 DISPLAY_CUSTOMER_DETAIL_O
ENDIF

If the HPS_EVENT_VIEW registers that the menu choice is selected, the rule calls UPDATE_CUSTOMER_DETAIL, which stores theUpdate
data from CUSTOMER_DETAIL to a file. However, before it invokes UPDATE_CUSTOMER_DETAIL, the rule maps the data from the window
view CUSTOMER_DETAIL into UPDATE_CUSTOMER_DETAIL_I, the input view of the rule UPDATE_CUSTOMER_DETAIL.

DISPLAY_CUSTOMER_DETAIL maps either 'UPDATE' or 'NO_CHANGE' into its own output view to tell the rule that called it whether the data
from the window have been stored.

Passing Data in the USE RULE Statement

A second method of passing data to a rule is to include the data in the USE RULE statement itself. For example, suppose the rule
INTEGER_SUM has an input/output view named INTEGER_SUM_IO_VIEW containing the integers p1, p2, and res. Another rule can invoke
INTEGER_SUM as follows:

DCL
I1, I2 INTEGER;
V VIEW CONTAINS P1, P2, RES;
ENDDCL
...
>OLD VARIANT<
MAP I1 TO P1 OF INTEGER_SUM_IO_VIEW
MAP I2 TO P2 OF INTEGER_SUM_IO_VIEW
USE RULE INTEGER_SUM

>NEW VARIANT 1<
USE RULE INTEGER_SUM (I1, I2, 0)

>NEW VARIANT 2<
MAP I1 TO P1 OF V
MAP I2 TO P2 OF V
USE RULE INTEGER_SUM (V)

>NEW VARIANT 3<
USE RULE INTEGER_SUM (2*I1, 34*I2, 0)

Restrictions on Use

Whether RULE_1 can use RULE_2 depends on the execution environments of both the "caller," RULE_1, and the "called," RULE_2. Rules Using
 shows the valid interrelationships between calling and called rules---in terms of the execution environment. The choices of executionRules

environments include the following:

PC (also referred to as "Workstation")
CICS (host online)
MVSBAT (pure batch mode under MVS, executed through JCL)
MVS (rules/components that can be used either in MVSBAT or CICS mode)
IMS PC, CICS, and IMS are online environments. MVSBAT is a batch environment. MVS means either CICS or MVSBAT, depending on
the nature of the caller. If the caller RULE_1 is online, the MVS rule or component RULE_2 is to be executed as a CICS program. If
RULE_1 is MVSBAT, RULE_2 is to be executed as an MVSBAT program. If RULE_1 is MVS, the online or batch nature of RULE_2, and
also RULE_1, is inherited from the caller of RULE_1.

Rules Using Rules

Calling Rule Type Called Rule
type

 PC CICS MVSBAT MVS IMS

PC Y Y N Y Y

CICS N N N O N

MVSBAT N N Y B N

MVS N W W Y N

IMS N N N N Y

Y=Yes (valid combination) N =(invalid combination) O=Online B=Batch W=Warning (valid
but use caution)

If RULE_2 is MVS, the AppBuilder application execution system knows both an online executable file and also a batch
executable file of RULE_2. If the caller RULE_1 is PC, the online version of RULE_2 is invoked. If the MVS rule RULE_1 uses a
CICS rule or an MVSBAT rule, code generation prompts you with a warning if RULE_1 is in Online mode and RULE_2 is in
MVSBAT mode or vice versa.

For purposes of , a rule that has an environment of PCCICS is the same as a PC rule if prepared on a workstation and is theRules Using Rules
same as a CICS rule if prepared on the host. Likewise, a PCIMS rule is the same as a PC rule if prepared on a workstation and an IMS rule if
prepared on the host.

USE RULE ... INIT Statement

A USE RULE...INIT statement initiates the execution of the called rule, and any rules and components it calls, and causes the called rule to run
independently from the calling rule. The initiated rule must be a host online rule (with which it has an existing relationship), with one of the IBM
mainframe execution environments, either CICS, CICS & Batch, or IMS. You can use a USE RULE...INIT statement by itself or with the following
clauses:

A TERMINAL clause specifies the terminal on which the initiated rule is to run. The character value within the clause is the ID of the
terminal; only the first four characters are recognized. You can initiate a rule on only one terminal with each USE RULE..INIT TERMINAL
statement, and that terminal must be signed on at the time the statement is executed.
A STARTTIME clause indicates a specific time for the execution of the initiated rule. The numeric value within the clause indicates the
time when the rule starts to execute.
A STARTINTERVAL clause delays the execution of the initiated rule. The numeric value within the clause indicates how long from the
execution of the statement until the rule starts to execute.

The numeric values in the STARTTIME and STARTINTERVAL clauses are the concatenation of three non-negative integers () suchhh, mm, ss
that:

hh is between 0 and 23 (hours)
mm is between 0 and 59 (minutes)
ss is between 0 and 59 (seconds)

Notes for USE RULE...INIT

The AppBuilder code generator cannot validate TERMINAL, STARTTIME, and STARTINTERVAL clauses because they can be assigned
dynamically.

For example:

MAP 'Nonsense Terminal ID' TO TERMINAL_ID
MAP -25616199 TO START_TIME
USE RULE RULE200 INIT
TERMINAL TERMINAL_ID
STARTTIME START_TIME

The preceding rule would prepare cleanly but might encounter problems at runtime.

Other conditions and restrictions for using a USE RULE...INIT statement depend on the execution environment of the initiating rule, either CICS,
CICS and Batch, or IMS.

CICS and Batch Execution Environment

A mainframe rule can initiate only a CICS rule or a CICS and Batch rule.

CICS Execution Environment

A CICS rule can initiate only a CICS rule or a CICS and Batch rule.
The TERMINAL clause cannot be combined with either the STARTTIME or STARTINTERVAL clauses.

IMS Execution Environment

In IMS, rules have a processing type in addition to an execution environment. summarizes whether a rule of oneIMS Rule Processing Types
processing type can use a USE RULE..INIT statement to call a rule of another processing type.
A DL/I Batch rule in an IMS environment initiated by a USE RULE...INIT statement cannot contain another USE RULE..INIT statement within it.

Do not use a USE RULE..INIT statement for multiple calls to a batch rule in IMS, because the IMS Run Control program starts a batch job
member for each call. Use a USE RULE statement instead.

The TERMINAL, STARTTIME, and STARTINTERVAL clauses are not supported for rules operating under IMS.

IMS Rule Processing Types

 Called Rule Processing Type

Calling Rule Processing Type MPP Conversational BMP DL/I Batch

MPP Y N Y Y

Conversational Y Y Y Y

BMP Y N Y Y

DL/I Batch N N N N

Y=Yes (can call) N=No (cannot call)

Example: USE RULE...INIT

Given an application consisting of the entities and relationships shown in the figure below, the statement (coded within rule RULE_110):

USE RULE RULE_210 INIT

initiates the execution of RULE_210. However, processing does not start with the root PROC_200, but rather with RULE_210. RULE_210 uses
COMP_211 and RULE_212, which, in turn, can use other rules and components. Meanwhile, execution of RULE_110 proceeds independently:
RULE_110 uses COMP_111, then RULE_112, then returns control to RULE_100, and so on. RULE_210 does not return control to RULE_110.
RULE_110 continues to operate independently.

Sample Hierarchy for USE RULE...INIT

To have RULE_210 start after 4 hours and 8 seconds, change the USE RULE statement to read:

USE RULE RULE_210 INIT STARTINTERVAL 040008

Alternatively, to have RULE_210 start at 3:00:41 PM, change the USE RULE statement to read:

USE RULE RULE_210 INIT STARTTIME 150041

To link the forked-off processing of RULE_210 to a specific workstation ID, for example, 'wwww', change the USE RULE statement to read:

USE RULE RULE_200 INIT TERMINAL 'wwww'

USE COMPONENT Statement

A USE COMPONENT statement passes processing control to a component. A component is a programming module that is coded in some

language other than the Rules Language, such as C or COBOL. Refer to for more information about writingDeveloping Applications Guide
components. Refer to for more information about using components provided with AppBuilder.System Components Reference Guide

Mainframe notes
Preparing a C language component that has a host execution environment creates only an MVSBATCH executable. * 3270
converse mainframe system components are not supported for OpenCOBOL.

A rule can always use a component if they both have the same execution environment. However, a rule generally cannot call a component with a
different execution environment except as shown in . The execution environments on the table include:Rules Component Support

PC (also referred to as "Workstation")
CICS (host online)
MVSBAT (pure mainframe batch mode)
MVS (component that can be used either in MVSBAT or CICS mode)
IMS
Java (PC execution environment and Java language, while PC refers to other language available on workstation (C))
PCCICS (When prepared on a workstation, this kind of rule is treated like a PC Workstation rule. When prepared on the host, this kind of
rule is treated like an IBM Mainframe (CICS) rule.)

Rules Component Support

 Components

Rules PC CICS MVSBAT MVS IMS Java

PC Y N N Y N N

CICS N Y N C N N

MVSBAT N N Y B N N

MVS N W W Y N N

IMS N N N N Y N

Java Y N N N N Y

Y=Yes (valid combination) N=No (invalid combination) C=CICS B=Batch W=Warning
(valid but use caution)

For information about calling user components in ClassicCOBOL and OpenCOBOL, refer to User Components in ClassicCOBOL and
.OpenCOBOL

CONVERSE Statements

The following CONVERSE statements are discussed in this section:

CONVERSE WINDOW Statement
CONVERSE REPORT Statement
CONVERSE for Global Eventing

CONVERSE Statement Syntax

converse_statement:

 CONVERSE WINDOW window_name [NOWAIT]

 CONVERSE REPORT report_name conv_report_subclause

conv_report_subclause:

 [PRINTER printer_name] START

 SECTION section_name

 SUBHEADER numeric_value [END]

1.
2.
3.

 END

where:

numeric_value---see .Numeric Value
printer_name is a character value containing the printer name---see .Character Value
report_name is the name of the report, which belongs to the current rule.
section_name is the name of the section, which belongs to the report (report_name).
START is optional if the report has no sections attached.

A CONVERSE statement performs one of the following actions:

Displays a window.
Prints a report or portion of a report.
Blocks a rule until it receives an event.

Upon completion of these actions, control automatically returns to the rule containing the CONVERSE statement.

CONVERSE, CONVERSE WINDOW, and CONVERSE REPORT are not supported in OpenCOBOL.

CONVERSE WINDOW Statement

The CONVERSE WINDOW statement causes the named window entity's panel to display on the screen, so that a user can manipulate the
window's interface and field data. In the rules code, execution remains on the CONVERSE WINDOW statement until an event is returned to the
rule. In other words, a CONVERSE WINDOW statement "waits" for an event and then continues with the execution of the rule. Manipulating a
control object on the window interface generates a user interface event. This returns control to the rule. A system event or an event from a parent
or child rule also causes a rule to leave its waiting state. Refer to the for a detailed explanation of events andDeveloping Applications Guide
event-driven processing.

CONVERSE WINDOW is not supported in Java and CSharp

NOWAIT

A CONVERSE WINDOW...NOWAIT statement causes the AppBuilder environment to converse a window and return control immediately to the
rule containing the statement. In other words, it does not wait for an event before continuing to process the rule.

Notes for CONVERSE WINDOW

A given rule can have a converse relationship with only one window. Thus, while a rule can have more than one CONVERSE WINDOW
statement, each statement must refer to the same window.

Procedure - CONVERSE WINDOW

Use a CONVERSE WINDOW statement in the following series of actions:

Map the data in the fields in the window to the window's input view.
Converse the window.
Examine the fields in the rule's HPS_EVENT_VIEW view to decide what further action to take.

CONVERSE REPORT Statement

A rule can control the printing of a report by conversing a report entity. It is possible to converse on the mainframe in ClassicCOBOL (Batch and
CICS) and on a workstation in Java.

This section applies to ClassicCOBOL and Java only. It is supported in C, OpenCOBOL, or CSharp.not

When printing reports on the host or on the workstation in Java, each report entity contains one or more section entities, each of which includes
layout data for part of the report. A rule can map data into the view of a section and converse the report that contains that section to print the
section's data. You can print a whole report by issuing a series of CONVERSE REPORT statements. Conversing a single section might produce
as little as a single line of a report.

START and PRINTER

A CONVERSE REPORT...START statement initiates the printing of a report. A rule must contain one of these statements before any other
CONVERSE REPORT statements. A CONVERSE REPORT...START statement sets up global storage for the named report, which is needed in
all of the other CONVERSE REPORT statements. You can get a system abend without this statement. In order to print in CICS, include the
PRINTER keyword and specify a four-character printer name after it. This is not necessary to print a batch or Java report.

For additional information refer to .CONVERSE REPORT Statement in Java

SECTION

Adding this keyword to a CONVERSE REPORT statement prints the data of the named section.

END

A CONVERSE REPORT?END statement prints the final break sections and terminates the printing of a report. A rule should contain one of these
statements after all other CONVERSE REPORT statements.

On the host, a CONVERSE REPORT?END statement releases the global storage that was allocated in the corresponding CONVERSE
REPORT?START statement. Lack of this statement does not cause an abend but you are not alerted to the fact that the final break section is
missing.
It is a good practice to finish printing the report with CONVERSE REPORT...END statement on host and Java on the workstation. On the
workstation in Java, if you do not issue a CONVERSE REPORT...END in the rule, the last page of the report won't be printed. This might lead to
some undesirable side effects if you use the same report in this application again.

SUBHEADER

A CONVERSE REPORT...SECTION...SUBHEADER statement dynamically alters the subheader level number of the named section at execution
time to the value in the SUBHEADER clause. The section retains this new number until another such statement redefines the number, the report
ends, or a CONVERSE REPORT...SUBHEADER OFF statement is executed.

SUBHEADER OFF

A CONVERSE REPORT...SUBHEADER OFF statement dynamically resets to zero any subheader sequence number that is at least as big as the
value following SUBHEADER. In other words, any regular section with a subheader sequence number greater than or equal to this value loses
the subheader property.

Notes for CONVERSE REPORT

A rule executing a CONVERSE REPORT statement temporarily relinquishes control to the report. On the host and in Java on the workstation,
when the report finishes processing the statement, it returns information to the calling rule in a special view called the Report Communication
Area (RPTCA). You can view the RPTCA in the enterprise repository as you would any other view. Do not change the RPTCA (assuming you
have the authorization), because AppBuilder references its members for internal processing.
If you have distributed the printing of a report over more than one rule in your application, you must issue a CONVERSE REPORT...START
statement only once, not once per rule. Issuing a subsequent CONVERSE REPORT...START statement restarts a report and resets the page and
line numbers to one. Similarly, if you have distributed printing over more than one rule, you need to issue a CONVERSE REPORT...END
statement only once, not once per rule.

Example: CONVERSE REPORT

Assume you have a report called CUST_SALES_TRANS, with sections called RETAIL_CUST and WHOLESALE_CUST, and that you want to
print it on a host printer called MAIN_PRINTER_4.
If this is a batch report, use the following statement to start printing the report:

CONVERSE REPORT CUST_SALES_TRANS START

If this is a CICS report, use the following statement instead:

CONVERSE REPORT CUST_SALES_TRANS PRINTER MAIN_PRINTER_4 START

After you have started printing, you can insert other CONVERSE REPORT statements as needed for your report.

CONVERSE REPORT CUST_SALES_TRANS SECTION RETAIL_CUST SUBHEADER 2

This statement resets the RETAIL_CUST section subheader level number to 2.

CONVERSE REPORT CUST_SALES_TRANS SECTION RETAIL_CUST
TCONVERSE REPORT CUST_SALES_TRANS SECTION WHOLESALE_CUS

These statements print both sections of the report.

CONVERSE REPORT CUST_SALES_TRANS SUBHEADER 2 OFF

This statement resets the subheader level of the RETAIL_CUST section (and any higher-numbered sections) to zero.

CONVERSE REPORT CUST_SALES_TRANS END

This statement prints the final break sections and ends printing.

CONVERSE for Global Eventing

Global eventing provides a mechanism for passing messages among rules on the same or different systems. When one rule that includes an
event in its hierarchy posts a message, any client rule that includes the same event in its hierarchy receives and processes the message.
Execution of a CONVERSE statement without a window or report has the effect of blocking a rule until an event is received. When an event is
received, the rule begins executing the statements following the CONVERSE.

You can also use a CONVERSE WINDOW statement to receive global events. A rule containing a CONVERSE WINDOW statement is unblocked
upon receipt of global events as well as interface and system events---the statements following the CONVERSE begin executing when a global
event is received.

Refer to the for an explanation of global eventing.Developing Applications Guide

Global eventing is supported in OpenCOBOL generation.not

RETURN Statement

A RETURN statement sends processing control back from the rule in which it appears to the rule that called its rule. If a called rule has no
RETURN statement, processing control returns to its calling rule only after the last statement in the called rule is executed. Use a RETURN
statement to send the control back to the calling rule before all lines in the called rule have been executed.

A RETURN statement inside a procedure causes a return from the rule containing the procedure. Use a PROC RETURN
statement to return from the procedure to the point of invocation within the rule.

RETURN Statement Syntax

return_statement:

 RETURN

Example: RETURN Statements

In the following sample code, a portion of rule RULE_1 calls the rule RULE_2. The code in rule RULE_2, depending on ACTION_TO_PERFORM
field of its input view, either performs a local procedure TEST and sets "return code" (STATUS field of RULE_2 output view) to 'TESTED' or

returns processing control to RULE_1, if 'SKIP' operation is chosen by RULE_1.

Rule 1

USE RULE RULE_2
MAP RULE_2O TO RULE_3I

Rule 2

CASEOF ACTION_TO_PERFORM OF RULE_2I
CASE 'TEST'
TEST(RULE_2I)
MAP 'TESTED' TO STATUS OF RULE_2O
RETURN
CASE 'SKIP'
RETURN
ENDCASE

PERFORM Statement

A PERFORM statement invokes a procedure within the same rule. When the statements of the procedure finish executing, control is returned to
the statement following the perform statement. PERFORM statements allow you to invoke a procedure multiple times within a rule, rather than
duplicating the statements of the procedure at multiple places in the rule.

Normally, a procedure must be defined before it is used. The only exception to this rule are procedures without parameters. To
invoke a procedure without parameters before it is defined, use a PERFORM statement. For all other cases, PERFORM
statement must be omitted.

PERFORM Statement Syntax

perform_statement:

 [PERFORM] procedure_name [parameter_list]

parameter_list:

 ‘(‘ parameter (, parameter)* ‘)’

parameter:

 one of view aggregate expression

where parameter_list can be:

where:

expression---see .Expressions and Conditions
view---see .View

For additional information see .PERFORM Statement (PROC) in OpenCOBOL

PERFORM Usage

Individual data items, views, or literals can be passed as parameters to a procedure. When a view is passed to a procedure, the view must be
declared inside the procedure receiving it (see).Common Procedure
Parameters, including views, are passed by value only. That is, a variable cannot be passed to a procedure and expect it to be modified when the
procedure returns. Parameters are input only. Do not pass an input/output parameter to a procedure.

If an object (see) is passed as a parameter to a procedure, although the pointer itself is passed by value, itObject Data Types
still provides addressability to the object to which it points. Therefore, objects used as parameters allow a procedure to modify
objects other than those that are passed in as parameters.

A procedure can return a value if that value is declared inside the procedure. If the procedure returns a value, the procedure is treated like a
function and can be used in any context in which a function can be used.

Recursion is not supported for procedure calls in ClassicCOBOL or OpenCOBOL. There will be no error message if recursion is
used, but execution results will be unpredictable.

Examples: PERFORM Statement: Error Code Processing and Using Procedures as Functions

Example 1: Simplifying error code processing

The following example illustrates the use of a procedure to simplify multiple error code processing; the coding of each process is simplified.

PROC handleError(errorCode SMALLINT)
DCL
 errorDescr VARCHAR(255);
ENDDCL

IF errorCode <= 0
 MAP TO errorDescr"SUCCESS"
ELSE IF errorCode <= 2
 MAP TO errorDescr"WARNING"
ELSE
 MAP TO errorDescr"SEVERE ERROR"
 ENDIF
ENDIF

PRINT errorDescr
ENDPROC

handleError(code)
handleError(dbCode)

Another way to simplify rule source is to use a macro for frequently repeated code. For information, see .Substituting Rule Source Code

Example 2: Using a procedure as a function
The following example illustrates using a procedure as a function. The procedure "cubed" receives one parameter (an integer) and returns the
cube of that number. The procedure can be used in any context in which a function can be used---in this case in a MAP statement.

PROC cubed (inputNumber INTEGER): INTEGER
 PROC RETURN (inputNumber * inputNumber * inputNumber)
ENDPROC
MAP cubed(anyNumber) to y

PROC RETURN Statement

A PROC RETURN statement causes a procedure to return control to the point immediately after the point from which the procedure was invoked
(see). No further statements in the procedure are executed. If an expression is included on the PROC RETURN, it is theObjectSpeak Statement
return value of the procedure as a function call.

PROC RETURN Syntax

proc_return_statement:

 PROC RETURN [‘(‘ return_value ‘)’]

return_value:

 one of view aggregate expression

where:

expression is a valid expression---see .Expression Syntax
view is a valid view---see .View

Macros

A is a mechanism for replacing one text string in the rule source with another one. When a rule is prepared, every word in the source ismacro
scanned character by character, regardless of the structure, even the string literals are not processed as a special case. Only the special quoted
strings (see) and the Rules Language comments (see ,) areUsing Quoted Strings in Macros Chapter 8. Control Statements Comment Statement
not scanned. If the word is recognized as the name of a macro, it is replaced by the macro definition. This replacement is called macro expansion
.
The following topics about macros are described in this chapter:

Defining Macros
Usage of Macros
Macro Expansion
Using Conditional Macros
Option Settings for Macros
Predefined Macros

Defining Macros

To define a macro, use a definition statement of the following format:

CG_DEFINE Syntax

cg_define_statement:

 CG_DEFINE ‘(‘ macro_name [, string] ‘)’

1.

2.

where:

macro_name is any sequence of letters, digits, and the underscore character (_) where the first character is not a digit. Macro names are
case-sensitive, for example, "INIT" represents a different macro than "init." See for exceptions. Macro names cannotCase-sensitivity
contain DBCS characters. If DBCS characters are used, an error is generated during the Rule preparation.
string is any sequence of characters allowed in the Rules Language. The replacement string is not enclosed in quotation marks. If
quotation marks are included, they are part of the replacement string and are included when the replacement string is substituted for the
macro name.

CG_DEFINE must be entered in capital letters, as shown in the syntax. Blanks are not permitted between the macro function definition and the
left bracket.

For example:

CG_DEFINE(init, MAP 0 TO HPS_WINDOW_STATE OF HPS_SET_MINMAX_I)

Macros can be defined anywhere, but the definition must occur before any use of the macro. Macro expansion occurs automatically during rule
preparation. Use RuleView to see the results of macro expansion.

A comma used to separate any two operands in a macro statement must immediately follow the first operand with no
intervening spaces. Spaces are permitted after the comma and before the second operand.

Since source is scanned for substitution regardless of the structure and macro names in CG_DEFINE are also substituted, if you do not want the
macro name to be substituted, place the macro name in special quotes (see).Using Quoted Strings in Macros

Example: Macro Name Substitution in CG_DEFINE

The following example uses PRINT statement when generating C, and TRACE statement when generating Java:

CG_DEFINE(LANGUAGE, C)

CG_DEFINE(PRINTTRACE,
 CG_IF(<:LANGUAGE:>,Java)
 TRACE()"JAVA"
 CG_ENDIF
 CG_IF(<:LANGUAGE:>,C)
 PRINT "C"
 CG_ENDIF
)

PRINTTRACE // It is substituted with PRINT "C"
CG_DEFINE(<:LANGUAGE:>, C)

PRINTTRACE // It is substituted with PRINT "C"
CG_DEFINE(<:LANGUAGE:>, Java)

PRINTTRACE // It is substituted with TRACE()"JAVA"

If quotes are not used in CG_DEFINE(<:LANGUAGE:>, C), infinite recursion takes place during macro expansion because the statement after
LANGUAGE macro substitution looks like CG_DEFINE(C, C).

Defining Macros in Rules

Macros can be defined for a rule in two ways:

Use CG_DEFINE in the rule source code. The resulting definition is local and available only for the rule where the macro is defined.

2. Use one of two possible ways in the Hps.ini file. Macros defined in the Hps.ini file are available to all rules.

Define macros in the [MacroDefinitions] section. This section defines macros that can be used for all target languages and platforms. The
[MacroDefinitions] section can be viewed and updated from the Construction Workbench menu, > > Tools Workbench Options

 tab > button.Preparation Conditionals

 This generates the following section in the Hps.ini file:

[MacroDefinitions]

macro_name_1=macro value 2
CONVERSE_CLIENT=TRUE

Define macros in the platform/language specific section of the Hps.ini file. Two macros are defined in several sections, therefore, when
the Rule is prepared, the value is chosen depending on the target platform and language. Do not change these macros. For example:

[CGen]

MACRO=LANGUAGE=C
MACRO=ENVIRONMENT=GUI

[JavaGen]

MACRO=LANGUAGE=Java
MACRO=ENVIRONMENT=GUI

[JavaBatchGen]

MACRO=LANGUAGE=JavaMACRO=ENVIRONMENT=Batch

[JavaServerGen]

MACRO=LANGUAGE=Java
MACRO=ENVIRONMENT=Server

[JavaHTMLGen]

MACRO=LANGUAGE=Java
MACRO=ENVIRONMENT=HTML

To define a new macro, write a macro definition in an appropriate section using the following format:

MACRO=my_macro_name=my_macro_value

Using Parameters

A macro can have any number of parameters. The usage of parameters is important because recurring lines of code most frequently recur with
some variations. Using parameters allow variations and still use macros for repetitive tasks.
To define a macro parameter, use the following string in the macro definition: $, where is a number. The first parameter is $1, the second $2,n n
and so on. $0 is a special case that expands to the name of the macro being defined.

The following example uses two parameters; $1 and $2:

CG_DEFINE(set_cursor_field,
MAP $1 TO FIELD_LONG_NAME OF SET_CURSOR_FIELD_I
MAP $2 TO VIEW_LONG_NAME OF SET_CURSOR_FIELD_I
USE COMPONENT SET_CURSOR_FIELD)*

To use this macro, specify the parameters enclosed within parentheses and separated by a comma:

set_cursor_field(' NAME_FIELD','CUSTOMER_VIEW')

The above statement becomes (after substitution):

MAP NAME_FIELD TO FIELD_LONG_NAME OF SET_CURSOR_FIELD_I
MAP CUSTOMER_VIEW TO VIEW_LONG_NAME OF SET_CURSOR_FIELD_I
USE COMPONENT SET_CURSOR_FIELD)

The parenthesis () must be placed immediately after the macro_name with no space in-between. This means that:

macro_name (1,2)

is not a use of macro_name with two parameters (1,2) because there is a space between macro_name and (1,2). This statement is, instead, a
use of macro_name with no parameter.

There is no such thing as an empty parameter list. Thus:

macro_name()

is really the macro_name used with one parameter, an empty string.

Parameters are evaluated before the macro is called. Parameter lists are variable in length and if more parameters are expected than are
provided, the extra ones are taken to be the empty string.

Spaces in parameter lists are significant after a parameter. For example, if you define the following macro to join two strings:

CG_DEFINE(CAT, $1$2)

then:

"##CAT(a, b)##" expands to "##ab ##"
"##CAT(a, b)##" expands to "##a b ##"
The first space after "a" in "##a b ##" comes from the first parameter, and the space after "b" comes from the second parameter.

Example: Using Parameters in a Macro

The following example involves two invocations of the SET_PUSH_COLOR system component to set the color of the text in two push buttons.
Both invocations are repetitious. The only variants are the system identifier (HPS ID) of the push button and the color specified for each.

MAP 'OK' TO PUSH_TEST OF SET_PUSH_COLOR_I
MAP TEXT IN WINDOW_OBJECT_PROPERTIES TO PUSH_ATTR OF SET_PUSH_COLOR_I
MAP GREEN in WINDOW_OBJECT_COLORS TO ATTR_COLOR OF SET_PUSH_COLOR_I
USE COMPONENT SET_PUSH_COLOR

IF (RETURN_CODE OF SET_PUSH_COLOR_O <> 0)
 USE RULE MY_REPORT_COMPONENT_ERROR
ENDIF

MAP 'Cancel' TO PUSH_TEST OF SET_PUSH_COLOR_I
MAP TEXT in WINDOW_OBJECT_PROPERTIES TO PUSH_ATTR OF SET_PUSH_COLOR_I
MAP RED in WINDOW_OBJECT_COLORS TO ATTR_COLOR OF SET_PUSH_COLOR_I
USE COMPONENT SET_PUSH_COLOR

IF (RETURN_CODE OF SET_PUSH_COLOR_O <> 0)
 USE RULE MY_REPORT_COMPONENT_ERROR
ENDIF

If you define a macro using a parameter in place of the two different features, system identifier (HPS ID) and color:

CG_DEFINE(set_pushtext,
 MAP $1 TO PUSH_TEST OF SET_PUSH_COLOR_IMAP TEXT in WINDOW_OBJECT_PROPERTIES TO PUSH_ATTR OF
SET_PUSH_COLOR_I
 MAP $2 in WINDOW_OBJECT_COLORS TO ATTR_COLOR OF SET_PUSH_COLOR_I
 USE COMPONENT SET_PUSH_COLOR
 IF (RETURN_CODE OF SET_PUSH_COLOR_O <> 0)
 USE RULE MY_REPORT_COMPONENT_ERROR
 ENDIF
)

then you can use the macro in place of the repetitious code, as follows:

set_pushtext('OK', GREEN)
set_pushtext('Cancel', RED)

Using Special Parameters in Macros

The following are special (wild card) parameters that expand to cover a range of values.

Number of Parameters - $#
List of All Parameters - $*
List of All Parameters Quoted - $@
Copied Parameters - $ and any character (except #, *, @)

Number of Parameters

$# expands to the number of parameters provided when the macro is called. In the following macro definition:

CG_DEFINE(HowMany, $#)

the following expansions result:

Macro use Result

HowMany 0

HowMany() 1

HowMany(q,r) 2

List of All Parameters

$* expands to a list of all the provided parameters with commas between. In the following macro definition:

CG_DEFINE(All, Parameters are $)*

"All(one, two)" expands to "Parameters are one,two".

List of All Parameters Quoted

$@ is the same as , except that all the parameters are quoted. This is quite subtle, as the process of rescanning normally removes these$*
quotation marks again.

Copied Parameters

A "$" sign that is not followed by a digit, "#", "*" or "@" is simply copied. In the following macro definition:

CG_DEFINE(amount, $$$$)

amount

expands to:

$$$$

Undefining a Macro

Sometimes a macro needs to be undefined, for example, to prevent macro expansion within a sequence of text containing the macro. To undefine
a macro, use a statement of the following form:

CG_UNDEFINE Syntax

cg_undefine_statement:

 CG_UNDEFINE ‘(‘ macro_name ‘)’

Assuming the macro is already defined, you need to use quotes to prevent macro expansion within the statement. For example:CG_UNDEFINE

CG_DEFINE(map, <:MAP $1 TO C_TEXT:>)
CG_UNDEFINE(<:map:>)
map

This results in "map" being undefined, so the string "map" is copied into the rule source (no substitution is performed).

Usage of Macros

The following topics describe some of the common usages of macros:

Declaring Constants
Substituting Rule Source Code
Embedding Macros

Declaring Constants

One common use of macros is to declare constants. For example, you can use the following macro definition to declare a constant for the value of
pi:

CG_DEFINE(pi, 3.14159)

Once the constant is defined, you can use it in any subsequent statement, such as:

MAP pi * (RADIUS2) TO AREA

Using a macro to declare a constant is good programming practice because it allows you to use a meaningful name for the constant rather than a
number. Using a constant is preferable to using a variable because a constant allows the compiler to optimize statements referencing the
constant.

Substituting Rule Source Code

The most common and powerful use of macros is to use them in place of the Rule source code. In applications where lines of code are repeated
frequently, you can define a macro and use the macro name in your code. When you prepare the Rule, AppBuilder replaces the macro name with
the actual lines of code.

Example: Using a Macro for Rule source code

For example, suppose that after each use of a system component, you check the return code in the same way and invoke the same error routine
in case of an error:

USE COMPONENT SET_PUSH_COLOR
IF (RETURN_CODE OF SET_PUSH_COLOR_O <> 0)
 USE RULE MY_REPORT_COMPONENT_ERROR
ENDIF

If you define a macro as:

CG_DEFINE(check_return,
IF (RETURN_CODE of SET_PUSH_COLOR_O <> 0)
 USE RULE MY_REPORT_COMPONENT_ERROR
ENDIF
)

then after every use of the system component, you can check the return code by using the macro:

USE COMPONENT SET_PUSH_COLOR
check_return

Embedding Macros

Macro expansion takes place wherever the macro occurs. Because macro processing is done before code generation, macros are not subject to
the usual Rules Language constraints. This means that you can even use a macro inside a string. For example:

CG_DEFINE(LISTSIZE, 10)
MAP 'Use LISTSIZE entries' TO F_PROMPT

results in:

MAP 'Use 10 entries' TO F_PROMPT

Macros can also be used inside other macro definitions. For example:

CG_DEFINE(LISTSIZE, 10)
CG_DEFINE(SETPROMPT, MAP 'Use LISTSIZE entries' TO F_PROMPT)
SETPROMPT

also results in:

MAP 'Use 10 entries' TO F_PROMPT

Macro Expansion

Every identifier that is not in comments or in special quoted strings (see) is looked up in a dictionary. If thisUsing Quoted Strings in Macros
identifier is equal to a previously-defined macro name, it is expanded (substituted) with its macro value. Unlike most Rules Language processing,
the lookup is case-sensitive. Because expansion is done before the code generation, it must result in the valid Rules Language code or an error
occurs during the code generation.
The same is true for string literals; however, only the whole identifier is looked up, not any part of it. For example:

CG_DEFINE(RULE_NAME, my_rule)

The following will be substituted:

'RULE_NAME'
"RULE_NAME"
RULE_NAME%

Percent sign is a special symbol, thus it is not a part of the identifier. RULE_NAME will be substituted and
result string will be my_rule%

No substitution occurs in the following strings:

MY_RULE_NAME

In this case, MY_RULE_NAME is not known as a macro name, RULE_NAME is in the middle of the identifier.
"RULE_NAME_1"

This is also the case where RULE_NAME is only a part of another identifier RULE_NAME_1.
_RULE_NAME

Underscore is a part of the identifier; this is not a special symbol, so this will not be substituted either.

Using Quoted Strings in Macros

There may be times when you do not want macro expansion to be performed on a string. To prevent the macro expansion (substitution), enclose
the string within special quotation marks: at the beginning and at the end. These special quotation marks can be nested. One level of quotes<: :>

is stripped off as the rule is processed. Thus <:::> becomes an empty string and <:<:quantity:>:> becomes <:quantity:>.

It is commonplace to quote a macro's definition to prevent expansion:

CG_DEFINE(macroname, <:This is quoted to prevent expansion:>)

To change the quotation marks, see .Changing the Quote Characters in Macros

Example: Using Quoted Strings in a Macro

Suppose you want to map both the name of a macro and its definition into a character variable. The following statements:

CG_DEFINE(quantity, 16)
MAP 'quantity is quantity' TO C_TEXT

result in the clearly inappropriate statement:

MAP '16 is 16' TO C_TEXT

To prevent the macro expansion, quote the first word "quantity":

CG_DEFINE(quantity, 16)
MAP '<:quantity:> is quantity' TO C_TEXT

this results in the statement:

MAP 'quantity is 16' TO C_TEXT

Quote strings are recognized anywhere; therefore:

CG_DEFINE(quantity, 16)
MAP 'qu<:ant:>ity is quantity' TO C_TEXT

achieves the same result.

Changing the Quote Characters in Macros

The default quote strings are <: to start the quotes and :> to finish them. These quote characters are unlikely to clash with normal Rules Language
text. However, they can be changed at any time with a CG_CHANGEQUOTE statement.

CG_CHANGEQUOTE Syntax

cg_changequote_statement:

 CG_CHANGEQUOTE ‘(‘ open, close ‘)’

where:

open is the string to start the quotes.
close is the string to end the quotes.

For example, to use ' (single quotation mark) to open and to close quote strings, use the macro statement:

CG_CHANGEQUOTE(', ')

If one of the parameters is missing, the default <: and :> are used instead.

To disable the quoting mechanism entirely, change the quotation marks to empty strings.

CG_CHANGEQUOTE(,)

A limitation of macro definitions is that there is no way to quote a string containing an unmatched left quotation mark. You can circumvent this by
disabling quoting temporarily, then reinstating it.

Quote strings should never start with a letter or an underscore (_).

Recursive Macro Expansions

Normally, the macro preprocessor scans the rule source once. However, when a macro expansion (substitution) takes place, the result is
rescanned again so that further substitutions can be made. For example:

CG_DEFINE(red , 6)
CG_DEFINE(turnred, <:MAP red TO BUTTON:>)
turnred

The macro "turnred" uses the quotes to prevent the substitution for "red" before it is used. When "turnred" is used, its substitution is "MAP red TO
BUTTON", but the subsequent rescanning spots the macro "red" and substitutes it with "6". The result of this example becomes as follows:

MAP 6 TO BUTTON

Rescanning can lead to a problem of infinite recursion. Care must be taken to avoid this. Consider:

CG_DEFINE(infinite, <:infinite infinite:>)
infinite

When the macro "infinite" is expanded, its expansion is two copies of itself, which are then expanded again (due to rescanning), and so on. There
is no defined limit to the depth of such recursion. This can be prevented by using nested quotes:

CG_DEFINE(infinite, <:<:infinite infinite:>:>)
infinite

The extra level of quotes prevents the rescan from seeing the recursive use of infinite, and the above example results in:

infinite infinite

Using Conditional Macros

Several macro statements test conditions to allow decisions to be taken and alternate expansions selected. For example, by using conditional
macros, it is possible to create one rule source code that can be used for both C and Java platforms.
This section describes the usage of conditional macros:

Evaluating if a Macro Exists
Comparing Values
Using Conditional Translation

Evaluating if a Macro Exists

The following macros cause different expansions depending on whether a particular macro is defined or not:

CG_IFDEF Syntax

where:

string is any sequence of characters allowed in the Rules Language.

When only one is specified, a macro expansion takes place if exists.string macro_name
When two are specified, and if the does not exist, the second is substituted.strings macro_name string

Example: Using CG_IFDEF

Example 1: Using one string

In the following example, note that the use of quoting prevents the macro from being expanded:

CG_DEFINE(DB2)
CG_IFDEF(<:DB2:>, MAP '<:DB2:>' TO DB)

This results in:

MAP 'DB2' TO DB

Example 2: Using two strings

Two strings are used in the following CG_IFDEF statement:

CG_UNDEFINE(<:DB2:>)
CG_IFDEF(<:DB2:>, MAP 'DB2' TO DB, MAP 'Default' TO DB)

Because the macro DB2 is undefined, it no longer exists, thus the second is used. This results in:string

MAP 'Default' TO DB

Comparing Values

The following macro compares values and performs substitution based on the result of the comparison:

CG_IFELSE Syntax

cg_ifdef_statement:

 CG_IFDEF ‘(‘ macro_name, string [, string] ‘)’

where:

value1 is the first value used in the comparison, and is typically a macro name.
value2 is the second value used in the comparison.
string is any sequence of characters allowed in the Rules Language.

When the CG_IFELSE statement has three parameters (, and one), the is compared with the for stringvalue1 value2 string value1 value2
equality, and if they are equal, it substitutes the third parameter, the .string

When the CG_IFELSE statement has four parameters (, and two), the is compared with the for stringvalue1 value2 strings value1 value2
equality, and if they are equal, it substitutes the third parameter; otherwise it substitutes the fourth parameter.

If more than four parameters are passed, then the and the are compared for string equality, and if they are equal, it substitutes thevalue1 value2
first ; if they are not equal, the first three parameters are stripped, and the process repeats until no parameters are left. You can use morestring
than four parameters to code a CASE-OF statement.

For example, to write one source code to define the Enabled property of a push button object in both C and Java, you can write a conditional
macro as follows:

CG_IFELSE(LANGUAGE, C,
ExitButton.Enabled(1),
MAP TRUE TO ExitButton.Enabled)

In the above example, LANGUAGE is a predefined macro whose value is set to the platform where the rule is being prepared. Thus, for C,
preparing the above rule results in:

ExitButton.Enabled(1)

For Java (prepared using "else" code), the result is:

MAP TRUE TO ExitButton.Enabled

Since objects are not supported in COBOL, the above example works well.

Example: Using CG_IFELSE

Example 1: CG_IFELSE statement with three parameters

CG_DEFINE(DB, DB2)
CG_IFELSE(DB, DB2, <:MAP 'DB2' TO DBASE:>)

In the above example, the first parameter DB is expanded to DB2, which is equal to the second parameter, this results in:

MAP 'DB2' TO DBASE
CG_DEFINE(DB, Sybase)
CG_IFELSE(DB, DB2, <:MAP 'DB2' TO DBASE:>)

The above example results in nothing because the first parameter DB is expanded to Sybase, which is not equal to the second parameter.

Example 2: CG_IFELSE statement with four parameters

CG_DEFINE(DB, DB2)
CG_IFELSE(DB, DB2, <:MAP 'DB2' TO DBASE:>, <:MAP 'Sybase' TO DBASE:>)

The first and the second parameters are equal, thus the above example results in:

MAP 'DB2' TO DB
CG_DEFINE(DB, Sybase)
CG_IFELSE(DB, DB2, <MAP 'DB2' TO DBASE:>, <:MAP 'Sybase' TO DBASE:>)

The first and the second parameters are not equal, thus the above example results in:

MAP 'Sybase' TO DB

Example 3: CG_IFELSE statement with more than four parameters

CG_DEFINE(DB, Oracle)
CG_IFELSE(DB, <:Oracle:>, <:MAP 'Oracle' TO DBASE:>,
DB, <:Sybase:>, <:MAP 'Sybase' TO DBASE:>,
DB, <:Informix:>, <:MAP 'Informix' TO DBASE:>,
DB, <:DB2:>, <:MAP 'DB2' TO DBASE:>, <:MAP 'Other' TO DBASE:>)

The first parameter expands to Oracle, thus this results in:

MAP 'Oracle' TO DBASE

CG_DEFINE(DB, DB2)
CG_IFELSE(DB, <:Oracle:>, <:MAP 'Oracle' TO DBASE:>,
DB, <:Sybase:>, <:MAP 'Sybase' TO DBASE:>,
DB, <:Informix:>, <:MAP 'Informix' TO DBASE:>,
DB, <:DB2:>, <:MAP 'DB2' TO DBASE:>, <:MAP 'Other' TO DBASE:>)

The first parameter expands to DB2, thus this results in:

MAP 'DB2' TO DBASE

CG_UNDEFINE(<:DB:>)
CG_IFELSE(DB, <:Oracle:>, <:MAP 'Oracle' TO DBASE:>,
DB, <:Sybase:>, <:MAP 'Sybase' TO DBASE:>,
DB, <:Informix:>, <:MAP 'Informix' TO DBASE:>,
DB, <:DB2:>, <:MAP 'DB2' TO DBASE:>, <:MAP 'Other' TO DBASE:>)

Because the first parameter DB is undefined, it no longer equals to any of the values, thus this results in:

MAP 'Other' TO DBASE

Using Conditional Translation

This topic describes the following conditional translations:

CG_IF Statement with Condition Based on Defined Macro Name
CG_CASEOF Statement
CG_IF Statement with Boolean Condition

CG_IF Statement with Condition Based on Defined Macro Name

In the following syntax drawing, with the CG_IF and CG_IFNOT statements, th is compared with the . When using CG_IF, ife macro name value
the and the are equal, all after CG_ELSE are excluded from translation; if the and the are notmacro_name value statements macro_name value
equal, only after CG_ELSE are processed. CG_IFNOT works completely the other way: all after CG_ELSE are excludedstatements statements
from translation if the and the are not equal.macro_name value

Macro IF Syntax

macro_if_statement:

 cg_if_part (cg_elseif_part)* [cg_else_part] CG_ENDIF

cg_if_part:

 CG_IF ‘(‘ macro_name, value ‘)’ statement_list

 CG_IFNOT ‘(‘ macro_name, value ‘)’ statement_list

 CG_IFDEFINED ‘(‘ macro_name ‘)’ statement_list

 CG_IFNOTDEFINED ‘(‘ macro_name ‘)’ statement_list

cg_elseif_part:

 CG_ELSEIF ‘(‘ macro_name, value ‘)’ statement_list

 CG_ELSEIFNOT ‘(‘ macro_name, value ‘)’ statement_list

cg_else_part:

 CG_ELSE statement_list

where:

macro_name is any macro name.
value is any string that could be assigned to macro_name.
statements are any Rules Language statements.

Do not place extra spaces after preprocessor command parameters because extra space is considered to be a part of a parameter. Spaces are
allowed just before parameters. For example:

CG_DEFINE(JAVA, TRUE)
CG_IF(JAVA , TRUE) *>Additional space after 1st parameter<*
>and before second one<

Because of the extra space after the first CG_IF parameter, it is treated as "JAVA_" (underscore means space) and expanded into "TRUE_". The
same logic applies for spaces before other parameters.

Example: Using CG_IF and CG_IFNOT

CG_DEFINE(database, Informix)
CG_IF(database, Informix)
Map 1 to i
CG_ELSE
Map 0 to i
CG_ENDIF

Because was defined as , "Map 1 to i" is processed.database Informix

The same result can be achieved using CG_IFNOT:

CG_DEFINE(database, Informix)
CG_IFNOT(database, Informix)
Map 0 to i
CG_ELSE
Map 1 to i
CG_ENDIF

CG_IFDEFINED and CG_IFNOTDEFINED

In the CG_IFDEFINED() statement, the preprocessor analyzes to determine if has been defined. If it has beenmacro_name macro_name
defined, all after CG_ELSE are excluded from translation; if it has not been defined, only after CG_ELSE are processed.statements statements

In the CG_IFNOTDEFINED() statement, if the has not been defined, all after CG_ELSE are excludedmacro_name macro_name statements
from translation; if it has been defined, only after CG_ELSE are processed.statements

Note that the parameter () used in the statement and the statement is expanded (as for allmacro_name CG_IFDEFINED CG_IFNOTDEFINED
other commands) unless it is placed in quotation marks (and by default).CGMEX <: :>
In this example:

CG_DEFINE(JAVA, TRUE)
CG_IFDEFINED(JAVA)
Map 1 to i
CG_ELSE
Map 0 to i
CG_ENDIF

"Map 0 to I" is processed because the CG_IFDEFINED parameter is expanded into TRUE but the macro named TRUE is not defined. But if you
were to place JAVA in quotation marks, as in the example: (, "Map 1 to I" is processed because <:JAVA:> isCG_IFDEFINED(<:JAVA:>))
expanded into JAVA and this macro is defined.

Example: Using CG_IFDEFINED and CG_IFNOTDEFINED

CG_UNDEFINE(Java)
CG_IFDEFINED(<:Java:>)
Map 1 to i
CG_ELSE
Map 0 to i
CG_ENDIF

Because Java was undefined, "Map 0 to i" is processed.

CG_UNDEFINE(Java)
CG_IFNOTDEFINED(Java)
 Map 1 to i
CG_ELSE
 Map 0 to i
CG_ENDIF

Because Java was undefined, "Map 1 to i" is processed.

CG_ELSEIF and CG_ELSEIFNOT

You can insert multiple CG_ELSEIF and CG_ELSEIFNOT statements to evaluate more conditions in one CG_IF statement.

After the CG_IF statement evaluates to false, the CG_ELSEIF() statement compares th with the , and ifmacro_name, value e macro_name value
they are equal, all after CG_ELSEIF are processed. In the CG_ELSEIFNOT() statement, th isstatements macro_name, value e macro_name
compared with the , and if they are not equal, all after CG_ELSEIFNOT are processed.value statements

Example: Using CG_ELSEIF

CG_IF(Language,C)
 Map to sLang"c"
CG_ELSEIF(Language,Cobol)
 Map to sLang"Cobol"
CG_ELSEIF(Language,Java)
 Map to sLang"Java"
CG_ELSE
 CG_CGEXIT(8) //unsupported language
CG_ENDIF

CG_CASEOF Statement

The CG_CASEOF macro statement switches translation between any number of groups of statements, depending on the result of comparing
 with the for each group.macro_name values

Macro CG_CASEOF Syntax

cg_caseof_statement:

 CG_CASEOF ‘(‘ macro_name ‘)’ cg_switches_part CG_ENDCASEOF

cg_switches_part:

 (cg_case_part)* [cg_caseother_part]

cg_case_part:

 CG_CASE ‘(‘ value (, value)* ‘)’ statement_list

cg_caseother_part:

 CG_CASEOTHER statement_list

where:

macro_name is any macro name.
value is any string that could be assigned to macro_name.
statements are any Rules Language statements.

A CG_CASEOF statement determines which one, if any, of values in the subordinate CG_CASE clauses equals the macro_name in the
CG_CASEOF clause. Translation continues with the statements following that CG_CASE clause.

Example: Using CG_CASEOF

CG_DEFINE (TARGET, Java)
CG_CASEOF (TARGET)
CG_CASE (Java)
trace('Target language is Java)
CG_CASE (Cobol, OpenCobol)
trace('Target language is COBOL)
CG_ENDCASEOF

Result of macro expansion will be:

trace('Target language is Java')

If none of the CG_CASE clauses has value equal to the macro_name translation continues with the statements following the optional
CG_CASEOTHER.

Example: Using CG_CASEOF and CG_CASEOTHER

CG_DEFINE (TARGET, Java)
CG_CASEOF (TARGET)
CG_CASE (C)
trace('Target language is C')
CG_CASE (Cobol, OpenCobol)
trace('Target language is COBOL')
CG_CASEOTHER
trace('Target language is neither C nor any Cobol dialect')
CG_ENDCASEOF

Result of macro expansion will be:

trace('Target language is neither C nor any Cobol dialect')

If none of CG_CASE clauses has value equal to the macro_name and there is no CG_CASEOTHER clause, no statements are included into
translation.

Example: Using CG_CASEOF without CG_CASEOTHER clause and no statements

CG_DEFINE (TARGET, Java)
CG_CASEOF (TARGET)
CG_CASE (C)
trace('Target language is C')
CG_CASE (Cobol, OpenCobol)
trace('Target language is some Cobol dialect')
CG_ENDCASEOF

Result of macro expansion will be empty.

CG_IF Statement with Boolean Condition

Macro CG_IF with Boolean Condition Syntax

macro_boolean_if_statement:

 cg_if_part (cg_elseif_part)* [cg_else_part] CG_ENDIF

cg_if_part:

 CG_IF ‘(‘ condition ‘)’ statement_list

cg_elseif_part:

 CG_ELSEIF ‘(‘ condition ‘)’ statement_list

cg_else_part:

 CG_ELSE statement_list

condition:

 macro_name = value

 macro_name IS DEFINED

 condition AND condition

 condition OR condition

 NOT condition

The following macro switches the translation depending of the truth or falsity of a condition.

where:

condition is condition expression.
statements are any Rules Language statements.

Condition Syntax

where:

macro_name is any macro name.
value is any string that could be assigned to macro_name. It is recommended to use special quotes <^ for begin, and ^> for end value, if
value contains more then one word and it is necessary to use this quotes when value contains GCMEX key-words or non-balanced
brackets.

Processing of CG_IF, CG_ELSEIF and CG_ELSE – just like the CG_IF statement with comparison of macro_name and some value. Actually this
is more common case of the CG_IF statement representation.

Example: Using of CG_ELSE and CG_ELSEIF clauses

Example 1: Using CG_ELSE clause

CG_DEFINE (TARGET, Cobol)
CG_IF (<:TARGET:> IS DEFINED AND
(TARGET = OpenCobol OR TARGET = Cobol))
trace('Target language is some Cobol dialect')
CG_ELSE
trace('Target language is not any Cobol dialect')
CG_ENDIF

Result of macro expansion will be:

trace ('Target language is some Cobol dialect')

Example 2: Using of CG_ELSEIF clause

CG_DEFINE (TARGET, C AND C++)
CG_IF (<:TARGET:> IS DEFINED AND
(TARGET = OpenCobol OR TARGET = Cobol))
trace('Target language is some Cobol dialect')
CG_ELSEIF (TARGET= <^C AND C+\+^>)
trace ('Target language is some C dialect')
CG_ELSE
trace('Target language is TARGET')
CG_ENDIF

Result of macro expansion will be:

trace ('Target language is undefined')

Option Settings for Macros

There are several optional settings that can be used with macros to provide flexibility to the general rule. These options are only supported for
CG_IF.

Case-sensitivity
Macro Name Validation

Case-sensitivity

The case-sensitivity configuration option (code generation parameter) controls the case-sensitivity of the macro preprocessor. Only CG_IF is
supported for this option. All macro values are case-sensitive, and by default, case-sensitivity is not specified to facilitate backwards compatibility.

When this option is specified, the preprocessor ignores the case of the macro value.
For example, assume the following section exists in the Hps.ini file and the rule has been prepared for Java:

[JavaGen]

MACRO=LANGUAGE=Java
MACRO=ENVIRONMENT=GUI

When the option is specified, the following statement is evaluated as TRUE:

CG_IF(LANGUAGE, JAVA)
Set x := 1
CG_ELSE
Set x := 2
CG_ENDIF

and the statement " " will be left in the output file.Set x := 1

When the option is not specified, the value of the condition is evaluated as FALSE, and the statement " " will be left in the output file.Set x := 2
Also, the listing contains the warning:

52954-W Case-insensitive comparison is true for macro "LANGUAGE"

XXXXX-W Macro LANGUAGE was defined as "Java", comparison failed.

Since the case of possible values of the LANGUAGE macro listed in the [MacroDomains] section of the Hps.ini file is already taken into account,
the listing also contains the following error:

ERROR:

52960-S Value "JAVA" is not listed in the domain for macro "LANGUAGE"

To disable case-sensitivity, use the following code generation parameter:

-fMEXCI

The following flag in the Hps.ini file can also be used:

FLAG=MEXCI

Macro names are always case-sensitive.

Macro Name Validation

Even if a macro is not defined, you can use the macro in a rule, but a warning is generated when the rule is prepared. The macro name validation
configuration option controls what is generated when a macro name cannot be validated. Only CG_IF is supported for this option.

For example, if there is no definition for a macro named TARGET_LANGUAGE, then the statement

CG_IF(TARGET_LANGUAGE, German)
Set PUSH_TEXT of SET_PUSH_MODE_I := 'Speichern'
CG_ENDIF

will not produce any code in the output file.

By default, this option is disabled, and the following warning is generated:

52825-W Undefined macro "TARGET_LANGUAGE".

When this option is enabled, the rule preparation fails with the following error message:

52965-S Macro "TARGET_LANGUAGE" is not defined.

This option works in the same way for macro definitions that have domains defined. See Validating Macros in Domain

To validate macro names, use the following code generation parameter:

-FMMBDEF

The following flag in the Hps.ini file can also be used:

FLAG=MMBDEF

Validating Macros in Domain

If the " " exists in the [MacroDomains] section in the Hps.ini file, then the value used in the rule is validated against the values in themacro_name
domain (the list of specified values with case-sensitivity defined using the option). If the value is not in the domain, the ruleCase-sensitivity
preparation fails with an error message.
For example, assume the Hps.ini file contains the following definitions:

[MacroDomains]

LANGUAGE=Java,C

[JavaGen]
MACRO=LANGUAGE=Java
MACRO=ENVIRONMENT=GUI

[CGen]
MACRO=LANGUAGE=C
MACRO=ENVIRONMENT=GUI

And the rule code contains the following statements with the case-sensitivity being disabled:

CG_IF(LANGUAGE, JAVA)
Set x := 1
CG_ELSE
Set x := 2
CG_ENDIF

CG_IF(ENVIRONMENT, HTML)
Set y := 1
CG_ELSE
Set y := 2
CG_ENDIF

CG_IF(LANGUAGE,Cobol)
Set z := 3
CG_ENDIF

The "JAVA" value is validated against the values in the domain list, but the "HTML" value is not validated.

The statement:

CG_IF(LANGUAGE,Cobol)

results in a preparation failure with the following error message:

W52960-S Value "Cobol" is not listed in the domain for macro LANGUAGE

Predefined Macros

There are two predefined macro definitions that can be used in rules.

LANGUAGE
ENVIRONMENT

They are used only on the PC workstation. These macros are defined in the AppBuilder initialization file (Hps.ini).
The values are set according to the platform to which they are generating code as summarized in the following table.

Values for LANGUAGE and ENVIRONMENT Macros

When generating LANGUAGE= ENVIRONMENT=

Java client code Java GUI

Java server code for RMI or EJB Java Server

Java servlet client code for HTML client Java HTML

C code for client Windows application C GUI

C code for server Windows application C Server

COBOL Cobol Server

CSharp client code CSharp GUI

CSharp server code CSharp Server

There are a number of predefined macros that perform specific tasks.

Including Files
Using Date and Time Macros
Using Name Macros
Using Debugging Macro
Exiting from Translation
Using Recursion to Implement Loops
Using String Functions
Using Arithmetic Macros

Including Files

The CG_INCLUDE statement causes the compiler to process the file specified in the parameter. This file must contain allowable Rulesfile_name
Language statements and the string format must be allowable on the platform where the rule is translated.File_name

CG_INCLUDE Syntax

Macro CG_INCLUDE Syntax

cg_include_statement:

 CG_INCLUDE ‘(‘ file_name ‘)’

where:

File_name is the string specifying a file name.

For example:

CG_INCLUDE (e:\include\commonrulepart.inc)

Currently the CG_INCLUDE macro expansion failure is handled differently by the host and the workstation. On the host side,
when you perform rule preparation using the CG_INCLUDE (myfile) statement, and the dataset is specified neither in the
codegen.ini nor in the rule source, you receive the following RC=8 error message:

ERROR: 52903-S Error reading include file 'M90SQLEP' with errno=49 (EDC5049I. The specified file name could not be
located.) See also Messages Reference Guide.

However, when preparing the same rule in the same manner during Java preparation on the workstation, the system issues a
warning and the preparation continues successfully.

For details about the INI settings concerning the file inclusion, see also , from General settings for the Codegen section General settings for the
.Codegen section

Using Date and Time Macros

There are a number of predefined macros that manipulate date and time in various ways:

CG_RULE_TRANSLATION_DATE translates the date in 'mm dd yyyy' format.
CG_RULE_TRANSLATION_TIME translates the time in 'hh:mm:ss' format.
CG_RULE_TRANSLATION_TIMESTAMP translates the timestamp in 'mm dd yyyy hh:mm:ss' format.
CG_CODEGEN_VERSION translates the code generation version of the date and time in 'Mmm dd yyyy hh:mm:ss' format.

Example: Using Date and Time Macros

dcl
 ttime varchar(100);
enddcl
map to ttime"CG_RULE_TRANSLATION_TIMESTAMP"

The above statement is expanded to:

map "02 14 2004 21:13:15" to ttime

The following is a CG_CODEGEN_VERSION statement example:

dcl
cver varchar(100);
enddcl
map to cver"CG_CODEGEN_VERSION"

The above statement will be expanded to:

map "Feb 14 2004 21:13:15" to cver

Using Name Macros

The following is a list of predefined macros that manipulate Rule names:

CG_RULE_SHORT_NAME translates the rule short name.
CG_RULE_LONG_NAME translates the rule long name.
CG_RULE_IMP_NAME translates the rule implementation name.

Example: Using Name Macros

dcl
 rshortname, rlongname varchar(100);
enddcl
map to rshortname"CG_RULE_SHORT_NAME"
map to rlongname"CG_RULE_LONG_NAME"

The above statements will be expanded to:

map to rshortname"AA7FBN"
map to rlongname"MY_TEST_RULE"

For the following support functions: , and , the mechanism to capture the name alsogetRuleShortName getRuleLongName getRuleImpName
uses the predefined name macros. Every rule has access to these three macros:

CG_RULE_SHORT_NAME – this macro is replaced by rule's long name
CG_RULE_LONG_NAME – this macro is replaced by rule's long name
CG_RULE_IMP_NAME – this macro is replaced by rule's long name.

Using Debugging Macro

The predefined macro CG_DEBUG works the same as _DEBUG in Visual C++. This macro excludes the debug code from the release version
and is used only for debugging purposes.
You can enable or disable CG_DEBUG macro from the Construction Workbench menu by selecting Tools > Workbench Options > Preparation
tab, and check or uncheck Rule Debug. CG_DEBUG contains the value of TRUE when this macro is defined. This macro can be disabled by the
-YD Codegen parameter (see).Command Line Parameters Settings

Example: Debugging Macro

CG_IF(CG_DEBUG,TRUE)
 PERFORM My_Debug_Proc()
CG_ENDIF

If Rule Debug is disabled in the Workbench Options, then TRACE statements will not be generated in the target language. See
also .TRACE in Java

Exiting from Translation

The CG_CGEXIT statement breaks the process of translation with the return code Return code.

CG_EXIT Syntax

Macro CG_EXIT Syntax

cg_exit_statement:

 CG_EXIT ‘(‘ return_code ‘)’

where:

Return code is an integer number.

In order to break the process of translation, the Return code value must be less than the default error code (8)not

Example: Exiting from translation

CG_IFDEFINED(Cplusplus)
 Map 1 to i
CG_ELSE
 CG_CGEXIT(8) *> rule created C+\+ only <*this for
CG_ENDIF

Using Recursion to Implement Loops

Although macros do not directly support loops, it is possible to simulate the effect of looping by using recursion and conditionals. This is a very
complex procedure, and you must exercise caution to avoid creating endless loops. To create loops, there is a special macro statement:
CG_SHIFT. This macro uses recursion to process parameters one by one. CG_SHIFT takes any number of parameters and returns the same list
(each parameter quoted) after removing the first parameter.

Example: Using CG_SHIFT to implement loops

In the following example, the macro allows many variables to be set to 0 with one simple call:

CG_DEFINE(clear_all,
 <:CG_IFELSE($1, <::>, ,
 <:<:MAP 0 TO $1:>
 clear_all(CG_SHIFT($@)):>):>)
clear_all(COUNTER, HEIGHT, WIDTH)

This results in:

MAP 0 TO COUNTER
MAP 0 TO HEIGHT
MAP 0 TO WIDTH

Using String Functions

There are a number of predefined functions that manipulate strings in various ways:

CG_LEN
CG_INDEX
CG_SUBSTR

CG_LEN

CG_LEN returns the length of a string.

Syntax

Macro CG_LEN Syntax

cg_len_statement:

 CG_LEN ‘(‘ string ‘)’

For example,

CG_LEN() results in 0.
 results in 8.CG_LEN(<:database:>)

CG_INDEX

CG_INDEX returns the position of the in the . The search is case-sensitive. It returns 0 if the is not found in the .substring string substring string

Syntax

Macro CG_INDEX Syntax

cg_index_statement:

 CG_INDEX ‘(‘ string, substring ‘)’

For example,
 results in 1.CG_INDEX(<:DB2/2 database access:>, <:DB2:>)

 results in 0.CG_INDEX(<:DB2/2 database access:>, <:Oracle:>)

CG_SUBSTR

CG_SUBSTR extracts some part of a starting at the position. If is specified, it is the maximum size of the string returned. If string from length
 is not specified, the macro returns everything to the end of the string.length

Syntax

Macro CG_SUBSTR Syntax

cg_substr_statement:

 CG_SUBSTR ‘(‘ string, from [, length] ‘)’

For example,
 results in access.CG_SUBSTR(<:DB2/2 database access:>, 16)

 results in DB2/2.CG_SUBSTR(<:DB2/2 database access:>, 1, 5)

Using Arithmetic Macros

Several macro statements support integer arithmetic. Integer arithmetic with macros is performed to 32-bit precision---the same as for integers in
the Rules Language.

CG_INCR and CG_DECR
CG_EVAL

All calculations are performed using native C arithmetic that corresponds to CALCULATOR arithmetic with INTEGER type. Because native
arithmetic is used, it is not possible to detect overflow situations and the result of any macro statements with an overflow is unpredictable.
Nevertheless, division by zero condition is handled; if an expression contains division by zero, a compile-time error is generated.

There are several ways to express numbers to allow various radixes (number base) to be specified. See the following table:

Expressing numbers to allow various radixes to be specified

Ways of expressing numbers Example

No prefix indicates decimal 22
49
78
23456

A single 0 indicates octal 007
02
0123

0x indicates hexadecimal 0x1ff
0x55
0xabcd

0b indicates binary 0b1101

0r (where is a decimal number from 2 to 36) indicates a specific radix 06:555 base 6
012:bbb duodecimal

To change precedence, use parentheses "(" and ")".

CG_INCR and CG_DECR

CG_INCR and CG_DECR macro statements increment or decrement an integer and return the result.

Syntax

Macro CG_INCR and CG_DECR Syntax

cg_incr_statement:

 CG_INCR ‘(‘ number ‘)’

cg_decr_statement:

 CG_DECR ‘(‘ number ‘)’

Example: CG_INCR and CG_DECR

CG_INCR(29) results in 30.
 results in 13.CG_DECR(14)

The following statements result in 11:

CG_DEFINE(amount, 10)
CG_INCR(amount)

CG_EVAL

More complex mathematical operations are handled by CG_EVAL. This macro statement takes any and replaces it with the result. A expression
 can be applied to work in bases other than 10 (the must be from 2 to 36 inclusive). A can be applied to make the result beradix radix width

padded with 0 (zero) to at least the number of characters specified by the parameter. If the is less than the length of the result,width width
(numbers count) then no truncation occurs.

Syntax

Macro CG_EVAL Syntax

cg_eval_statement:

 CG_EVAL ‘(‘ expression [, radix [, width]] ‘)’

Where:

expression can contain various operators, as shown in the following table in decreasing order of precedence:

Operators Used in Expressions

Operator Definition

- Unary minus

** Exponentiation

* / % Multiplication, division and modulo

+ - Addition and subtraction

<< >> Shift left or right

== != > >= < <= Relational operators

! Logical negation

~ Bitwise negation

& Bitwise and

^ Bitwise exclusive-or

/ Bitwise or

&& Logical and

// Logical or

All operators, except exponentiation, are left associative.
With relational operations, the value 1 is returned if it evaluates to True, otherwise the value is 0.

Example: Using CG_EVAL

CG_EVAL(-2 * 5) results in -10.
 results in 1.CG_EVAL(CG_INDEX(Good day, oo) > 0)

The following statements result in 64:

CG_DEFINE(cube, <:CG_EVAL(($1)3):>)
cube(4)

Platform Support and Target Language Specifics

AppBuilder 3.2 Rules Language Reference Guide

Using platform-specific Rules Language in AppBuilder, it is possible to translate a Rules Language application to C, Java, ClassicCOBOL, and
OpenCOBOL. Most of the Rules Language elements are supported for every target language, but there might be differences in syntax, semantics,
and applicable functions. Complete descriptions of the Rules Language elements for each language can be found in the following sections:

Specific Considerations for C
Specific Considerations for Java
Specific Considerations for CSharp
Specific Considerations for ClassicCOBOL
Specific Considerations for OpenCOBOL
Specific Considerations for ClassicCOBOL and OpenCOBOL
Restrictions on Features
Supported Functions by Release and Target Language

Specific Considerations for C

Specific Considerations for C

The following sections describe specific differences in Rules Language elements for C:

Data Types in C
Comparing Views in C
Object Method Call in C
Date and Time Functions in C
Common Procedures in C
Constructing an Event Handler in C
OVERLAY Statements in C
Subscript Control in C

Restrictions on features are summarized in . To see which functions are supported, refer to Restrictions on Features Supported Functions by
.Release and Target Language

Data Types in C

This section contains special considerations for using data types in C. For information about data types, refer to .Data Types

Alias in C

In C development, you can only declare object aliases for the window objects. See for information about the Aliases object data item.Alias

Variable for the Length of the VARCHAR Data Item in C

Changing the _LEN variable only affects the affected immediately. Therefore, any value isLEN variable, the corresponding VARCHAR is _not
allowed for a _LEN variable, for example:

MAP -1 TO VC_LEN
MAP VC_LEN TO SomeVariable

SomeVariable will contain -1.

However, changing the _LEN variable affects how the string is interpreted in comparisons and in constructions, for example:

MAP "some string" TO VC
MAP 0 TO VC_LEN
IF VC = ""
 TRACE("VC is empty")
ENDIF

The trace statement will be executed because the length of the variable is set to zero, and becomes ''(empty string).VC VC
Do not use the _LEN variable for write access (modifying the VARCHAR variable through its _LEN variable) in C.

Comparing Views in C

Comparison is a byte-by-byte memory comparison. If two views being compared are of unequal lengths, the shorter view is padded with blanks to
equal the length of the longer view before the comparison is performed.
Because view comparison does not take into account the data type of the fields in the view, it is possible for the comparison of two views to give a
different result than the comparison of the fields in the view.
For more information, refer to the following section: .Comparing Views

Object Method Call in C

In C, Method can have optional parameters, which can be omitted when Method is called. For example: If A is the object of class CLS, B is the
method of class CLS with three parameters where the second parameter is optional and C is the method of class CLS, which has three
parameters where the third parameter is optional, then the methods are used in the following way:

A.B (D,, E)
A.C (F,G,)

Example: Setting parameters for a C application

DCL
b object 'EXIT_BUTTON';
i smallint;
ENDDCL

map b.IsEnabled to i *> This... <*
map b.IsEnabled() to i *> ...and this call are equivalent <*

Date and Time Functions in C

If you omit the format string, the following default format string will be provided:

The format string that is specified by the DFLTDTFMT or DFLTTMFMT setting of the section of HPS.INI.[CODEGENPARAMETERS]
If HPS.INI settings are not specified, ISO formats are used: "%Y-%0m-%0d" for DATE and "%0t.%0m.%0s" for TIME.

For more information, see .Date and Time Function Definitions

Common Procedures in C

For C, you can use OBJECT POINTER, but OBJECT ARRAY and OBJECT be used as procedure parameters.cannot
For more information, refer to and .Common Procedure Syntax Procedure Syntax

Constructing an Event Handler in C

The following constructions be used in the event handler body in C:cannot

LOCAL PROCEDURE CALL
USE RULE
USE COMPONENT
CONVERSE WINDOW
RETURN

OVERLAY Statements in C

The OVERLAY statement in AppBuilder performs a byte-by-byte memory copy. Because the OVERLAY statement bypasses the MAP statement
safety mechanism, it can cause unexpected results. The MAP statement carefully compares view structures to make sure that each data is
mapped only into a field of the compatible data type; however, the OVERLAY statement blindly copies all the source data in its stored form to the
destination data item. Erroneous OVERLAY statements might not be noticed during compilation but can result in problems during execution.
Refer to for more information about the OVERLAY statement.OVERLAY Statement

Data items of types MIXED and DBCS cannot be used in OVERLAY statements.

Applications that contain OVERLAY statements with data types that are not explicitly mentioned in this book are vulnerable to
future failure. There is no guarantee that such applications can be ported to other platforms or supported from release to
release. Therefore, as a precautionary measure, use MAP statements in all cases where OVERLAY statements are not
necessary.

Subscript Control in C

Subscript control of occurring views performed in C relies on two Hps.ini settings: INDEX_CONTROL_ON and INDEX_CONTROL_ABORT; both
can have YES or NO values.
If the INDEX_CONTROL_ON is set to YES (the default value), the view subscript control code is generated and application behavior is controlled
by the INDEX_CONTROL_ABORT setting. If the INDEX_CONTROL_ABORT is set to YES, the application aborts when a view subscript is out of
range. The default value is NO, and the default behavior is that if a "subscript is out of range" error occurs, the first occurrence is assumed, and
the application continues to execute.
If the INDEX_CONTROL_ON is set to NO, the application does not abort and the first occurrence is assumed if the subscript is out of range
without any notification, and the value of the HPSError is set to the corresponding error code. For detailed information about error messages, see
the The INDEX_CONTROL_ABORT does not affect the application behavior.Messages Reference Guide .
See also code generation parameter.-I

Example: Subscript Control in C

In the following example, INDEX_CONTROL_ON is set to YES and INDEX_CONTROL_ABORT is set to NO:

DCL
I INTEGER;
V(10) VIEW CONTAINS I;
INDX INTEGER;
ENDDCL

MAP 10 TO INDX
MAP 1 TO I(INDX) *> Correct, I(10) is set to 1 <*
MAP -1 TO INDX
MAP 1 TO I(INDX) *> Error: index less than one, the first occurrence assumed <*
TRACE(I(1)) *> "1" is printed <*
IF HPSERROR = 6
 > This line is executed and the message "ERROR : Index out of bounds" is printed <
 TRACE("ERROR : Index out of bounds")
ENDIF
MAP 11 TO INDX
MAP 2 TO I(INDX) *> Error: index greater than view size, the first occurrence assumed <*
TRACE(I(1)) *> "2" is printed <*
RETURN

Specific Considerations for Java

The following sections describe the specific differences in Rules Language elements for Java:

Data Types in Java
Data Items in Java
Comparing Views in Java
Object Method Call in Java
Creating a New Object Instance in Java
ObjectSpeak Conversions in Java
Functions in Java
Dynamically-Set View Functions in Java
Local Procedure Declaration in Java
Event Procedure Declaration in Java
Defining Views in Java
Constructing an Event Handler in Java
SQL ASIS Support in Java
Transaction Support in Java
Subscript Control in Java
PRAGMA Statements in Java
Static and Static Final Methods and Variables in Java
Event Handler Statement in Java
OVERLAY Statements in Java
CASEOF in Java
USE RULE ... DETACH OBJECT Statement in Java
CONVERSE REPORT Statement in Java

Restrictions on features are summarized in . To see which functions are supported, refer to Restrictions on Features Supported Functions by
.Release and Target Language

Data Types in Java

This section contains special considerations for using data types in Java. For information about data types, refer to .Data Types
Each Rules Language data type has its representation as one of the Java data types. This representation can be obtained from external Java
classes, for example, from Java components using the getJavaValue method of classes. The following data types areappbuilder.util.*
described in this section:

ARRAY Object in Java
INTEGER in Java
SMALLINT in Java
DEC and PIC in Java
CHAR and VARCHAR in Java
LONGINT, FLOAT and DOUBLE in Java
Variable for the Length of the VARCHAR Data Item in Java
DBCS and MIXED Data Types in Java
DATE and TIME in Java
TIMESTAMP in Java
BOOLEAN in Java

TEXT and IMAGE in Java
OBJECT and OBJECT POINTER in Java

ARRAY Object in Java

Since ARRAY data items are only declared locally to a rule, and not in the hierarchy, they are not available to rules or components the declaring
rule calls in the same way that views and fields are available. However, an ARRAY object can be passed to another rule or component using an
OBJECT REFERENCE field in the view passed. The rule or component receiving the data must assign the OBJECT item to a locally declared
ARRAY of the same type before accessing its contents.

INTEGER in Java

Java value has a type int. It is the value of the INTEGER variable.

SMALLINT in Java

Java value has a type short. It is the value of the SMALLINT variable.

DEC and PIC in Java

In the AppBuilder framework, DEC and PIC fields are stored as java.math.BigDecimal.

PIC with trailing sign

In Java, it is possible to declare a PIC data item with trailing sign, for example . By default, picture data item declared this wayp PIC'9V9S'
behaves like a usual signed picture (with leading sign): it occupies Length + 1 characters and can be used in any operation where picture with
leading sign can be used with the same result.

However, picture with trailing sign is a separate data sub-type, and its internal character representation within the memory can be redefined based
on a custom data converter.

AbfCOBOLDataConverter, the data converter different from the default one included in the AppBuilder java runtime package for emulating the
COBOL applications data flow, processes the picture with trailing sign differently. With this converter, the picture with trailing sign occupies Length
characters and is internally represented as a COBOL picture with sign trailing inclusive.

CHAR and VARCHAR in Java

Java value has a type . It is the value of the CHAR or VARCHAR variable.java.lang.String

LONGINT, FLOAT and DOUBLE in Java

Three additional data types are available for Java generation:

LONGINT
FLOAT
DOUBLE.

LONGINT

Java value has a type long. The LONG data type is a 64-bit signed integer. It has a minimum value of -9,223,372,036,854,775,808 (-2) and a63

maximum value of 9,223,372,036,854,775,807 (2 -1) (inclusive). Use this data type when you need a range of values wider than those63

provided by INTEGER.

FLOAT

Java value has a type float. The FLOAT data type is a single-precision 32-bit floating point number. Depending on the
FLOATING_POINT_STANDARD hps.ini value, it can either be an IEEE 754 float or a float in HEXADECIMAL format. Its range of values is set
between -(2 -2) (approximately -3.4028234E38) and 2 -2 (approximately 3.4028234E38). Use a float (instead of double) if you128 104 128 104

need to save memory in large arrays of floating point numbers, or when single precision is enough. This data type should never be used for
precise values, such as currency. For that, you can use the DEC type instead.

DOUBLE

Java value has a type double. The DOUBLE data type is a double-precision 64-bit floating point number. Depending on the
FLOATING_POINT_STANDARD hps.ini value, it can either be an IEEE 754 double or a double in HEXADECIMAL format. Its range of values is
set between -(2 -2) (approximately -1.79769E308) and 2 -2 (approximately 1.79769E308). For decimal values, you should use a1024 971 1024 971

DEC type instead. As mentioned above, this data type should never be used for precise values, such as currency.

Depending on the FLOATING_POINT_STANDARD hps.ini value, the value ranges for FLOAT and DOUBLE types are different, as shown in
:Value ranges for FLOAT and DOUBLE

Value ranges for FLOAT and DOUBLE

Type Max (Type) Min (Type) Smallest positive value
 (unnormalized)

SPV (Type)

Maximum non-zero
 digits to display

MD (Type)

Number of precise digits
 (in mantissa)

PD (Type)

IEEE 754
STANDARD

FLOAT 2 -2 128 104

(approximately
3.4028234E38)

-(2 -2) 128 104

(approximately
-3.4028234E38)

2 -149

(approximately
1.4012E-45)

8 7

DOUBLE 2 -2 1024 971

(approximately
1.79769E308)

-(2 -2) 1024 971

(approximately
-1.79769E308)

2 -1074

(approximately
4.94E-324)

17 16

HEXADECIMAL
FORMAT

FLOAT 16 -16 63 57

(approximately
7.2370E+75)

-(16 -16) 63 57

(approximately
-7.2370E+75)

2 -149

(approximately
1.4012E-45)

6 6

DOUBLE 16 -16 63 57

(approximately
7.2370E75)

-16 -16 63 57

(approximately
-7.2370E75)

2 -1074

(approximately
4.94E-324)

17 15

Three special values are supported for FLOAT and DOUBLE data items – positive infinity, negative infinity, and Not-a-Number (NaN) value, as
described below:

A is assigned to a data item if there is an attempt to assign it a value exceeding Max(type).positive infinity
A is assigned to a data item if there is an attempt to assign it a value less then Min(type).negative infinity
A is assigned to a data item if there is an attempt to assign it a result of incorrect operation (i.e. 0/0).NaN

A value, HEXADECIMAL of FLOATING_POINT_STANDARD hps.ini, is designed for emulating COBOL COMP-1 and COMP-2 data types.

Always use IEEE754 when you do not need to emulate the behavior of COBOL types!

Variable for the Length of the VARCHAR Data Item in Java

Changing the variable immediately changes the corresponding VARCHAR data. If is assigned a negative value, zero length is assumed.LEN LEN
If is assigned more than the VARCHAR maximum length, the maximum length is assumed.LEN

For more information refer to the following section: .Variable for the Length of the VARCHAR Data Item

Example: Using variable in JavaLEN

Example 1
In the following example, because a negative value is assigned to , the value of becomes 0.VC_LEN VC_LEN

MAP -1 TO VC_LEN
TRACE(VC_LEN) // 0 will be printed

Example 2
You can safely modify the field of VARCHAR without restrictions as shown in the following example.LEN

DCL
 VC1 VARCHAR(10);
 VC2 VARCHAR(20);
ENDDCL

MAP "12345" TO VC1
MAP 10 TO VC1_LEN
MAP VC1 TO VC2
MAP VC2 ++ "A" TO VC2 // VC2 will contain '12345 A' (five spaces before A).

DBCS and MIXED Data Types in Java

Java value has a type . It is the value of the DBCS or MIXED variable. Trailing blanks are trimmed. DBCS characters arejava.lang.String
converted to Unicode ().java.lang.String

Because of the differences in character representation on different platforms, a varied number of characters can fit into a particular MIXED field.
Keep the following in mind when writing Java applications:

The length of a MIXED data item is calculated in characters in Java and can have a maximum length of 32K.
In Java, each character (whether double- or single-byte) occupies one position in a MIXED string

For more information about the DBCS and MIXED data types refer to .DBCS and MIXED Data Types

DATE and TIME in Java

Java value has a type . It is 00.00.00 of the date value in the DATE variable in the local time zone. Java values of the samejava.util.Date
DATE variables are different in different time zones.

The Java value type is the time value in the TIME variable at January 1st, 1970 (Java "epoch" date) in the local time zone.java.util.Date
Java values of the same TIME variable are different in different time zones.

For example: Washington, DC, USA is in the GMT -05:00 time zone. St. Petersburg, Russia is in the GMT +04:00 time zone. The Java value of
the DATE variable representing June 03, 1999 is , which corresponds to June 03, 1999 04:00:00 GMT on the computerjava.lang.Date
running in St. Petersburg and June 02, 1999 19:00:00 GMT on the computer running in Washington.

TIMESTAMP in Java

Java value has a type . It is the moment of time contained in the TIMESTAMP variable in local time.java.util.Date

BOOLEAN in Java

Java value has a type boolean. It is the value of the BOOLEAN variable.

TEXT and IMAGE in Java

Java value has a type . It is the value of the TEXT or IMAGE field (file name).java.lang.String

OBJECT and OBJECT POINTER in Java

Java value has a type . It is an object referenced by the OBJECT variable.java.lang.Object

In Java, the OBJECT data type is equivalent to the OBJECT POINTER data type. This data type represents a non-typed reference to an object.
Since any object of any class could be mapped to the OBJECT data type, it is useful when you want to perform a type conversion.

For more information about the OBJECT data type refer to .OBJECT

Using Object Data Types in Java

The declaration of OBJECT TYPE is equivalent to the OBJECT POINTER declaration. New objects created using OBJECT TYPE can only be
used in Java application development.

Example: Using OBJECT in Java

The following are examples of different ways to use the OBJECT data type in Java.

Example 1: Using OBJECT data type in Java

Because the OBJECT data item and the OBJECT POINTER data item are treated the same way in Java, either one of them can be mapped to
the data item of the OBJECT type.

DCL
 obj OBJECT;
 radio OBJECT TYPE RadioButton OF GUI_KERNEL;
 push OBJECT POINTER TO PushButton OF GUI_KERNEL;
ENDDCL

MAP radio TO obj
MAP push TO obj

Example 2: Using OBJECT for conversion in Java

In the following example, by making the object as the OBJECT data type, a procedure can be applied.radio

DCL
 obj OBJECT;
 radio OBJECT TYPE RadioButton OF GUI_KERNEL;
 resizeComponent PROC (comp OBJECT TYPE 'javax.swing.JComponent';
ENDDCL

resizeComponent(radio) *>Illegal: type of object "radio" is
 incompatible with type of procedure formal
 parameter <*

MAP radio TO obj

resizeComponent(obj) *>Valid: since obj has type OBJECT and this type
 represents non-typed reference<*

Example 3: OBJECT declaration

The following example declares objects of type and a local procedure with a parameter of the same type.java.awt.Button

DCL
 java_button1 OBJECT TYPE 'java.awt.Button';
 java_button2 OBJECT TYPE 'java.awt.Button' OF JAVABEANS;
 button_proc PROC (btn OBJECT TYPE 'java.awt.Button');
ENDDCL

Using OBJECT POINTER in Java

The OBJECT POINTER data type is equivalent to the OBJECT data type. OBJECT POINTER TO represents a reference to an object of particular
type. Use OBJECT POINTER TO to declare a pointer to an object.

The OBJECT POINTER is initialized with a NULL value. Use a MAP statement to assign a value to an object of the OBJECT OINTER data type.

The OBJECT POINTER data type is still supported in Rules Language for backward compatibility with AppBuilder 5.4.0. Do not
use the OJBECT POINTER data type for new applications development.

Example: Using Object Pointer

Example 1: Object Pointer Declaration

In the following example, is the system identifier (HPS ID) or alias of a push button on a window that the rule converses. The methodpush1
names and the types in this example correspond to a C Language application.

DCL
 mybutton OBJECT POINTER TO PushButton;
ENDDCL

MAP push1 TO mybutton

Example 2: Object Pointer as Parameter

An object pointer is particularly useful as a parameter to a common procedure. By declaring a pointer as a parameter, the procedure deals with
any object of a particular type. For example, the following procedure enables an edit field, makes it visible, and sets its foreground color. To
invoke the procedure, pass the name of a particular edit field.

PROC enableField (myField OBJECT POINTER TO EditField)
 MyField.Enabled(1)
 myField.Visible(1)
 myField.ForeColor(RGB(175,200,90))
ENDPROC
.
.
enableField(field01)

Example 3: Object Pointer in Event Procedure

Events often include parameters. Use an object pointer in an event procedure (see) to represent a parameter of typeEvent Handling Procedure
POINTER or OBJECT received from an event triggered by a control. For example, the following procedure handles Initialize events from a rule
window. In this example, the parameter passed by the window is a pointer to an object of type InitializeEvent.

PROC InitWindow FOR Initialize OBJECT MY_WINDOW
 (p OBJECT TYPE InitializeEvent)
ENDPROC

In this procedure:

InitWindow is the procedure name.
Initialize is the type of event handled.
MY_WINDOW is the system identifier of the rule's window.
p is the name (in the procedure) of the parameter received with the Initialize event from .MY_WINDOW
InitializeEvent is the type of object to which a parameter points.

Assigning Object Data Type Variables in Java

In Java, variables of type OBJECT hold references to object instances. When a data item is assigned to a variable, the reference to the existing
object is also assigned. To create new instances of an object, use the NEW clause. (See for additionalCreating a New Object Instance in Java
information.)

Example: Assigning References to Objects

DCL
 button1, button2 object type 'appbuilder.gui.AbfPushButton';
 ExitButton object 'EXIT'; *> Let "EXIT" be ID of EXIT button <*
 name char(100);
ENDDCL

PROC assignExample
 MAP ExitButton to button1 *>Now button1 holds ref to EXIT button<*
 MAP button1 to button2 *>and button2 too <*
 MAP button2.text to name *> name equals "EXIT" <*
 button2.setText('QUIT')
 MAP ExitButton.text to name *> name equals "QUIT" <*
ENDPROC

Implicit Numeric Conversions in Java

In Java, values of type FLOAT are implicitly converted to values of type INTEGER by dropping decimal part. This implicit conversion may occur,
for example, in MAP statement or during passing of parameters.

Example: Implicit numeric conversions in Java

DCL
 f FLOAT;
 i INTEGER;
ENDDCL

PROC p(i1 INTEGER)
 TRACE(i1)
ENDPROC

MAP 1.1 to f
MAP f to i
TRACE(i)
p(f)

MAP 1.9 to f
MAP f to i
TRACE(i)
p(f)

In this example the output will be:

0 INFO [APP] 1
0 INFO [APP] 1
0 INFO [APP] 1
0 INFO [APP] 1

Data Items in Java

See the following for specific considerations when using data items in Java:

Initialization in Java
NULL in Java
Default Object in Java

Initialization in Java

All variables are initialized with a NULL value in Java (see description). However, if a variable with a NULL value is used in a RulesNULL in Java
Language expression where its particular value is required, an initial value that corresponds to the variable type is assumed. For example, if a
BOOLEAN variable that has a NULL value is used as an IF condition, a FALSE value is assumed.

The CLEAR function resets a variable value to its initial value (see). This function sets a variable value to NULL in Java just asCLEAR Statement

the internal initialization routines does.

NULL in Java

A NULL value indicates no value. In Java development, variables of all data types can have NULL values. In Java, all variables are initialized with
a NULL value. If a variable with a NULL value is used in a Rules Language expression where its particular value is required, an initial value
corresponding to variable type is assumed. For example, if NULL BOOLEAN variable is used as an IF condition, a FALSE value is assumed.

The , , and functions manage the NULL attribute.ISCLEAR Operator CLEARNULL in Java ISNULL in Java
For more information, refer to .Initializing Variables

Default Object in Java

In Java, the following variables can be accessed in a rule without declaring them in the declaration (DCL) section.

A Window variable of the type OBJECT TYPE
This variable is initialized to an instance of a window conversed by the rule.
Address this variable in the rule as: < >Variable Window long name
A Rule variable of the type OBJECT TYPE
This variable is initialized to an instance of the executing rule.
When this variable is addressed in the rule as < >, if the Window long name is the same as the Rule long name,Variable Rule long name
this variable is not created.
When this variable is addressed in the rule as , it can still be used even if the Window long name is the same as theVariable ThisRule
Rule long name.
A Set variable of the type OBJECT TYPE
This variable is initialized to an instance of a Set with the long name. See for a description of Set objectObjectSpeak Reference Guide
and dynamic set behavior.
Address this variable in the rule as: < >Variable Set long name
Variables that have the same names as the system identifiers of the Window objects.
The variables must have been initialized according to their types. If the system identifier is not a valid Rules Language identifier, a
variable for it is created. This system identifier can still be used in a rule by creating an alias for it (variable of type OBJECT 'HPSID').not

See and for more details on the naming restrictions.Data Items Using Entities with Equal Names

Comparing Views in Java

Views with the same structure, meaning that the number, order and names of fields coincide in views being compared, are compared field by
field, recursively. Views with different structures are compared as overlayed values; each view is overlayed to a string, then the strings are
compared and return the result as the result of the views compare. See also for more information.Comparing Character Values

See also for more information.Comparing Views

Object Method Call in Java

The following is an example of setting parameters for a Java application.

Example: Setting parameters for a Java application

DCL
 b object 'EXIT_BUTTON' ;
 Str VARCHAR(50);
ENDDCL

PROC Button1Click For Click OBJECT b
 (p OBJECT TYPE ClickEvent)
 map b.Text to Str *> This... <*
 map b.Text() to Str *> ...and this call is equivalent <*
ENDPROC

Creating a New Object Instance in Java

This clause is used in the Java application development to create new instances of objects.

NEW Syntax

where:

parameters_list is the list of object constructor parameters included in round brackets; if constructor has no parameters then empty
brackets must be omitted.

The following is an example of creating a new object instance in Java.

Example: Creating a new object instance

DCL
 label VARCHAR(200);
 p OBJECT TYPE 'java.awt.Button';
ENDDCL

PROC CreateButton : LIKE p
 PROC RETURN (NEW 'java.awt.Button')
ENDPROC

PROC GetLabel(btn LIKE p) : VARCHAR(200)
 PROC RETURN (btn.getLabel())
ENDPROC

MAP CreateButton TO p
MAP NEW 'java.awt.Button'('label') TO p
MAP GetLabel(NEW 'java.awt.Button'('label')) TO label

ObjectSpeak Conversions in Java

This topic describes conversions performed between the Java standard data types and the Rules Language data types when passing parameters
to and accepting return values from Java methods.

Numeric Type

Any Java value of type , or can be converted to the value of any of the following types: SMALLINT,char, byte, short, int, long, float double
INTEGER, DEC, or PIC, and similarly, the types SMALLINT, INTEGER, DEC, or PIC can be converted to any Java value of type char, byte, short,

 , or int, long, float double.

For SMALLINT and INTEGER, conversion is straight forward. If the value is too large, it is truncated.
When converting from DEC or PIC to INTEGER, the fraction part is truncated. If the integer part does not fit into the integer type, the assigned
value is unpredictable. The overflowed value is converted to zero (0).

When converting from INTEGER to DEC or PIC, if the integer value does not fit into the integer part, the overflowed value is truncated.
When converting from DEC or PIC to , the nearest representable value is used. For example, 0.1 cannot be represented exactly in or floats float

 type.double

It is possible to use NIL as an ObjectSpeak method call parameter of type OBJECT. NIL is generated as in the resulting Java code. Fornull
more information about ObjectSpeak, refer to the .ObjectSpeak Reference Guide

String Type

Java value of type can be converted to the value of type CHAR, VARCHAR, DBCS, or MIXED, and similarly, the value ofjava.lang.String
type CHAR, VARCHAR, DBCS, or MIXED can be converted to a Java value of type .java.lang.String

OBJECT Type

In Rules Language, all classes in Java and the OBJECT data types are mutually convertible to Java subclassing rules.

BOOLEAN Type

Java values of boolean type can be converted to type BOOLEAN, and type BOOLEAN can be converted to Java values.

Date and Time Type

Java values of type can be converted to types DATE, TIME, and TIMESTAMP, and types DATE, TIME, and TIMESTAMP canjava.util.Date
be converted to Java values of type fava.util.Date. Rules of conversion are the same as described in .Data Types in Java

Functions in Java

The following functions have specific considerations for Java:

CHAR in Java
CLEARNULL in Java
Date and Time Functions in Java
Double-Byte Character Set Functions in Java
GET_ROLLBACK_ONLY in Java
INCR and DECR in Java
ISNULL in Java
LOC in Java
Format String Specific for FLOAT and DOUBLE Data Items
Numeric Conversion Functions in Java
RTRIM in Java
SET_ROLLBACK_ONLY in Java
STRLEN in Java
SUBSTR in Java
TRACE in Java
UPPER and LOWER in Java
VERIFY in Java

CHAR in Java

If the CHAR function is applied to an uninitialized numeric variable, meaning a variable that was initialized with a NULL value and never changed,
then the value returned depends on the SHOW_ZERO_ON_NULL setting in the appbuilder.ini file. If this setting is TRUE, then the CHAR function
will return a string containing the zero symbol; otherwise, an empty string is returned. For more information see .CHAR

The CHAR function supports LONGINT and floating point numbers only in Java and in OpenCOBOL according to the following syntax:

CHAR (LONGINT data item [, format string])
CHAR (FLOAT data item[, format string])
CHAR (DOUBLE data item[, format string]).

LONGINT numbers are formatted by the same rules as integers.

If no format string is provided for CHAR function with one parameter of type LONGINT, FLOAT or DOUBLE, then the default format string is used
as the second parameter and the result is the same as for the CHAR function with two parameters.

Default format strings for LONGINT, FLOAT, and DOUBLE

Type Default format string for CHAR function

LONGINT "s9"

FLOAT "SZZZZZZZZV9ZZZZZZZE%esZZZ%s"

DOUBLE "sZZZZZZZZZZZZZZZZZV9ZZZZZZZZZZZZZZZZE%esZZZ%s"

For details about the floating point numbers, see .Format String Specific for FLOAT and DOUBLE Data Items

CLEARNULL in Java

This is available for Java only.

The CLEARNULL function takes a field or a view as an argument and clears the NULL flag of the field or every field in a view if it is applied to a
view without changing the value of the field. After this function invocation, the field value is not changed and is no longer considered NULL.

The CLEARNULL support function be applied to variables of any object type.cannot

Example: Using CLEARNULL Function

In the following example, after the CLEARNULL function is applied to I, the NULL flag of I is cleared, therefore is no longer considered as NULL;
however, I still contains its initial value.

DCL
 I INTEGER;
 B BOOLEAN;
ENDDCL

CLEARNULL(I) *>I is set to its initial value - zero<*
MAP ISNULL(I) TO B *>B is FALSE<*
MAP ISCLEAR(I) TO B *>B is TRUE, because I contains its initial value<*
RETURN

SIZEOF in Java

The implementation of a rule data converter enhancement in AppBuilder 3.2 makes it possible to configure SIZEOF behavior.

The default data converter is . This converter should be used if there is no reason to changeappbuilder.util.AbfDefaultDataConverter
the data conversion algorithm that is used for OVERLAY and REDEFINE operations.

The size of data item in java generation is counted by a data converter class. This class implements the
 interface, and its fully-qualified name should be specified in the DATA_CONVERTER hps.ini setting.appbuilder.util.AbfDataConverter

Date and Time Functions in Java

If you omit the format string, the following default format string is provided:

Format string specified by the DEFAULT_DATE_FORMAT or the DEFAULT_TIME_FORMAT settings of the [NC] section of the
appbuilder.ini file.
If the appbuilder.ini setting is not specified, the default system value (Java regional setting) is used for Date.
If is appbuilder.ini setting is not specified, then the parameter is considered to be the correct value of the TIME data type and is used as
is, without any conversion.

For more information, see .Date and Time Function Definitions

Double-Byte Character Set Functions in Java

In Java, codepage validation is specified by the DBCS_VALIDATION_CODEPAGE parameter in the [VALIDATION] section of the appbuilder.ini
file. This ini setting can be changed without recompilation. If validation fails, an exception is raised at runtime. In Java, these conversion functions
just change the types of their arguments and perform validation as explained in .Validation and Implementation of Double-Byte Character Set

GET_ROLLBACK_ONLY in Java

This is available for Java only.

The GET_ROLLBACK_ONLY function returns a BOOLEAN value, indicating whether or not the only possible outcome of the transaction
associated with the current thread is to roll back the transaction (TRUE) or not (FALSE).

INCR and DECR in Java

The following example illustrates how INCR and DECR functions are used in a MAP statement.

MAP 0 to I
MAP INCR(I) + DECR(I) + 1 to J

As a result, is set to 0 and is set to 2.I J
Refer to to see how the result is different using the same MAP statement.INCR and DECR in OpenCOBOL

ISNULL in Java

This is available for Java only.

The ISNULL function takes a field as an argument and returns a BOOLEAN value indicating whether the field is NULL or not. If the field's value is
NULL, ISNULL returns TRUE, otherwise it returns FALSE.

The ISNULL support function be applied to variables of any object type. (See .)cannot Object Data Types

If you wish to test a variable of any object type () for null, use ISCLEAR. It returns TRUE if this referenceObject Data Types
actually refers to nothing. In other words, it contains a null value and returns FALSE if it refers to some object (non-NULL
value).

A field contains NULL if it has never been modified by a user or if it has been reset programmatically by using the CLEAR statement. This is not
the same as the field initial value. For example, if you assign a value of 0 to an integer field, it is not NULL any longer (that is, ISNULL returns
FALSE); however, ISCLEAR applied to this field returns TRUE as if the field has not changed.

Example: ISNULL, NULL, and cleared fields

Example 1 illustrates the use of ISNULL function, Example 2 illustrates the differences between NULL and cleared fields:

Example 1: Using ISNULL Function

DCL
 CH CHAR;
 I INTEGER;
 B BOOLEAN;
 OBJ OBJECT TYPE Rule;
 V VIEW CONTAINS CH;
ENDDCL

MAP ISNULL(I + 1) TO B
>Compile time error: ISNULL cannot be applied to expression<

MAP ISNULL(OBJ) TO B
>Compile time error: ISNULL cannot be applied to object<

MAP ISNULL(V) TO B
>Compile time error: ISNULL cannot be applied to view<

MAP ISNULL(CH) TO B
*>Since all fields upon rule start are initialized with NULL value,
B is TRUE <*

MAP ISNULL(I) TO B *>B is TRUE <*
MAP ISNULL(B) TO B *>B is FALSE, since B was assigned TRUE <*
RETURN

Example 2: Using Null and Cleared Fields

The following example illustrates the differences between null and cleared fields:

DCL
 I INTEGER;
 B BOOLEAN;
ENDDCL

MAP ISNULL(I) TO B *>B is TRUE<*
MAP ISCLEAR(I) TO B *>B is TRUE<*
MAP 0 TO I *>I contains initial value, that is, zero<*
MAP ISNULL(I) TO B *>B is FALSE, because I was modified<*
MAP ISCLEAR(I) TO B *>B is TRUE, because I contains
its initial value<*
RETURN

Format String Specific for FLOAT and DOUBLE Data Items

There are two different ways of displaying floating point numbers:

Exponential Notation
Non-exponential Notation

Exponential Notation

The FLOAT or DOUBLE format string consists of the formatted representation of two numbers – and an (the latter ismantissa integer exponent
mandatory).
The format string must provide enough information to determine the mantissa and the integer exponent without ambiguity. You can obtain the
following information from the format string and the environment:

Dint = Dint(format string) – the maximum number of digits allowed by the format string in the integer part of the mantissa.
Dscale = Dscale(format string) – the maximum number of digits allowed by the format string in the decimal part, which is also called scale
, of the mantissa.
Representation mode – the desired manner of a floating point number representation. There are two basic representation modes and an
additional numeric representation mode:
Standard – the string representation contains as many significant digits of the FLOAT/DOUBLE number as possible with given Dint and
Dscale; if there are several such representations, then the one with the minimal absolute value of exponent(DOUBLE/FLOAT) is used.
COBOL – mantissa(DOUBLE/FLOAT) is as large as possible with given Dint and Dscale. The following examples illustrate basic
representation modes:
Standard Representation Mode Examples

 Parameters
FLOAT/DOUBLE

Dint=4, Dscale=1

-ZZZ9V9E-Z9

Dint=5, Dscale=2

-ZZZZ9V99E-Z9

Dint=1, Dscale=5

-9V99999E-ZZ

12.345 1234.5 E-2 123.45 E-1 1.23450E1

0.05 0.5 E-1 0.05 E0 0.05000

1 1.0 E0 1.00 E0 1.00000

COBOL Representation Mode Examples

 Parameters
FLOAT/DOUBLE

Dint=4, Dscale=1

-9999V9E-9

Dint=5, Dscale=2

-99999V99E-9

Dint=1, Dscale=5

-9V99999E-ZZ

12.345 1234.5E-2 12345.00E-3 1.23450E1

0.05 5000.0E-5 50000.00E-6 5.00000E-2

1 1000.0E-3 10000.00E-4 1.00000

Numeric representation mode is managed by a positive integer, Dexp:
 – a positive integer in which the following applies:Dexp = Dexp(format string)

If 10 =< Abs(DOUBLE/FLOAT) < 10 , then the exponent is zero and the number is completely represented by its mantissa, if1-Dexp Dexp

the given Dint and Dscale allows this representation.
The meaning of parameter can be illustrated with the following examples:Dexp
Here Dint is equal to Dscale, and both are large numbers exceeding the length of FLOAT/DOUBLE.
Numeric Representation Mode Examples

 Dexp
FLOAT/DOUBLE

1 2 3 4

12.345 1.2345 E1 12.345 E0 12.345 E0 12.345 E0

123.45 1.2345 E2 12.345 E1 123.45 E0 123.45 E0

1234.5 1.2345 E3 12.345 E2 123.45 E1 1234.5 E0

0.12345 1.2345 E-1 0.12345 E0 0.12345 E0 0.12345 E0

0.012345 1.2345 E-2 0.12345 E-1 0.012345 E0 0.012345 E0

0.0012345 1.2345 E-3 0.12345 E-2 0.012345 E-1 0.0012345 E0

The table cells contain string representations of DOUBLE/FLOAT for different Dexp.
The format string for exponential notation consists of two parts: and .mantissa exponent

 can be formatted as decimal number using the existing set of format symbols.Mantissa
The formatting function computes Dint and Dscale from the format string the following way:

Dint is a number of digit symbols (9, Z, z, *) before the decimal separator (V, v) or a number of all digit symbols for mantissa, if there is no

1.
2.
3.
4.

5.

decimal separator.
Dscale is a number of digit symbols (9, Z, z, *) after the decimal separator (V, v) or 0 if there is no decimal separator. Dint = Dscale = 0 if
no mantissa formatted.

 should be formatted as integer.Exponent
The following symbols denote optional locale-specific exponent symbol and a representation mode (please notice that these symbols
apply for DOUBLE and FLOAT only, and not for LONGINT!):
%e – for the exponent symbol
%s – for the Standard mode
%c – for the Cobol mode
%n – for the Numeric mode
E – for the separation of exponent from mantissa

Symbol is mandatory when using exponential notation. Other new symbols are optional. The default representation mode is set to andE Standard
can be configured in the appbuilder.ini file. It is used when the representation mode is not specified in the format string explicitly. If the
representation mode is explicitly specified in the format string, it overrides the default value.

Symbol , if present, must be followed by at least one digit. All digits between %n symbol and the first non-digit symbol are treated as Dexp%n
value.

The format string for the exponential notation of the floating-point number can be written as follows:

mantissa E exponent

where:

mantissa is a correct simple format string, i.e. the format string for non-exponential notation (may be empty).
exponent is a correct simple format string with at least one digit symbol, containing no V, v and. (dot) format symbols and containing not
more than one%e format symbol at any position before the first digit symbol.

Additionally, one and only one symbol from the group – , , – is allowed in place of the format string.%s %c %n

Restrictions:

Simple format string restrictions apply to the format strings, mantissa and exponent. For more information, see Format string
.validation

No E symbol can occur in , and .simple format strings mantissa exponent
Only one $ symbol is allowed for the whole format string.
No V, v and . (dot) symbols are allowed in the format string.exponent
No %e symbol can occur in the format string.mantissa

If, for the given format string, in the are Z or z and an contains the %e symbol, andall digit symbols exponent exponent
if the value of a number DOUBLE/FLOAT being formatted is such that an integer exponent (DOUBLE/FLOAT) = 0, then
no exponent symbol is present in the result.

Exponent is never truncated if it has three digits and the format string has only two positions; all three digits are printed anyway.

Non-exponential Notation

In non-exponential notation, floating point numbers are formatted by the same rules as decimals. The restriction is that a format string cannot
 E, %e, %s, %c, %n symbols.contain

LOC in Java

In Java, the LOC function returns an object representing a given data field. Every data field in a rule is represented in Java by an instance of
 descendant. The LOC function returns Rules Language OBJECT data type represented by Java class appbuilder.util.AbfDataObject
 referencing a given field or view. In Java, the LOC function can accept not only views but also fields asappbuilder.util.AbfDataObject

arguments. Untyped OBJECT is returned.

For more information refer to .LOC

Example: Using LOC Function in Java

The LOC function can be used to pass references to data items in a rule to Java classes.

DCL
 I INTEGER;
 V VIEW CONTAINS I;
 O OBJECT;
 MyMap OBJECT TYPE 'java.util.HashMap';
 Key VARCHAR(20);
 Value VARCHAR(255);
ENDDCL

MAP LOC(I) TO O
MAP LOC(V) TO O
MAP NEW 'java.util.HashMap' TO MyMap

MyMap.put(Key, Value) *> Illegal, wrong parameter types <*
MyMap.put(LOC(Key), LOC(Value))
> Legal parameter types are java.lang.Object<

Numeric Conversion Functions in Java

The numeric conversion functions use locale-specific decimal, thousand and currency tokens. For example, INT("123$") will return 0 under the
German locale since $ is not recognized as a currency symbol. Below are some special considerations for the following functions:

LONG in Java
FLOAT in Java
DOUBLE in Java.

LONG in Java

The LONG function is available for Java and OpenCOBOL only. This function converts a string to LONGINT, its function is analogous to INT
function, but it returns the value of the LONGINT type. For details about INT function, see .Numeric Conversion Functions

The format symbols – %e, %s, %n, E – are not allowed in format strings for the LONGINT function. See also Exponential
.Notation

Syntax:

LONG (character data item)
LONG (character data item [, format string])

FLOAT in Java

The FLOAT function is available for Java and OpenCOBOL only. This function converts a string to FLOAT.

Syntax:

FLOAT (character data item)
FLOAT (character data item [, format string])

DOUBLE in Java

The DOUBLE function is available for Java and OpenCOBOL only. This function converts a string to DOUBLE.

Syntax:

DOUBLE (character data item)
DOUBLE (character data item [, format string])

The list of valid format strings for FLOAT and DOUBLE functions is the same as for CHAR function (see for details), with the followingCHAR
constraints:

If the format string does not use exponential notation, then the restrictions are the same as for the INT and DECIMAL functions.
If the format string uses exponential notation, then the restrictions are the same as for the INT and DECIMAL functions being applied to
the mantissa and exponent substrings correspondingly.

RTRIM in Java

If the RTRIM function is applied to an invalid DBCS string, the function returns the same invalid string with trailing DBCS blanks removed. For
more information see .RTRIM

SET_ROLLBACK_ONLY in Java

This is available for Java only. This function has no parameters.

The SET_ROLLBACK_ONLY function modifies the transaction associated with the current thread so that the only possible outcome of the
transaction is to roll back the transaction.

STRLEN in Java

When the STRLEN function is applied to a DBCS string, the function parameter is not required to be a valid DBCS string. When STRLEN is
applied to a MIXED string, the function parameter is not required to be a valid MIXED string. For more information see .STRLEN

SUBSTR in Java

The MIXED or DBCS parameters can contain invalid characters. For more information see .SUBSTR

TRACE in Java

The code for TRACE() statements might be generated even with Rule debug option not selected in Construction Workbench > Options >
Preparation tab. With ALWAYS_GENERATE_USER_TRACE codegen parameter from hps.ini set to YES, user-coded TRACE statements are
always generated in the target code and can be enabled or disabled through runtime settings. TRACE function is output only if the APP_LEVEL
setting in the [TRACE] section of the appbuilder.ini file is set to 1 or greater.

For more information refer to .TRACE

UPPER and LOWER in Java

Characters are converted to upper and lower case according to the specified codepage. In Java, this codepage is the current system codepage.
For more information see .UPPER and LOWER

VERIFY in Java

The MIXED or DBCS parameters can contain invalid characters. For more information see .VERIFY

Dynamically-Set View Functions in Java

In Java, you can check or change the number of occurrences in views dynamically while a rule executes using the following standard functions:

OCCURS
APPEND
RESIZE
DELETE
INSERT
REPLACE

OCCURS

The OCCURS function returns the number of occurrences of a given . For non-occurring views, it returns 0.view

OCCURS Syntax

where:

view is any view.

Example: Using OCCURS Function

In the following example, the OCCURS function is used to get the number of occurrences of views , and .V1 V2 V3

DCL
 I, J INTEGER;
 COUNT INTEGER;
 V1 VIEW CONTAINS I;
 V2 VIEW CONTAINS J;
 V3 VIEW CONTAINS I,J;
 V VIEW CONTAINS V1(10), V2, V3(1);
ENDDCL

MAP OCCURS(V1) TO COUNT *> COUNT=10 <*
MAP OCCURS(V2) TO COUNT *> COUNT=0 : V2 is not an occurring view <*
MAP OCCURS(V3) TO COUNT *> COUNT=1 : V3 is an occurring view,
though with 1 occurrence only <*

MAP OCCURS(V1(1)) TO COUNT *> COUNT=0 : not an occurring view <*

APPEND

The APPEND function appends the to the . Views must be identical in structure, meaning that the number, order andsource_view target_view
names of fields in the source_view must be the same as in the target_view.

APPEND Syntax

where:

target_view must be an occurring view.
source_view is any view.
number of occurs to process parameter specifies how many items are taken from the .source_view

If the is greater than the size of , all items from it are used and a warning is issued at runtime. If thisnumber of occurs to process source_view
parameter is less than zero, then zero is assumed, and no item from is taken.source_view

Example: Using APPEND Function

In the following example, both and statements are successful because is an occurring view and , APPEND(V1, V2) APPEND(V1, V4) V1 V1 V2
and have the same structure. fails because and have different structures. also fails because isV4 APPEND(V1, W) V1 W APPEND(V3, V1) V3
not an occurring view.

DCL
 I INTEGER;
 C CHAR(10);
 V1, V2, V3, V4 VIEW CONTAINS I, C;
 W VIEW CONTAINS I;
 V VIEW CONTAINS V1(10), V2(14), V3, V4(10);
ENDDCL

MAP 1 TO I OF V1(1)
MAP 2 TO I OF V2(1)
MAP 4 TO I OF V4(1)
APPEND(V1, V2)
MAP OCCURS(V1) TO COUNT
TRACE(COUNT) *> Outputs: "24" <*
TRACE(I OF V1(1), I OF V1(11)) *> Outputs: "1 2" <*
APPEND (V1, V4)
TRACE (I of V1(25)) *>Outputs: "4" <*
APPEND(V1, W) *> Illegal: views of different structure <*
APPEND(V3, V1) *> Illegal: V3 is not an occurring view <*

RESIZE

The RESIZE function shrinks or expands the given occurring view to a new size.

RESIZE Syntax

where:

target_view is an occurring view.
new_size specifies the new size of the .target_view
from_position specifies the starting position to apply the within the .new_size target_view

By default, the RESIZE function is applied to as many occurrences as possible starting from the beginning of the view. If the third parameter,
 is specified, it keeps as many occurrences as possible starting from the specified position. Occurrences between the first positionfrom_position

and are then lost. If is greater than the total number of occurrences, all occurrences are lost. If is lessfrom_position from_position from_position
than or equal to zero, RESIZE behaves as if is not given.from_position

Example: Using RESIZE Function

DCL
 I, J INTEGER;
 V(10) VIEW CONTAINS I;
ENDDCL

MAP 27 TO I(1), I(2), I(3), I(10)
RESIZE(V, 20)
MAP I(10) TO J *> 27 <*
MAP I(15) TO J *> NULL - a new occurrence <*
RESIZE(V, 5)
MAP I(1) TO J *> 27 <*
MAP I(10) TO J *> runtime error -- too large subscript <*
RESIZE(V, 5, 2)
MAP I(1) TO J *> 27 <*
MAP I(3) TO J *> NULL -- 1st occurrence removed, so 3rd became 2nd <*

DELETE

The DELETE function deletes occurrences of a view starting from the position given in the second argument.

DELETE Syntax

where:

target_view is an occurring view.
from_position specifies the starting position to delete.
number specifies the number of occurrences to delete.

By default, the DELETE function deletes occurrences of a view until the end of the view. If the third parameter, is given, it deletes number number
occurrences starting from the given position. If there are not enough occurrences after the given position, it deletes as many as possible until the
end of the view.

Example: Using DELETE Function

DCL
 I, J INTEGER;
 V(10) VIEW CONTAINS I;
ENDDCL

DELETE(V, 5) *> Deletes occurrences 5 through 10,occurrences 1 through 4 are still in the view <*
DELETE(V, 2, 1) *> Deletes occurrence 2, now there are only 3occurrences remaining <*
DELETE(V, 2, 10) *> Deletes only occurrences 2-3, only oneoccurrence is left in the view <*

INSERT

The INSERT function inserts all occurrences of the source view (or the view itself if it is the plain view) at the specified position in the target view.
Views must be identical in structure, meaning that the number, order and names of fields in the source view must be the same as in the target
view.

INSERT Syntax

where:

target_view is an occurring view.
source_view is any view.
from_position specifies the position to insert.
number_of_occurs_to_process specifies how many items are taken from .source_view

If the is greater than the size of the , all items from the are inserted, and a warning isnumber_of_occurs_to_process source_view source_view
issued at runtime. If it is less than zero, then zero is assumed, and no item from is taken.source_view

Example: Using INSERT Function

DCL
 I INTEGER;
 C CHAR(10);
 V1, V2, V3 VIEW CONTAINS I, C;
 W VIEW CONTAINS I;
 V VIEW CONTAINS V1(10), V2(2), V3, W(10);
ENDDCL

MAP "O1V1" TO C OF V1(1)
MAP "O2V1" TO C OF V1(2)
MAP "O1V2" TO C OF V2(1)
MAP "O2V2" TO C OF V2(2)
MAP "O0V3" TO C OF V3
INSERT(V1, 2, V2)
TRACE(C OF V1(1)) *> O1V1 <*
TRACE(C OF V1(2)) *> O1V2 <*
TRACE(C OF V1(3)) *> O2V2 <*
TRACE(C OF V1(4)) *> O2V1 <*
INSERT (V1, 4, V3)
TRACE (C OF V1 (4)) *>O0V3 <*
INSERT(V1, 5, W) *> Illegal: W does not have identical structure as V1 <*
INSERT(V1, 27, V2) *> runtime error <*

REPLACE

The REPLACE function replaces occurrences of the with occurrences from the , starting from the specified position.target_view source_view
Views must be identical in structure, meaning that the number, order and names of fields in the source_view must be the same as in the
target_view.

REPLACE Syntax

where:

target_view is an occurring view.
source_view is any view.
from_position specifies the starting position to replace.
number_of_occurs_to_process specifies how many items are taken from .source_view

If the is invalid (less than zero or greater than the size of the), a runtime error is generated. Both the andfrom_position target_view source_view
the must be identical in structure. REPLACE does not add occurrences, so only those occurrences that exist in the target view aretarget_view
replaced.

If the is greater than the size of the , all items from it are used and a warning is issued at runtime. If itnumber_of_occurs_to_process source_view
is less than zero, then zero is assumed, and no item from is taken.source_view

Example: Using REPLACE Function

DCL
 I INTEGER;
 C CHAR(10);
 V1, V2, V3 VIEW CONTAINS I, C;
 W VIEW CONTAINS I;
 V VIEW CONTAINS V1(10), V2(2), V3, W(10);
ENDDCL

MAP "O1V1" TO C OF V1(1)
MAP "O2V1" TO C OF V1(2)
MAP "O1V2" TO C OF V2(1)
MAP "O2V2" TO C OF V2(2)
MAP "O0V3" TO C OF V3
MAP "Test" TO C OF V1(4)
REPLACE(V1, 2, V2)
TRACE(C OF V1(1)) *> O1V1 <*
TRACE(C OF V1(2)) *> O1V2 <*
TRACE(C OF V1(3)) *> O2V2 <*
TRACE(C OF V1(4)) *> Test <*
REPLACE (V1, 4, V3)
TRACE (C OF V1(4)) *> O0V3 <*
REPLACE(V1, 5, W) *> Illegal: W does not have identical structure as V1 <*
REPLACE(V1, 27, V2) *> runtime error <*
REPLACE(V1, 10, V2) *> V1(10) is replaced with V2(1) <*

Local Procedure Declaration in Java

For Java, any data type can be used as a procedure parameter.

For more information about the local procedure declaration, refer to .Local Procedure Declaration

Event Procedure Declaration in Java

The following example illustrates the declaration of event procedures in Java. For more information refer to . For aEvent Procedure Syntax
detailed list of supported events, see the .ObjectSpeak Reference Guide

Example: Java LISTENER Clause

In this example, two handlers, and , are declared for the event keyPressed for objects of type .hand1 hand2 java.awt.Button

DCL
 hand1 proc for keyPressed type 'java.awt.Button'
 (evt object 'java.awt.event.KeyEvent');
 hand2 proc for keyTyped listener 'java.awt.event.KeyListener'
 type 'java.awt.Button' (evt object
 java.awt.event.KeyEvent');
ENDDCL

Although the first definition has no LISTENER clause, it is equivalent to the second definition.

hand3 proc for keyPressed type 'java.awt.Button'
 (evt object 'java.awt.event.KeyEvent');

This handler declaration is equivalent to the previous two.

DCL
 event object 'java.awt.event.KeyEvent';
 button object type 'java.awt.Button';
 ButtonPtr object 'java.awt.Button';
 HandlerForPointer proc for keyPressed object ButtonPtr
 (evt like event);
 HandlerForObject proc for keyPressed object button
 (evt like event);
ENDDCL

The event handlers and are declared for the distinct objects referenced respectively by the variablesHandlerForPointer HandlerForObject
 and . In both cases, using the LISTENER clause produces the same result.ButtonPtr Button

Defining Views in Java

In Java, you can define a local procedure that has one or more parameters of the view type without defining the view type. This procedure call can
get any view as an actual parameter.

If a procedure has a non-typed view as a parameter, then this parameter is passed by reference, as opposed to typed parameters that are always
passed by values in the Rules Language. Please notice that if you use this specific procedure declaration, you might encounter a severe
reduction of runtime performance compared to the procedure with type parameters. This is the case when your procedure call can copy the views
of different types with copying source or destination being coded as a non-typed view parameter. In this case, the reflection-based mapping
algorithm is used and performs poorly compared to the direct views copying generated code when the views' types are known at compile-time.

A non-typed view can only be used in its entirety in a MAP statement, when passed as a parameter to another procedure or subrule call, or as an
argument of CLEAR operator, CLEARNULL, LOC, OCCURS, and SIZEOF functions. In these cases, view mapping is performed dynamically
during execution according to the view mapping algorithm. For a description of the view mapping algorithm, see .Assignment Statements

Example: View Mapping

DCL
 i, j integer;
 u view contains i;
 w view contains i, j;
 z view contains u, w;
ENDDCL

PROC p (v view)
 MAP v to u
ENDPROC

p(w) *> Here i of w is assigned to i of u <*
p(z) *> No assignments is performed - i is on different level in z <*
p(u) *> i of u assigned to i of u <*

Constructing an Event Handler in Java

The following constructions be used in the event handler body in Java:can

Local procedure call
USE RULE
USE COMPONENT
CONVERSE WINDOW
RETURN

SQL ASIS Support in Java

Java does not support embedded SQL; it supports SQLJ. AppBuilder generates SQLJ from the code in SQL ASIS. The following restrictions
apply:

Dynamic SQL
Dynamic SQL is not supported. An error might be generated if a dynamic SQL statement is found in SQL ASIS code, but not all errors
are reported. This allows more flexible DBMS support.

NULL value
Indicator variables only indicate that an associated host variable has a NULL value. No other errors are indicated. You can also use
ISNULL to test for a NULL value in a field along with the PROPAGATE_NULL_TO_DATABASE=TRUE in the appbuilder.ini file. This is
because NULL values are supported for Java.
Cursor generation
By default, a cursor is generated FOR UPDATE except in the following cases, which generate the cursor implicitly READ ONLY. The
following fullselects and select-clauses refer to the DECLARE CURSOR statements only:

the outer fullselect includes a GROUP BY clause or HAVING clause
the outer fullselect includes column functions in the select list
the outer fullselect includes a UNION or UNION ALL clause
the select-clause of the outer fullselect includes a DISTINCT clause
the select-statement includes an ORDER BY clause
the select-statement includes a READ ONLY clause
the select-statement includes a FETCH FIRST ROWS ONLY clause.n

If the flag ROCRS is set or if the READ_ONLY_SQL_CURSOR ini value is YES, then the cursor is generated
as read only by default.
If this flag or hps.ini value is set and no "read only SQL cursor" is used to position the DELETE or UPDATE
operation, then a preparation error is issued.

Persistent SQL cursor in Java
The refers to the possibility that a cursor created by a particular rule must be retained past the end of thePersistent SQL cursor in Java
rule invocation and made available to subsequent invocations of that rule within the same scope until explicitly closed; however, in the
case of executing in a server request scope, the request terminates.
Depending on the rule/type execution environment, the persistent cursor scope can be defined as follows:

For (EJB, Web Services, RMI)Server Rules
The scope is limited by the server request. A persistent cursor that is opened by a particular rule is available to that rule
whenever the server performs the request until the time at which the cursor is closed.
For (GUI, HTML) – non-detachedClient Rules
The scope is limited to the non-detached rules within the client execution environment. A persistent cursor opened by a particular
non-detached rule is available to non-detached instances of that rule whenever it is called within the client-side application until
the cursor is closed. Detached instances of that rule do not have access to a persistent cursor opened by a non-detached
instance.
For (GUI, HTML) – detachedClient Rules
The scope is limited to the detached instance. A persistent cursor opened by a particular rule within a detached instance is
available to that rule within the detached instance until the cursor is closed. Non-detached instances of that rule and instances of
that rule in other detached instances, siblings, parent or child, do not have access to the persistent cursor.
For Batch Rules
The scope is limited to the batch application. A persisted cursor opened by a particular rule is available to that rule whenever it is
called within the batch application until the cursor is closed.

The Persistent Cursor is not supported for COBOL code generation and is only available in Java.

The host variables that are used in DECLARE ... CURSOR statements are converted before and after the SQL ASIS block
containing the OPEN statement for the cursor. If DECLARE and OPEN are done in separate rule calls and host variables were
modified between rule calls, then the modified values are lost. It is recommended that you only use input and global view fields
as the host variables in the rules with persistent cursor.
If cursor is not closed by the application, it is stored in the cache until the application exits (this might produce overflow) or until
the same cursor is opened again.

 concerning persistent cursor usage:Restrictions and warnings

Cursor is persistent between different rule calls in application instance:
If a rule is called in different contexts (R1 calls R2 calls R3sql, but R1 also calls R3sql direct);
If a rule recursion is used, and the rule is already running. It is not recommended to use the persistent cursor option for
such rules: cursor could be removed or overwritten by another instance of the rule.

Cursor is persistent for the rule in a servlet session, but does not keep persistency between different servlet sessions.
Cursor does not keep persistency between web service calls.
Cursor does not keep persistency between RMI calls.
Cursor does not keep persistency between different EJB sessions.

Cursor declaration: Cursors must be declared with the DECLARE CURSOR clause before the first use; otherwise, an error is issued at
preparation time.
Host expressions: Host expressions can only use host variables. A host expression cannot be more complex than a single variable.
FETCH statements and PRAGMA SQLCURSOR clauses
If there are no FETCH statements in the rule and all the required table columns are not listed, then the PRAGMA SQLCURSOR clause
must be used in the rule. See .PRAGMA SQLCURSOR in Java
Cursor field types are defined by types of textual first FETCH target variables or by the PRAGMA SQLCURSOR clause.
A warning is issued in the following cases:

If there are several FETCHes from the same cursor but types of their corresponding host variables are different, the cursor field
types are defined by the first FETCH. A warning is generated on the other FETCHes with different target variables types.
If the cursor field types are different in the FETCH statement, the PRAGMA SQLCURSOR clause, and the PRAGMA clause

preceded ETCH, the same warnings are generated.
An error is issued in the following case:
If there is more than one PRAGMA SQLCURSOR clause for the same cursor, even with the same list of field types, or if the
PRAGMA SQLCURSOR clause is after the FETCH from this cursor.

For Java, the number of host variables in the fetch statement matches the number of columns defined for the
cursor.
The number of targets in the INTO-list must be the same for all FETCH statements over one cursor. If
PRAGMA SQLCURSOR is specified, then this number must coincide with the number of cursor fields specified
by PRAGMA. If this condition is broken, then sqlj tool reports an error during preparation.

Host variable name and cursor name
It is possible to use delimited identifiers (identifiers enclosed in double-quotation marks) anywhere where an ordinary identifier is allowed
except for the host variable name and the cursor name. You can use a host variable even if its name is equal to a SQL reserved word
without enclosing it in quotation marks. Cursor name must not coincide with any SQL reserved word.
SQL ASIS block
The SQL ASIS block cannot contain a stored procedure declaration.
Returned cursor
It is not possible to use a cursor returned from a stored procedure because a cursor must be declared in the same rule where it is used.
Syntax for constructs
The syntax for the following constructs must comply with IBM R DB2 Universal Database SQL Reference for Cross Platform
Development, Version 1.1:

Declare cursor statement (DECLARE...CURSOR)
Open statement (OPEN...)
Close statement (CLOSE...)
Fetch statement (FETCH...INTO)

Syntax for SQL statements

All other SQL statements must have syntax that is accepted by the Java SQLJ preprocessor for the installed database. For additional information
see .File (Database) Access Statements

SQL CALL Statement Syntax

The following is the only syntax of the SQL CALL statement that is supported for calling a stored procedure:

CALL <procedure> (:[IN|OUT|INOUT]<host_variable>,...)*

This feature is supported only for Java.

Using Host Variables in SQL Code

In Java, SQL constructs concerning cursors are analyzed (DECLARE ... CURSOR, OPEN, CLOSE and FETCH). This enables the correct host
variable conversion to be generated at the correct place. The host variables that were used in DECLARE ... CURSOR statements are converted
before and after the SQL ASIS block containing the OPEN statement for the cursor.

During preparation, construction is transformed to where :host_var = :host_var :hostvar = (CAST :hostvar AS host_var_type)
 is an SQL type corresponding to the type of the host variable. Tables of correspondence between rules and SQLhost_var_type

data types are DBMS-specific and located in the dbms.ini file.

Automatic CAST generation can be disabled in such expressions by specifying SQLCASTOFF command-line flag; however,
this can lead to run-time SQL execution errors because the DB2 SQL parser does not accept constructions such as :host_var =

 . See also .:host_var Java Generation Parameters

Example: Using Host Variables in SQL Code

PRAGMA SQLCURSOR (myCursor, date, time, varchar(10))

DCL
 myDate date;
ENDDCL

SQL ASIS
 Declare myCursor cursor for
 Select
 Column1,
 Column2
 From myTable
 Where Column3 = :myDate
ENDSQL

set myDate := date ()

SQL ASIS
 open myCursor
ENDSQL

This results in the following. The results are simplified for clarity:

// 0016: set myDate := date ()
fMydate.map(AbfDate.getCurrentDate());

// 0018: SQL ASIS
/*%ConverseIn(RSQL_DATE, Mydate_sql, fMydate)%*/;
#sql [dbContext] crsMycursor =
{
SELECT
COLUMN1,
COLUMN2
FROM MYTABLE
WHERE COLUMN3 = :Mydate_sql
}
;

Thus, the value of myDate variable that is used in the DECLARE myCursor CURSOR statement is taken at the time of OPEN myCursor
execution, not at the DECLARE ... CURSOR.

Transaction Support in Java

In Java, the Rules Language provides support for transaction management with these statements:

START TRANSACTION
COMMIT TRANSACTION
ROLLBACK TRANSACTION

You can use these statements with a servlet, an Enterprise Java Bean (EJB) for a bean-managed transaction, or a Java client. For details, read
these topics:

EJB (Container to Bean) Transactions
Client and Servlet Transaction
Handling Rollbacks
Clients and Database Connection Pool

EJB (Container to Bean) Transactions

The preferred mode of transaction support is the container-managed EJBs generated by AppBuilder. For normal use, do not use any of the
transaction statements from the Rules Language because transactions are managed by the application server and the container.

For increased flexibility, use bean-managed transactions. Modify the transaction type in the file ejb-jar.xml from Container to Bean as follows:

<ejb-jar>
 <enterprise-beans>
 <session>
 ...
 Bean<transaction-type> </transaction-type>
 </session>
 ...
</ejb-jar>

Do not use the SQL ASIS statement to manage transactions because the application server cannot handle the transaction context. It prohibits the
transactions from being propagated or processed correctly. Instead, use the Rules Language statements to start, commit, and rollback
transactions.

Client and Servlet Transaction

AppBuilder supports client-managed transactions. Use this mode carefully because the transaction context in a client and server transaction
exists for a longer period of time and can potentially induce deadlocks. The following restrictions apply to a full Java client:

Set SEPARATE_RPC_THREAD=FALSE in the appbuilder.ini file.
Do not converse any window between start and commit/rollback statements.
Do not use detached rules.

You also need to provide information about the transaction context in the appbuilder.ini file. For example:

[DB]
INITIAL_CONTEXT_FACTORY=java_class_name
PROVIDER_URL=protocol://host_name:port_number

These are the same parameters used for an initial context in the application server.

Handling Rollbacks

Java bean-managed transactions use the transaction statements to handle rollbacks.

The container-managed transactions automatically handle rollbacks by means of the rollback flag using the SET_ROLLBACK_ONLY function.
Use the GET_ROLLBACK_ONLY function to check the rollback status. It returns TRUE if the SET_ROLLBACK_ONLY function is called;
otherwise, it returns FALSE.

Clients and Database Connection Pool

Connecting to a database from the application server provides a good resource management. Specify the following settings to use the database
connection pool on the client side:

Set the DB_ACCESS parameter to APPSERVER in the [DB] section of the appbuilder.ini file.
Set the INITIAL_CONTEXT_FACTORY and the PROVIDER_URL parameters in the [DB] section of the appbuilder.ini file.
Set the implementation name of the database object to the same name as the database connection pool name.

For additional information see .File (Database) Access Statements

Subscript Control in Java

Subscript control of occurring views is performed in Java. It relies on the INDEX_CONTROL_ABORT setting of the appbuilder.ini file. This setting
controls whether or not an application aborts when a view subscript is out of range. Possible values of the INDEX_CONTROL_ABORT setting are
TRUE or FALSE. If set to FALSE, then no exception is thrown, and the first occurrence is assumed if the subscript is out of range. The default
value is TRUE, and the default behavior is that if a subscript is out of range error occurs, an exception is thrown, and the application terminates.

Example: Subscript Control in Java

In the following example, the is set to FALSE, and the application continues to execute after the subscript is out ofINDEX_CONTROL_ABORT
range:

DCL
 I INTEGER;
 V(10) VIEW CONTAINS I;
 INDX INTEGER;
ENDDCL

MAP 10 TO INDX
MAP 1 TO I(INDX) *> Correct, I(10) is set to 1 <*
MAP -1 TO INDX
MAP 1 TO I(INDX) *> Error: index less than one, first occurrence assumed <*
TRACE(I(1)) *> "1" is printed <*
MAP 11 TO INDX
MAP 2 TO I(INDX) *> Error: index greater than view size, first occurrence assumed <*
TRACE(I(1)) *> "2" is printed <*
RETURN

PRAGMA Statements in Java

The following PRAGMA statements have special considerations when used in Java:

PRAGMA CLASSIMPORT in Java
PRAGMA AUTOHANDLERS in Java
PRAGMA ALIAS PROPERTY in Java
PRAGMA COMMONHANDLER in Java
PRAGMA SQLCURSOR in Java

For additional information, see .Compiler Pragmatic Statements

PRAGMA CLASSIMPORT in Java

In Java, PRAGMA CLASSIMPORT makes the fields and methods of Java classes available for the rule. An is created for this class –alias
variable of type OBJECT TYPE 'Java class name' with a default or user-specified name. The first parameter in the list is the Javastyle class name
(case-sensitive). The second parameter is the user-specified alias. If a second parameter is not used, then the default alias name (class name
where the symbol '.' is replaced with the underscore symbol (_)) is created. This alias can be used to access static fields and methods of Java.

PRAGMA CLASSIMPORT Syntax

where:

class_alias_list is a list of pairs that consist of a Java class name and alias to import. Separate the class name and alias using a comma
(spaces are ignored), and place the entire list in parentheses. The PRAGMA CLASSIMPORT clause in case-sensitive, so note the exact
capitalization of the Java class name.

Whenever any class with fields or methods is used in a rule (in OBJECT TYPE '?' or OBJECT '?' declaration) a default alias is created for it. It can
be changed to a more convenient name by using PRAGMA CLASSIMPORT.

Choose a unique name for an alias when using ObjectSpeak names that are the same as keywords, ObjectSpeak object types,
method names, constants, or any other identifiers visible in the rule scope, to avoid ambiguity errors that might cause failures
during prepare.

Example: Using PRAGMA CLASSIMPORT to Create an Alias

Alias system is created for class , and its static method exit() is invoked.java.lang.System

PRAGMA CLASSIMPORT (Customer, CUSTOMER)
PRAGMA CLASSIMPORT (Java: Entities.Employee, EMPLOYEE, Java:java.util.ArrayList, LIST_ARRAY)
PRAGMA CLASSIMPORT (Java:java.lang.System, MySystem)

dcl
 cust object type CUSTOMER;
enddcl

map new CUSTOMER to cust *> Creating a new instance <*
cust.setName("John Smith") *> Method invocation <*
MySystem.exit(0) *> Static method invocation<*

The Alias name assigned must be a non-existing name (in the version of Java being used). In the preceding example do not
use the word (assumed by Java) , but chose an unique name (as , etc).system MySystem

PRAGMA AUTOHANDLERS in Java

In Java, PRAGMA AUTOHANDLERS determines whether or not event handlers for window objects are assigned automatically.

PRAGMA AUTOHANDLERS Syntax

The default value is ON. All handlers for window objects are assigned upon rule startup.

If PRAGMA AUTOHANDLERS OFF statement is written in a rule, these handlers are not assigned. They can be assigned later; however, using
the HANDLER statement. See for details.Event Handler Statement in Java

The only exception to this rule is the INITIALIZE event of the WINDOW class (Java class). The handler forappbuilder.gui.AbfGuiWindow
the event, if present, is enabled automatically, regardless of whether PRAGMA AUTOHANDLERS is used.

Example: Using PRAGMA AUTOHANDLERS

In this example, the window associated with a rule has two push buttons, 'OK' and 'CANCEL', and an edit field 'EDIT'.
Assume the following declarations:

DCL
 BUTTON_OK OBJECT 'OK';
 EDITOR OBJECT 'EDIT';
 EDITREF OBJECT TYPE EDITFIELD;
 BUTTONREF OBJECT TYPE PUSHBUTTON
ENDDCL

PROC P1 FOR CLICK OBJECT BUTTON_OK(EVT OBJECT TYPE CLICKEVENT)
...
ENDPROC

PROC P2 FOR CLICK OBJECT TYPE BUTTON(EVT OBJECT TYPE CLICKEVENT)
...
ENDPROC

PROC P3 FOR CLICK OBJECT TYPE EDITFIELD(EVT OBJECT TYPE CLICKEVENT)
...
ENDPROC

PROC INIT FOR INITIALIZE OBJECT WINDOW
...
ENDPROC

By default:

P1 is assigned for CLICK event of 'OK' pushbutton.
P2 is assigned for CLICK event of 'CANCEL' pushbutton.
P3 – for CLICK event of 'EDIT' edit field.
INIT – for INITIALIZE event of a window.

If you want to use as a handler for CLICK event of 'OK' pushbutton, write:P2

HANDLER BUTTON_OK (P2)

If PRAGMA AUTOHANDLERS OFF is written, , , and are not assigned automatically. still is assigned for the INITIALIZE event ofP1 P2 P3 INIT
the window.

PRAGMA ALIAS PROPERTY in Java

In Java, the Rules Language identifiers are case-sensitive and Java identifiers are case-sensitive. Therefore, two Java class properties whosenot
names differ only in case cannot be used directly in a rule source code. A Rule can still access these methods by declaring aliases for them.
Rules Language provides the PRAGMA ALIAS PROPERTY clause for this purpose.

PRAGMA ALIAS PROPERTY Syntax

where:

property_name is the case-sensitive name of a property and the alias for which it is defined.
class_id is a string that identifies the implementation of the class. It might be CLSID for OLE objects or the full Java class name for Java
classes.The identification string is considered case-sensitive.
class_name is the class name used in a rule's code. It is not case-sensitive.
alias is the valid Rules identifier – alias for a method. This alias can be used in Rules code instead of the name of the method.

Example: Using PRAGMA ALIAS PROPERTY

Class has two fields:com.tinal.Data

data of type andint
DATA of type .java.lang.String

DCL
 D OBJECT TYPE 'com.tinal.Data';
 C CHAR(100);
 I INTEGER;
ENDDCL

set D := new 'com.tinal.Data'
MAP D.DATA TO C *> invalid: field name "DATA" conflicts with field
name "data" and can not be used directly<*

PRAGMA ALIAS PROPERTY('DATA', 'com.tinal.Data', CHARDATA)
PRAGMA ALIAS PROPERTY('data', 'com.tinal.Data', INTDATA)
MAP D.CHARDATA TO C
MAP D.INTDATA TO I

PRAGMA COMMONHANDLER in Java

In Java, PRAGMA COMMONHANDLER specifies the handler on any object's event using the same system ID (HPSID) within the rule scope.

For all systems IDs (HPSIDs) mentioned in the list, if an event handler is defined for the object with the same system ID (HPSID) as an object
name, then this event handler is defined for all objects with the same system ID. You can either specify a list of specific system IDs to handle or
specify ALL (indicates the list of all HPSIDs).

PRAGMA COMMONHANDLER Syntax

PRAGMA SQLCURSOR in Java

In Java, PRAGMA SQLCURSOR specifies cursor field types. In SQLJ, all column types must be listed when declaring an iterator (SQLJ analog
for cursor). The code generation facility determines this list of types using the list of target host variables of the first FETCH from this cursor. If the
cursor is not used in a FETCH statement, use PRAGMA SQLCURSOR to define this cursor's column types and avoid a preparation error.

PRAGMA SQLCURSOR Syntax

where

cursor_name is any valid identifier.
data_type is any primitive data type (any data type except views or objects)---see .Data Types

Example: Using PRAGMA SQLCURSOR

PRAGMA SQLCURSOR (myCurs, VARCHAR(255), DEC(31, 10), INTEGER)

DCL
 CurrentName VARCHAR(255);
 NewBonus INTEGER;
ENDDCL
...
SQL ASIS
 DECLARE MyCursor CURSOR FOR
 SELECT Name, Salary, Bonus
 FROM Employees
 WHERE Name = :CurrentName
ENDSQL
...
SQL ASIS
 UPDATE Employees SET Bonus = :NewBonus
 WHERE CURRENT OF MyCursor
ENDSQL

Static and Static Final Methods and Variables in Java

In Java, to use static and static final methods and variables of a class in a rule without creating an object of that class, use the PRAGMA
CLASSIMPORT clause. See and for detailed syntax and examples.PRAGMA KEYWORD PRAGMA CLASSIMPORT in Java

Event Handler Statement in Java

In Java, the HANDLER clause enables event handlers for the specified object.

HANDLER Syntax

where:

object_name is the object variable.
event_handlers_list is a list of event handlers that are delimited with commas.

Usage

By default, only event handlers for the window objects are enabled automatically. (See .) For JavaPRAGMA AUTOHANDLERS in Java
generation, handlers are also enabled automatically for the Rule object. Use the HANDLER statement for all other objects to enable event
handlers. When a rule is terminated, all event handlers are disabled.

If any handler in the list is not defined for the object or there are several handlers for the same event and the same object, then an error is
generated. Using a non-initialized object variable causes a runtime error.

Example: Enabling Event Handlers

Two event handlers of type java.awt.Button are enabled for the object of that type

DCL
 p object to 'java.awt.Button';
 KeyHandler1 proc for keyPressed listener
 'java.awt.event.KeyListener' type 'java.awt.Button'
 (evt object to 'java.awt.event.KeyEvent');
 KeyHandler2 proc for keyTyped listener
 'java.awt.event.KeyListener' type 'java.awt.Button'
 (evt object to 'java.awt.event.KeyEvent');
ENDDCL

HANDLER p (KeyHandler1, KeyHandler2)

Event handler is enabled for the object for which it was declared

DCL
 p object to 'java.awt.Button';
 KeyHandler proc for keyPressed listener
 'java.awt.event.KeyListener'
 object p (evt object to 'java.awt.event.KeyEvent')
ENDDCL

HANDLER p (KeyHandler)

Error because KeyHandler1 and KeyHandler2 were declared for the same object

DCL
 p object 'java.awt.Button';
 KeyHandler1 proc for keyPressed listener
 'java.awt.event.KeyListener' type 'java.awt.Button'
 (evt object 'java.awt.event.KeyEvent');
 KeyHandler2 proc for keyTyped listener
 'java.awt.event.KeyListener'
 object p (evt object 'java.awt.event.KeyEvent');
ENDDCL

HANDLER p (KeyHandler1,KeyHandler2) *> error <*

Error because KeyHandler was not defined for object p1

DCL
 p object 'java.awt.Button}}';
 p1 like p;
 KeyHandler proc for keyPressed listener
 'java.awt.event}}.KeyListener'
 object p (evt object 'java.awt.event.KeyEvent')
ENDDCL

HANDLER p1 (KeyHandler) *> error <*

OVERLAY Statements in Java

The OVERLAY statement creates a char array from the source view or field and then interprets the char array to populate the output view or field.
The following list describes how the input view fields are converted to a byte stream:

DEC (decimal) is converted to a string representation and the string is written as character bytes. The size of the string is always
length+1, meaning that the leading spaces are inserted if necessary; there are no leading zeros, and all the trailing zeros are included,
while the leading sign is included only if the value is negative. The decimal separator is not included.
PIC (picture) is converted to a string using the PICTURE format and is written as character byte stream.
VARCHAR is interpreted as two items: the actual length and character data. The length is written first, as a smallint into two characters,
and afterwards the character data. The number of characters is the maximum length of this VARCHAR. If the actual length is less then
maximum, the character data is padded with blanks.
Integer data types and data types internally represented by integer(s) (DATE, TIME, TIMESTAMP) are interpreted as bytes in little endian
whose values are written to characters:
SMALLINT as two bytes
INTEGER as four bytes
DATE and TIME as INTEGER (four bytes)
TIMESTAMP is interpreted as three INTEGERS: date, time and fraction
CHAR, DBCS and MIXED are directly written to unicode characters.

The char array created from the input view is interpreted using the structure of the output view in the following ways:

Integer data types and data types internally represented by integer(s) (DATE, TIME, TIMESTAMP) are interpreted as bytes in little endian
located in consequent characters:
SMALLINT as two bytes
INTEGER as four bytes
DATE and TIME as INTEGER (four bytes)
TIMESTAMP is interpreted as three INTEGERS: date, time and fraction
DATE, TIME, TIMESTAMP, DEC, PIC and VARCHAR data types are validated when the data is written to the destination view, based on
the data type of the target field.
If the target field data type is DEC (decimal), the character array is read as a string of length Length(field) + 1 and converted to a
decimal value using the decimal conversion routines.
Picture (PIC) fields are read as strings and interpreted using the PICTURE format.
VARCHAR fields are interpreted as following: maximum length(field) + 2 characters are read from the array; the first two of them are
interpreted as source length (SMALLINT) and the others as field characters. The destination actual length is set to the minimum of the
source length and destination maximum length. If the source length is bigger than the destination maximum length, the rest of the
character is used as a source for the next field. Avoid using a VARCHAR field within the output view because of the unexpected
behavior.
The given length of a CHAR field is used to read the byte stream.

The safest way to overlay in Java is to use a target view that contains only CHAR fields, and has a total length equal to or bigger than the source
view.

When the overlay source is shorter than the destination, the data in the particular field of the destination view depends on the field type and the
partial data availability. If there is no data in the source to fill the field (partial data is not available), it remains unchanged, regardless of its type. If
partial data is available, the result can be described by the following table:

Results depending of the available partial data

Destination
view field
type

If partial data are available Example Result

CHAR,
VARCHAR,
TEXT,
IMAGE

Available partial data are written to the field. The rest is filled with
blanks. (The behavior is different when the target field type is
VARCHAR and only one character is available as partial data. In
this case the field is cleared.) dcl

 ch1 char(3);
 ch2 char(4);
 v1 view
contains ch1;
 v2 view
contains ch2;
enddcl

map 'sun' to
ch1
overlay v1 to
v2

ch2
=='sun'

SMALLINT,
INTEGER,
DEC,
PIC,
SPIC,
TIME,
DATE,
TIMESTAMP,

LONGINT,
DOUBLE,
FLOAT

The field is set to initial value.
If APP_LEVEL constant from appbuilder.ini is more than or equal
to 1, the warning message is traced.

dcl
 ch1 char(1);
 si smallint;
 v1 view
contains ch1;
 v2 view
contains si;
enddcl

map 's' to ch1
overlay v1 to
v2

Trace: Partial overlay of
smallint field - field
cleared

si == 0

If the string representation of that part of the source which should be overlaid to the DATE, TIME, TIMESTAMP, DEC or PIC (SPIC) cannot be
translated to the item of the destination field type, the destination field is set to the initial value.

The interpretation of the VARCHAR data item is different when overlaying directly to (or from) it:

OVERLAY varchar_field TO view

Here the is interpreted as an array of its characters of length maximum . The varchar actual lengthvarchar_field length(varchar_field)
information is not written in this case. However, for

OVERLAY view TO varchar_field

The maximum characters are read from the array to the fill data item characters. The actual lengthlength(varchar_field) varchar_field
of the is set to the maximum . If in the array are less then the maximum length()varchar_field length(varchar_field) varchar_field
characters, then all the characters from the array are read into characters and the actual length of is set tovarchar_field varchar_field
the array length.

Processing of object references in OVERLAY Statement is different from processing of fields of other types. ObjectReferences are treated as int
value 0 when they are in the source view and set to null when they are the target. The result of this is that object references are not copied from
source views to destination views.

Example: Processing of object references in OVERLAY statement

dcl
 o1, o2 object;
 v1 view contains o1, o2;
 v2 view contains o1, o2;
enddcl

map new 'appbuilder.util.AbfInt' to o1 of v1
map new 'appbuilder.util.AbfInt' to o2 of v1

overlay v1 to v2

if o1 of v2 <> o1 of v1
 trace('object references are not copied during overlay')
endif

In this example the output will be .object references are not copied during overlay

Refer to the information in the for a comprehensive understanding of the OVERLAY statements, as the information thereOVERLAY Statement
also applies to Java.

CASEOF in Java

In Java, it is possible to use the final fields of Java classes as selectors in CASE clauses. The final field of the Java class must be convertible to
the type of the field in the CASEOF clause.

If you use the final fields of a Java class as selectors in CASEOF clause, it is not checked whether these selectors are equal to other selectors in
the CASEOF statement.

USE RULE ... DETACH OBJECT Statement in Java

In Java applications, the caller rule can have limited control over the called detached rule by using the DETACH OBJECT clause. Every running
rule is represented in Java by an instance of a Rule object (appbuilder.AbfModule). To access this instance, put the name of a variable of type
'OBJECT Rule' in the DETACH OBJECT clause of the USE RULE statement. When the rule is called, an instance of the called rule is assigned to
a variable specified after the OBJECT keyword.

Example: Using DETACH OBJECT clause

DCL
 MY_CHILD_RULE OBJECT TYPE RULE;
 CHILD_WINDOW OBJECT TYPE WINDOW;
ENDDCL

USE RULE CHILD_RULE DETACH OBJECT MY_CHILD_RULE
>CHILD_WINDOW holds reference to CHILD_RULE window<

MAP MY_CHILD_RULE.GetWindow TO CHILD_WINDOW

CONVERSE REPORT Statement in Java

In Java, when you specify the printer name in a CONVERSE REPORT...PRINTER START statement, it overrides theprinter_name
corresponding appbuilder.ini setting and the report will be printed to a printer named " ".printer_name

For example:

CONVERSE REPORT MyReport PRINTER "\\server\printer" START

Indexed DO Statements in Java

For indexed DO Statements, native Java indexes are used in generated code whenever it is possible. Generation of native Java indexes
increases performance of applications. Native Java indexes are generated when the following restrictions occur:

1.
2.

1.
2.

3.
4.

the type of the Rule loop counter is integer type (SMALLINT, INTEGER or LONGINT) or FLOAT or DOUBLE
the types of FROM, TO and BY expressions are integer types

The type of the native Java index depends on the type of the Rule loop counter and the types of FROM, TO and BY expressions. If the Rule loop
counter is specified then the type of the native Java index will be as follows:

The type of the Rule loop counter The type of the native index

SMALLINT short

INTEGER int

LONGINT long

DEC AbfDecimal

If the Rule loop counter is not specified then the type of the native Java index is defined by the types of FROM, TO and BY expressions:

if all the FROM, TO and BY expressions have SMALLINT type the type of the native Java index will be short.
if one of the expressions have INTEGER type and other expressions have SMALLINT or INTEGER type then the type of the native Java
index will be int.
if one of the expressions have LONGINT type then the type of the native Java index will be long .
if one of the expressions have DEC type then the type of the native Java index will be AbfDecimal.

Examples: Indexed DO Statements in Java

Example1: A loop with loop counter specified

The rule

DCL
 counter_small SMALLINT;
ENDDCL

DO FROM 1 TO 4 BY 1 INDEX counter_small
ENDDO

The generated Java code for the loop

 i;short
(i = 1;for

 i <= 4;
 i = i + 1)
{

}
fCounterSmall.map(i);

Example2: A loop with no loop counter

The rule

DO FROM 1 TO 1234567 BY 1
ENDDO

The generated Java code for the loop

(i = 1; i <= 1234567; i++)for int
{

}

Native Java arrays

Java native arrays can be specified as parameters and return value when Java classes are used in the rule. For example, if we have Java classes

class ContainerClass
{
 ItemClass[] getItems()public
 {
 ItemClass[] items = ItemClass[3];new

 items[0] = ItemClass();new "Obj1"
 items[1] = ItemClass();new "Obj2"
 items[2] = ItemClass();new "Obj3"

 items;return
 }

 ContainerClass() {}public
};

class ItemClass
{
 name;private String

 ItemClass(name)public String
 {
 .name = name;this
 }

 getName() { name;}public String return

};

then the following rule will be prepared and run successfully:

dcl
 containerObj object pointer to 'ContainerClass';
 arrayObj object array of object pointer to 'ItemClass';
 itemObj object pointer to 'ItemClass';
 i integer;
 err varchar(64);
enddcl

map new 'ContainerClass'() to containerObj
map containerObj.getItems() to arrayObj

do from 1 to arrayObj.Size() index i
 map arrayObj.Elem(i) to itemObj

 if i=1 and itemObj.getName() <> "Obj1"
 map err ++ "/1" to err
 endif

 if i=2 and itemObj.getName() <> "Obj2"
 map err ++ "/1" to err
 endif

 if i=3 and itemObj.getName() <> "Obj3"
 map err ++ "/1" to err
 endif
enddo

if isclear(err)
 trace("CG_RULE_LONG_NAME RESULTS: ", "SUCCESSFUL")
else
 trace("CG_RULE_LONG_NAME RESULTS: ", "ERRORS: " ++ err)
endif

return

Specific Considerations for CSharp

Data Types in C#

 This section contains special considerations for using data types in C#. For information about data types, refer to . Data Types

For and System.DateTime type is use.DATE, TIME TIMESTAMP
For other type see Data Types in Java

Dynamically-Set View Functions in C#

For information about Dynamically-Set View Functions in C# see Dynamically-Set View Functions in Java

Specific Considerations for ClassicCOBOL

Specific Considerations for ClassicCOBOL

The following sections describe the specific differences in Rules Language elements for ClassicCOBOL:

Data Types in ClassicCOBOL
Functions in ClassicCOBOL
OVERLAY Statements in ClassicCOBOL
Subscript Control in ClassicCOBOL
Procedure Declaration in ClassicCOBOL
Double-Byte Character Set Functions in ClassicCOBOL and OpenCOBOL

Size Limitations in ClassicCOBOL and OpenCOBOL
Comparing Views in ClassicCOBOL and OpenCOBOL
SETDISPLAY in ClassicCOBOL and OpenCOBOL

Restrictions on features are summarized in . To see which functions are supported, refer to Restrictions on Features Supported Functions by
.Release and Target Language

Data Types in ClassicCOBOL

This section contains special considerations for using data types in ClassicCOBOL. For more information about data types, refer to the following
section: .Data Types

Decimal Field Representation in ClassicCOBOL
Large Decimal Support for SQL in ClassicCOBOL
DBCS and MIXED Data Types in COBOL
Variable for the Length of the VARCHAR Data Item in ClassicCOBOL

Decimal Field Representation in ClassicCOBOL

Decimal fields up to 18 decimal digits are represented as packed decimal data. The fields with more than 18 digits are represented as PIC data.
Refer to to see how decimal fields are treated in OpenCOBOL.DEC in OpenCOBOL

Large Decimal Support for SQL in ClassicCOBOL

In ClassicCOBOL, up to 31 decimal digits are supported and functions are provided when more digits are required than supported by the
compiler. Code generator parameter -K defines the size of decimal fields that are generated as native COBOL packed decimal digits. All decimal
fields longer than the value defined by this parameter will be generated as PIC X fields. Runtime routines perform calculations with these fields.
All decimal fields used in SQL ASIS statements are passed to DB2 without any conversion.
The DDL for decimal fields larger than supported by the COBOL compiler differs from the DDL of OpenCOBOL fields. This represents a difficulty if
your existing applications use large fields to convert to OpenCOBOL. Such DB2 columns, defined as CHAR are not compatible with packed
decimal fields used by OpenCOBOL generation and some type of migration strategy should be considered when converting ClassicCOBOL
application to OpenCOBOL.
For information about the DEC data type refer to .DEC

DBCS and MIXED Data Types in COBOL

Because of the differences in character representation on different platforms, a varied number of characters can fit into a particular MIXED field.
Keep the following in mind when writing COBOL applications:
A MIXED data item's length is calculated in bytes in COBOL and can have a maximum length of 32K.
In COBOL, a single-byte character occupies one byte, a double-byte character occupies two bytes. In the beginning of a DBCS character
sequence, there is a "shift-out" control character and the sequence is ended with a "shift-in" control character, each of which occupies one byte.
Thus, a single DBCS character occupies up to four(4) bytes - two for character code, one for shift-out and one for shift-in.
For more information about the DBCS and MIXED data types refer to .DBCS and MIXED Data Types

Variable for the Length of the VARCHAR Data Item in ClassicCOBOL

Changing _LEN only affects the _LEN variable, the corresponding VARCHAR is affected immediately. Therefore, you can use any value fornot
the _LEN variable.
In other constructions, behavior might be different. Do not modify the VARCHAR variable through its _LEN variable in COBOL.
For more information, refer to .Variable for the Length of the VARCHAR Data Item

Example: Using _LEN variable in ClassicCOBOL

The following two examples illustrates how _LEN and the corresponding VARCHAR data item are affected by changing the _LEN.
Example 1

MAP -1 TO VC_LEN
MAP VC_LEN TO SomeVariable

SomeVariable will contain --1.

Example 2
In the following example, changing the _LEN variable does not affect the VARCHAR data item.

MAP TO VC"some string"
MAP 0 TO VC_LEN
IF VC = ""
 TRACE()"VC is empty"
ENDIF

The TRACE statement will not be executed because the value of is not changed and equals " ".VC some string

Functions in ClassicCOBOL

The following functions have special considerations for ClassicCOBOL:

Double-Byte Character Set Functions in ClassicCOBOL and OpenCOBOL
RTRIM in ClassicCOBOL
SETDISPLAY in ClassicCOBOL and OpenCOBOL
STRLEN in ClassicCOBOL
STRPOS in ClassicCOBOL
SUBSTR in ClassicCOBOL
UPPER and LOWER in ClassicCOBOL
VERIFY in ClassicCOBOL

RTRIM in ClassicCOBOL

In ClassicCOBOL, if RTRIM is applied to an invalid MIXED string, the function result is undefined, but the returned string length cannot be greater
than the length of the argument. For more information, see .RTRIM

STRLEN in ClassicCOBOL

In ClassicCOBOL, when STRLEN is applied to a DBCS string, the function parameter is not required to be a valid DBCS string.
If STRLEN is applied to an invalid MIXED string, the function result is undefined. It cannot be greater than the maximum length of the given string.
Shift control characters that appear in COBOL only are not counted. For more information, see .STRLEN

STRPOS in ClassicCOBOL

In ClassicCOBOL, if one of the STRPOS parameters is an invalid MIXED string, the function returns zero. If the first parameter of STRPOS is a
valid MIXED string and the second parameter is an invalid DBCS string, the function still returns zero. If both parameters of STRPOS are DBCS,
those parameters do not have to be valid DBCS strings. For more information see .STRPOS

SUBSTR in ClassicCOBOL

In ClassicCOBOL, this function can be applied to MIXED and DBCS strings. Position and length must be specified in characters, not bytes.
In ClassicCOBOL, if SUBSTR is applied to an invalid MIXED string, the function returns an empty string. When SUBSTR is applied to a DBCS
string, the function parameter is not required to be a valid DBCS string. For more information see .SUBSTR

UPPER and LOWER in ClassicCOBOL

In ClassicCOBOL, if UPPER or LOWER is applied to an invalid DBCS or MIXED string, it returns an empty string.
Characters are converted to upper case or lower case according to the specified codepage. In ClassicCOBOL, this codepage is specified by the
R2C_CODEPAGE setting in the Hps.ini file and requires recompiling rules after changing it. For additional information, refer to Supported

. For more information see .Codepages UPPER and LOWER

https://wiki.bphx.com/display/AB32/Supported+CodePages#SupportedCodePages-5062256075606
https://wiki.bphx.com/display/AB32/Supported+CodePages#SupportedCodePages-5062256075606

VERIFY in ClassicCOBOL

In ClassicCOBOL, if one of the VERIFY parameters is an invalid MIXED string, the function returns zero. If the first parameter of the VERIFY is a
valid MIXED string and the second parameter is an invalid DBCS string, the function still returns zero. If both parameters of the VERIFY are
DBCS, the parameters can contain invalid characters. For more information see .VERIFY

OVERLAY Statements in ClassicCOBOL

The OVERLAY statement in AppBuilder performs a byte-by-byte memory copy, which bypasses the MAP statement safety mechanism.
The OVERLAY statement can cause unexpected results. Although the MAP statement carefully compares view structures to make sure that data
ends up only in fields like those from which it came, the OVERLAY statement blindly copies all the source data item's data, in its stored form, to
the destination data item. Use caution when using OVERLAY---erroneous OVERLAY statements might not be noticed during compilation but can
result in problems during execution.

Do not use MIXED or DBCS data types in OVERLAY statements.
Do not use OVERLAY statements with data types not explicitly supported.
Use MAP statements instead of OVERLAY statements whenever possible.

Refer to the information in for a comprehensive understanding of OVERLAY statements, as the information there alsoOVERLAY Statement
applies to ClassicCOBOL.

Subscript Control in ClassicCOBOL

Subscript control of occurring views is not performed at runtime. If the subscript is out of range, a system exception occurs depending on the
COBOL compiler used and the compiler's options.

Procedure Declaration in ClassicCOBOL

For ClassicCOBOL, you cannot declare a procedure return result using the LIKE clause.
For more information about the procedure, refer to .Common Procedure

Specific Considerations for OpenCOBOL

Specific Considerations for OpenCOBOL

The following sections describe the specific differences in Rules Language elements for OpenCOBOL:

OpenCOBOL Generation
Data Types in OpenCOBOL
Views in OpenCOBOL
Initialization of Occurring Views in OpenCOBOL
Symbols in OpenCOBOL
Functions in OpenCOBOL
DO Statements in OpenCOBOL
OVERLAY Statements in OpenCOBOL
USE RULE Statement in OpenCOBOL
PERFORM Statement (PROC) in OpenCOBOL
PRAGMA CENTURY for OpenCOBOL
Subscript Control in OpenCOBOL
Native File Handling

The differences between COBOL and Rules Language lead to several restrictions to OpenCOBOL generation. These restrictions apply to built-in
Rules Language functions because, in some cases, there are no corresponding COBOL functions. Also, differences in the form that data types
are stored in might affect the behavior of your programs.
Restrictions on features are summarized in . To see which functions are supported, refer to Restrictions on Features Supported Functions by

.Release and Target Language

OpenCOBOL Generation

OpenCOBOL is readable, maintainable and closely conforms to standard COBOL. OpenCOBOL uses standard functions and data formats where
possible. OpenCOBOL does not require the use of a separate runtime for arithmetic operations with Large Decimals (meaning decimals with
length more than 18) unlike those for ClassicCobol.
However, remember that this is valid only for platforms that support Large Decimals. If platform doesn't support Large Decimals, there will be
syntax error concerning incorrect length of such Decimal. For specific examples of syntax errors, see Messages Reference Guide.
The following are important features of OpenCOBOL:

Runtime-free code generation - Generated OpenCOBOL is callable without an intermediary runtime. All libraries required by the

generated COBOL are delivered in source and binary form.
User-friendly code - Generated OpenCOBOL is readable and maintainable outside the AppBuilder environment. One externally-callable
COBOL program is generated from each AppBuilder rule. Thus, there is a one-to-one relationship between AppBuilder rules and each
generated COBOL program. Programs are not collapsed together.
Standardized data types and functions - Generated OpenCOBOL uses industry-standard data types and standard COBOL functions
where available.
Option to prepare standard COBOL or OpenCOBOL - The OpenCOBOL generation facility does not replace the existing COBOL
capability, but rather provides an alternative code generation option.

Data Types in OpenCOBOL

This section contains special considerations for using the following data types in OpenCOBOL. For more information about data types, refer to the
following section: .Data Types

DEC in OpenCOBOL
LONGINT, FLOAT and DOUBLE in OpenCOBOL
DATE, TIME and TIMESTAMP in OpenCOBOL
Considerations for Data Items for UNIX generation
Variable for the Length of the VARCHAR Data Item in OpenCOBOL

DEC in OpenCOBOL

OpenCOBOL supports only as many decimal digits as the compiler supports. It creates packed decimal fields in DB2 for its decimal data. Refer to
 to see how decimal fields are treated in ClassicCOBOL.Decimal Field Representation in ClassicCOBOL

For more information about the DEC data type, refer to .DEC

Example: Declaring DEC fields in OpenCOBOL

Given the following declarations in the rule:

dec_field_18_8 dec(18,8)
dec_field_25_8 dec(25,8)

the following declaration is used in OpenCOBOL program:

03 DEC-FIELD-18-8-F PIC S9(10)V9(8) USAGE COMP-3.
03 DEC-FIELD-25-8-F PIC S9(17)V9(8) USAGE COMP-3.

LONGINT, FLOAT and DOUBLE in OpenCOBOL

The Rules Language data types LONGINT, FLOAT and DOUBLE for (hexadecimal) floating point numbers can be translated in OpenCOBOL as
follows:

LONGINT

Use LONGINT for a 64-bit signed integer:

PIC S9(1) USAGE COMP-4
PIC S9(1) USAGE COMP-5

Depending on flag CSET5 of hps.ini file.

FLOAT

Use FLOAT for single precision floating point data – value ranges from -(16 -16) to 16 -16 :63 57 63 57

USAGE COMP-1

DOUBLE

Use DOUBLE for a double precision floating point data – value ranges from -(16 -16) to 16 -16 .63 57 63 57

For more information, refer to .LONGINT, FLOAT and DOUBLE in Java

DATE, TIME and TIMESTAMP in OpenCOBOL

OpenCOBOL uses two ways to generate COBOL code for DATE, TIME and CHAR functions. One way is to generate a call to a support library
routine; another is to generate COBOL code that will implement the function. Native COBOL code is generated only when second parameter,
format string, for a function is a constant and this format string contains only the following tokens:

CHAR function for DATE fields: %0m, %m, %0d, %d, %j, %0j, %c, %0c, %y, %0y, %Y
DATE function: %0m, %0d, %0c, %0y, %Y
CHAR function for TIME fields: %h, %0h, %t, %0t, %m, %0m, %s, %0s, %f, %0f, %x
TIME function: %0h, %0t, %0m, %0s, %0f, %x

In all other cases support library call is generated.
OpenCOBOL uses a configurable character format. The following table compares the data types, COBOL equivalents, and the format examples
for each type.

OpenCOBOL Data Type Descriptions

Data Type COBOL Picture Format Example

DATE PIC X(10) YYYY-MM-DD

TIME PIC X(12) HH.MM.SS.FFF

TIMESTAMP PIC X(26) YYYY-MM-DD.HH.MM.SS.NNNNNN

In OpenCOBOL, DATE fields are stored as PIC X(10) character fields that correspond to the DB2 configuration (e.g., yyyy-mm-dd). They are 10
bytes in length. TIME fields are stored as PIC X (12) character fields. The TIME variable has a length of 12 bytes. For more information about the
DATE and TIME data types refer to . In OpenCOBOL, TIMESTAMP fields are stored as a PIC X(26) character field inDate and Time Data Types
the format yyyy-mm-dd-hh.mm.ss.nnnnnn; where nnnnnn is microseconds

Considerations for Data Items for UNIX generation

When generating OpenCOBOL for HP-UX platform, the following restrictions apply:

INTEGER and SMALLINT data items : All INTEGER and SMALLINT data items must be generated as COMP-5 by either adding
FLAG=C5SET to the [CodeGen] section of the Hps.ini file or specifying -FC5SET as a code generation parameter.
DEC data item : The length cannot be more than 18. This is a restriction of COBOL compiler and is not enforced by AppBuilder.

Variable for the Length of the VARCHAR Data Item in OpenCOBOL

Any value can be assigned to the _LEN variable.
Modify the _LEN field of VARCHAR(n) in the 0?n range in OpenCOBOL.
When the corresponding VARCHAR value is required, do not assign an invalid value (less than zero). A runtime error occurs.
If the value of the _LEN field is greater than the declared VARCHAR maximum length, the value of the corresponding variable is filled with spaces
up to the actual length defined by the _LEN variable.
For more information refer to the following section: .Variable for the Length of the VARCHAR Data Item

Example: Using _LEN variable in OpenCOBOL

MAP -1 TO VC_LEN
MAP VC_LEN TO SomeVariable

SomeVariable will contain .-1

In the following example, the corresponding variable is padded with spaces to the length defined by the _LEN variable.

DCL
VC1 VARCHAR(5);
VC2 VARCHAR(20);
ENDDCL

MAP TO VC1"12345"
MAP 10 TO VC1_LEN
MAP VC1 TO VC2
MAP VC2 ++ TO VC2"A"

VC2 will contain (five spaces before A).'12345 A'

Implicit Numeric Conversions in OpenCOBOL

In OpenCOBOL, values of type FLOAT are implicitly converted to values of type INTEGER by rounding decimal part (in both Cobol and
Compatible arithmetic modes). This implicit conversion may occur, for example, in MAP statement or during passing of parameters.

Example: Implicit numeric conversions in OpenCOBOL

DCL
 f FLOAT;
 i INTEGER;
ENDDCL

PROC p(i1 INTEGER)
 TRACE(i1)
ENDPROC

MAP 1.1 to f
MAP f to i
TRACE(i)
p(f)

MAP 1.9 to f
MAP f to i
TRACE(i)
p(f)

In this example the output will be:

1
1
2
2

Views in OpenCOBOL

The AppBuilder code generation facility generates one copybook from each view for OpenCOBOL, which is similar to ClassicCOBOL. The
AppBuilder system ID is used as the actual name of the copybook (view that is generated into COBOL). Within the copybook structure, Fields,
Views, and Sets are referenced by their long names. The maximum length for a name in COBOL is 30 characters. If the View name is longer than
30 characters, AppBuilder creates a generic name. No verification on coincidence with COBOL reserved words is performed. The COBOL
compiler issues an error if the identifier in the generated program is the same as a COBOL reserved word.

Initialization of Occurring Views in OpenCOBOL

Because initialization of a view causes recursive initialization of every field of that view, it can take up a large amount of resources when
multiple-occurring views are used. You can prevent fields in an occurring view from being initialized by specifying a flag and an initialization
setting as follows:

Specify -FNCOCC code generation parameter flag.
Specify OCC_VIEW_SIZE_THRESHOLD setting in the [CODEGENPARAMETERS] section of the Hps.ini file, Partitiondefault.ini for a
client side code generation on the Windows platform, Unixpartitiondefault.ini for a client side code generation on the HP-UX platform, or

the codegen ini file on the host.

The integer value set for the OCC_VIEW_SIZE_THRESHOLD is used as the threshold of the occurring view size to determine whether or not the
fields in the occurring views are initialized. For example, if OCC_VIEW_SIZE_THRESHOLD=299, all occurring views are initialized if the number
of occurrences is less or equal to 299, but they are NOT initialized if the number of occurrences is 300 or greater.
If the flag -FNCOCC is specified and the value of OCC_VIEW_SIZE_THRESHOLD is zero or not specified, all occurring views are initialized.

You cannot reference these fields that are not initialized from outside the occurring view.

Symbols in OpenCOBOL

In OpenCOBOL, if a Set Symbol is an integer or a smallint, it can be generated with the USAGE COMP-5 clause, which is supported only in
COBOL for Z/OS 3.1. To set this option, add FLAG=C5SET to the [CodeGen] section of the Hps.ini file or specify -FC5SET as a code generation
parameter.
For more information, refer to .Symbol

Functions in OpenCOBOL

The following functions have special considerations when used in OpenCOBOL:

Date and Time Functions in OpenCOBOL
Double-Byte Character Set Functions in ClassicCOBOL and OpenCOBOL
FRACTION in OpenCOBOL
INCR and DECR in OpenCOBOL
INT in OpenCOBOL
RTRIM in OpenCOBOL
SETDISPLAY in ClassicCOBOL and OpenCOBOL
STRLEN in OpenCOBOL
STRPOS in OpenCOBOL
SUBSTR in OpenCOBOL
TRACE in OpenCOBOL
UPPER and LOWER in OpenCOBOL
VERIFY in OpenCOBOL
LONGINT, FLOAT and DOUBLE in OpenCOBOL – See for moreFormat String Specific for FLOAT and DOUBLE Data Items
informations.

Date and Time Functions in OpenCOBOL

When the DATE and TIME functions are generated without a support library call, the results are not verified by default. The DATE function can
return an invalid date value such as the 13th month. A returned TIME value can contain an invalid time, such as the 29th hour. However, you can
force DATE and TIME to be validated if you specify the VERDT code generation parameter. This parameter can be set either by adding FLAG=
VERDT to the [COBOL] section of the hps.ini file or by specifying -fVERDT on the PARM line under the OPENCOBOLGEN header in the
CODEGEN member of the CGTABLE.
The following example illustrates the latter method:

&BASEQUAL.CGTABLE(CODEGEN)

[OPENCOBOLGEN]

PARM=PARAM=-VMC \-fdyncall \-yz \-fverdt

If is added to the code generation parameter, then if the DATE function returns an invalid date or the TIME function returns an invalid-fVERDT
time, the returned value is converted to a special value so that the INT function returns -1 when applied to that value. When using , both-fVERDT
DATE and TIME functions are verified.
When an integer is provided as an argument for the DATE function, it is converted to a date. When a date is provided as an argument for the INT
function, it is converted to an integer. In the following example, is a date and is an integer:x y

DATE(INT(x))
INT(DATE(y))

The first expression will always equal and the second expression will always equal .x y
For general information about DATE and TIME functions, see .Date and Time Function Definitions

In cases where AppBuilder generates COBOL code for DATE/TIME functions without a call to the support library (where
-fVERDT has not been set in the code generation parameter), only the format string is analyzed. The first parameter is assumed
to be correct. Therefore, if the first parameter is not valid for the format string specified by the second parameter, then the result
value also will be invalid. This might cause COBOL runtime to generate an exception if the value is then used in other function
calls or expressions. The INT function will return an invalid result, not -1, when applied to such a value.

FRACTION in OpenCOBOL

The FRACTION function returns the fraction part with the precision available in the timestamp field. For example, if the timestamp field has the
value 2003-08-21-12.53.48.976428 then the FRACTION function applied to this field returns 428000000. See Date and Time Function Definitions
for more information.

INCR and DECR in OpenCOBOL

The following example illustrates how INCR and DECR functions are used in a MAP statement.

MAP 0 to I
MAP INCR(I) + DECR(I) + 1 to J

As a result, is set to 0 and is set to 2.I J

Refer to to see how the result is different using the same MAP statement.INCR and DECR in Java

INT in OpenCOBOL

In OpenCOBOL, when the INT function is applied to an invalid DATE/TIME value, it will not always return -1. See the DATE/TIME verification
notes in the description or for more details.DATE and TIME Expressions Date and Time Function Definitions

RTRIM in OpenCOBOL

In OpenCOBOL, if RTRIM is applied to an invalid MIXED string, the function result is undefined, but the returned string length cannot be greater
than the length of the argument. For more information, see .RTRIM

STRLEN in OpenCOBOL

In OpenCOBOL, when the STRLEN function is applied to a DBCS string, the function parameter does not have to be a valid DBCS string. If the
STRLEN function is applied to an invalid MIXED string, the function result is undefined. It cannot be greater than the maximum length of the given
string.
Shift control characters that appear in COBOL only are not counted. For more information, see .STRLEN

STRPOS in OpenCOBOL

In OpenCOBOL, if one of the STRPOS parameters is an invalid MIXED string, the function returns zero. If the first parameter of STRPOS is a
valid MIXED string and the second parameter is an invalid DBCS string, the function returns zero. If both parameters of STRPOS are DBCS,
those parameters do not have to be valid DBCS strings. For more information, see .STRPOS

SUBSTR in OpenCOBOL

In OpenCOBOL, if SUBSTR is applied to an invalid MIXED string, the function returns an empty string. When SUBSTR is applied to a DBCS

string, the function parameter is not required to be a valid DBCS string. For more information, see .SUBSTR

TRACE in OpenCOBOL

Use flag VCTRACE to instruct codegen to generate an IF condition for every VARCHAR argument of TRACE statement to verify that actual
length is not zero. If it is not specified, clearing of varchar variable directly before tracing might lead to abend in run-time.

UPPER and LOWER in OpenCOBOL

In OpenCOBOL, if UPPER is applied to an invalid DBCS or MIXED string, it returns an empty string.
Characters are converted to upper case according to the specified codepage. In OpenCOBOL, this codepage is specified by the
R2C_CODEPAGE setting in the Hps.ini file and requires recompiling rules after changing it. For additional information, refer to Supported

. For more information see .Codepages UPPER and LOWER

VERIFY in OpenCOBOL

In OpenCOBOL, if one of the VERIFY parameters is an invalid MIXED string, the function returns zero. If the first parameter of the VERIFY is a
valid MIXED string and the other is an invalid DBCS string, the function still returns zero. If both parameters of the VERIFY are DBCS, the
parameters can contain invalid characters. For more information see .VERIFY

DO Statements in OpenCOBOL

A prepare error might occur if the DO statement in the Rules Language code uses values or variables that are close to the maximum size of
decimal values for the target platform. This is because temporary variables are created by the Codegen to maintain the internal index. These
temporary variables are allocated with enough positions to handle all possible values for the index variable.

Example: Compile Error with a Looping Structure Using Variables

The following declared variables are both within the maximum length of 18 for Unix platform; however, when they are used as in the following
example, an index variable must have more than 18 digits:

dcl
 BIG_LEFT DEC(10,0);
 BIG_RIGHT DEC(10,10);
enddcl

 from BIG_RIGHT to BIG_LEFTdo
enddo

The resulting temporary index variable has to have a picture clause of:

PIC 9(10)V9(10)

to handle 10 decimal positions of BIG_RIGHT and 10 full digit positions of BIG_LEFT for 20 positions, which would cause a compile error if the
target platform supports only 18 digits.

OVERLAY Statements in OpenCOBOL

In OpenCOBOL, the OVERLAY statement logic remains the same as in ClassicCOBOL. The only difference originates from differences in data
types. Refer to specific data type descriptions in to review the differences. It is safe to overlay fields of the same data type with theData Types
same offset in source and destination views.
Refer to the information in for a comprehensive understanding of OVERLAY statements, as the information there alsoOVERLAY Statement
applies to OpenCOBOL.

Example: OVERLAY statement in OpenCOBOL:

DCL
 integer_1 INTEGER;
 small_1, small_2 SMALLINT;
 date_1 DATE;

 view_1 VIEW CONTAINS small_1, small_2, date_1;
 view_2 VIEW CONTAINS integer_1, date_1;
ENDDCL

MAP DATE TO date_1 OF view_1
OVERLAY view_1 TO view_2

This OVERLAY statement results in date_1 OF view_2 set to the same value as date_1 OF view_1, because both DATE variables have the same
offset.

If you mix data types in an overlay, the result might differ from the data types in COBOL:

DCL
 integer_1 INTEGER;
 small_1, small_2 SMALLINT;
 date_1 DATE;
 view_1 VIEW CONTAINS date_1, small_1, small_2;
 view_2 VIEW CONTAINS integer_1, date_1;
ENDDCL

MAP DATE TO date_1 OF view_1
OVERLAY view_1 TO view_2

Since DATE type representation in OpenCOBOL differs from COBOL, integer_1 OF view_2 will contain a different value than it would if you ran
this example for COBOL.

USE RULE Statement in OpenCOBOL

Programs generated for OpenCOBOL and ClassicCOBOL have different calling conventions. They cannot invoke one another. The AppBuilder
USE RULE statement is converted to individual program calls using a dynamic COBOL call. The HPSCOMMAREA is not used.
For more information see .USE RULE Statement

PERFORM Statement (PROC) in OpenCOBOL

The generated OpenCOBOL paragraph name is equivalent to the AppBuilder Rules Language name. The maximum length for a paragraph name
in COBOL is 30 Characters, therefore, in cases where the procedure name is longer than 30 characters, AppBuilder creates a generic name. No
verification is performed on coincidence with COBOL reserved words.
Recursion is not supported for procedure calls. No error message is generated when recursion is used, but execution results are unpredictable.

PRAGMA CENTURY for OpenCOBOL

In OpenCOBOL, use PRAGMA CENTURY to specify the default century used in the conversion functions DATE(char) and CHAR(date). This
statement overrides the DEFAULT_CENTURY INI setting. See forOpenCOBOL specific settings in the CODEGENPARAMETERS section
OpenCOBOL specific settings. PRAGMA CENTURY affects all DATE and CHAR functions that follow it until the end of the Rule code or another
PRAGMA CENTURY statement. The next PRAGMA CENTURY statement overrides the previous one and behaves as described above.

PRAGMA CENTURY Syntax

where

string_literal is any character literal containing one or two digits.

Example: Using PRAGMA CENTURY

DCL
 d DATE;
ENDDCL
SET d:=date(,)"12/28/99" "%0m/%0d/%0y"

//DEFAULT_CENTURY value from the INI file is used
TRACE(d)//will print 1999-12-28

PRAGMA CENTURY()"18"
SET d:=date(,)"12/28/99" "%0m/%0d/%0y"
TRACE(d)//will print 1899-12-28

PRAGMA CENTURY()"20"
SET d:=date(,)"12/28/99" "%0m/%0d/%0y"
TRACE(d)//will print 2099-12-28

Subscript Control in OpenCOBOL

Subscript control of occurring views is not performed at runtime. If the subscript is out of range, a system exception can occur depending on the
COBOL compiler used and the compiler's options.

Native File Handling

This section describes the for OpenCOBOL on the mainframe, HP-UNIX, and AIX. This feature does not apply to Classicnative file handling
COBOL, Java and C# generations. implemented using native COBOL supportThe files of all types are . Line-sequential files are applied on the
mainframe, if HFS datasets are supported.

The topics here include:

Sequential Files Characteristics
File Attributes
Discriminants
Open Function
Close Function
Reading operation
Writing operation
TRACE Function
Changes in the Rule Hierarchy

Sequential Files Characteristics

Sequential files can be seen as a stream of bytes (an unstructured file), or as a stream of records (a structured file). The following sections
discuss basic file operations. The file handling mechanism provides similar features to those currently implemented by system components.
Each file comprises the following characteristics:

Native Name
Logical Name
Access Mode and Physical Organization

Native Name

Each file has two names. A file has a , which links an AppBuilder file entity to the operating system's unique identifier for the file. Thisnative name
name depends on a target platform. For example, the native name of a file on the mainframe is the name of the DD clause, and the DD clause
contains the data set name. In contrast to mainframe conventions, the file native name on the PC can be the real name of a physical file or the
name of a key in the INI file, or the name of the environment variable.
In case of the DD name on the mainframe, the operating system links the DD name to the data set name before the application is started, which
allows the application to operate against different physical files without the need for recompiling the application.

Logical Name

A file also has a , which is the name given to the file within an application.logical name

Access Mode and Physical Organization

A file also has some . From all the different possible file access modes, AppBuilder only supports aaccess mode and physical structure
sequential access mode. By sequential access mode we mean that a predecessor-successor relationship among the records in the file is
established by the order in which the records are placed in the file when this is created or extended.
The files with sequential access mode can have one of the several physical structures detailed below:

Line-sequential Files
Fixed Record Files – Files consisting of records having the same length.
Variable Record Files – Files consisting of records having a different length.

Line-sequential Files

In case of a file, each record contains a sequence of characters ending with a platform-specific record delimiter. The recordline-sequential
delimiter is not counted in the length of the record. When the record is written, any trailing blanks are removed prior to adding the record delimiter.
All the characters in the user's field from the first character up to and including the added record delimiter constitute one record and are written to
the file. Upon reading the record, characters are read one at a time into the user's field until the record delimiter is encountered.
For OpenCOBOL, the line-sequential files must only contain printable characters and some control characters, for example, new-line, DBCS
shift-out, DBCS shift-in, etc.
Only new-line characters are processed as record delimiters in the cases of EBCDIC encoding and ASCII encoding on UNIX, while other control
characters are treated as part of the data for the records in the file. In the case of ASCII encoding on Windows, two sequential characters
(carriage-return followed by new-line) are used as record delimiters. If only one of these characters is found, then it is treated as part of the data.
In the case of ASCII on UNIX, one character (new-line) is used as a record delimiter.

 contains all allowable control characters for OpenCOBOL generation.OpenCOBOL generation control characters

OpenCOBOL generation control characters

Control character Hexadecimal value in EBCDIC Hexadecimal value in ASCII

Horizontal tab X'05 'X'09'

Vertical tab X'0B 'X'0B'

Form feed X'0C 'X'0C'

Carriage return X'0D 'X'0D'

DBCS shift-out X'0E 'X'0E'

DBCS shift-in X'0F 'X'0F'

New-line X'15 'X'0A'

Backspace X'16 'X'08'

Alarm X'2F 'X'07'

Codepage conversion is not supported for OpenCOBOL generation in the case of file operations.
The line-sequential files have no special physical characteristics to store in the model element DataSource. DataRecord elements are not used for
OpenCOBOL generation.

Fixed Record Files

A file organized as represents a sequence of records that have the same length. You can perform basic operations with these files based onfixed
a user-defined buffer. In terms of the Rules Language, such a buffer can be a VIEW or a CHAR field.
The layout of the file with a fixed structure is a sequence of records without any delimiters. Each record has the same size (as defined by the
views attached to the DataRecord) and every record is treated as a sequence of bytes. The VIEW size (record length) is platform-dependent, as
defined by the rules listed in .Platform-specific Data Type Sizes

Variable Record Files

A file organized as represents a sequence of records that have different lengths. You can perform basic operations with these files basedvariable
on a user-defined buffer. In terms of the Rules Language, such a buffer can be a VIEW or CHAR field. The layout of the file with Variable
organization is platform-dependent.
Every record of a file having variable organization on the Mainframe has control fields that precede the data. The physical record length is
determined by adding 4 bytes (for the control fields) to the real record length. The record length is stored in a big-endian numeric representation.
These control fields are transparent to the rule and the generated COBOL program. Thus, the OpenCOBOL generation ignores them.

File Attributes

A file is always declared by modeling it in the repository. It cannot be defined in the rule directly.
Every file entity has a that is used in the Rules program (in terms of AppBuilder, the logical name is a long name).logical name
Each file entity might also have a (native name in AppBuilder); otherwiseplatform specific name a , if the native name is not defined, the logical

 name defines a DD name for the mainframe. For Windows and UNIX platforms, thename is used as platform specific name. The platform specific
platform specific name is resolved at runtime to a file name. The platform specific name might also be resolved using environment variables or INI
file settings. You cannot use the platform specific file name in the rule code.
Besides the file names, the following attributes are extracted from the model, depending on the file organization type and target platform:

The Record Length property defines maximal size of a record that can be read or written from or to the file if the Data Source

organization type is line-sequential or variable. Moreover in case of the variable organization type no attached view can have size more
 than this value. If the organization type is fixed then all attached views should have the same size that is equal to the Record Length.

The organization type is , no supplemental information is extracted from the model.line-sequential
If the type organization is or , then all VIEWs linked to DATA_RECORDs are extracted. Also, an additional attribute fromfixed variable
the model is extracted – inDiscriminant attributes for all relationships between fields and DataRecord (including FieldPath value).

Discriminants

There are two types of record-oriented files and two ways of reading the records from the file:

In the first case the file contains records of the same type or the record type is known from the program/business logic before the read
operation is executed.
In the second case, some of the fields in the records need to be analyzed before the record type is known and read. In AppBuilder, such
fields are marked as .discriminants

Files with discriminants support the following syntax to access the VIEW field that is designated as discriminant in the model:

<file_name>.<view_name1>. ... <view_nameN>.<field_name>

Some qualifiers (except and) can be skipped in the rule code, if they are not suspected of provoking ambiguities.<file_name> <field_name>

Rules Language supports discriminants using the NEXT function.

The NEXT function reads the next record into the internal buffer (that cannot be accessed directly from the program) and returns an Integer value.
If the returned value is zero, then it indicates that the current reading operation is finished successfully. If the return value is greater than zero,
then it indicates some exception: either end of file is encountered or reading operation was not able to finish successfully. When any read
operation is performed later on a file and the buffer is not empty, then the buffer is used to populate the view and is emptied. If the buffer is empty,
the data is read from the file directly into the view and the buffer stays empty.

Please note that in COBOL the buffer means the system buffer. The real emptying of the buffer does not occur, but instead the
special field informs the COBOL program. Therefore, this field might have one value if the buffer is considered empty, and
another if it is considered full.
If you use discriminants in the Rule code, then additional COBOL code is generated that negatively affects the application's
performance.

Using discriminant field access syntax on a file with no discriminants is a syntax error.

Trying to access a discriminant when the buffer is empty (i.e. it has not been populated by the call to the NEXT function) might
lead to unpredicted behavior at the execution time.

Files' usage provides two examples based on the files' type:

Files' usage

Using files with discriminant Using files without discriminant

//There is a file F with three types of records:
//View1, View2, and View3
//field1 of View1 is a discriminant
//File layout:
//View1 is always followed by View3
//These pairs are intermixed with
//View2 records
//View3 that is not preceded by View1
//starts the sequence containing
//View3 records only

Open (f, READ)
Set Condition := true
//using the discriminant
Do While(Next(f) && Condition)
 Caseof (f.view1.field1)
 Case DEPOSIT
 f >> View1 //reads from buffer
// process View1
f >> View3 //reads from file
// process View3

 Case WITHDRAW
 f >> View2 //reads from buffer
//process View2

 Case Other
 Set Continue := false
Enddo
// reading the of the file,rest
// not using the discriminant

Do While (Not EOF(f))
 f >> View3 //reads from file
// process View3
Enddo

//There is a file F with three
//types of records: View1 and View2
//File layout:
//View1 is always followed by View2

Do While (Not EOF(f))
 f >> View1 //reads from buffer
// process View1
f >> View2 //reads from file
// process View2
Enddo

Open Function

AppBuilder supports an with two parameters and an integer result. The first parameter is a file identifier; the second parameterOpen function
defines how the file should be opened (for reading, writing, reading and writing or appending). The second parameter can be either a character

 parameter can have one ofliteral or a symbol of the FILE_ACCESS_MODE system set; using of other constructions is not allowed. The second
the following values (the list below represents symbols in the new system set – File_Access_Modes; symbol names are in uppercase, symbol
values are in parenthesis):

READ ('r') – if the file should be opened to read. The Open function returns negative value if the file does not exist.
WRITE ('w') – if the file should be opened to write, the file is created if it does not exist; it returns false if the file cannot be created or
opened with WRITE access.
READ_WRITE or – if the file should be opened to read and write; the file is created if it does not exist; it returns false ifUPDATE ('rw')
the file cannot be created or opened with WRITE access.
APPEND ('a') – if the file should be opened for append; the file is created if it does not exist; it returns false if the file cannot be created or
opened with WRITE access.

If the value differs from those listed above, AppBuilder reports an error.
The Open function returns zero if the current reading operation is finished successfully. If the returned value than zero, then it indicatesis lesser
one of the following exceptions:

LOST_FILE (value 53). An OPEN function call with the INPUT, I-O, or EXTEND phrase was attempted on a non-optional file that was not
present.
OPENED_FILE (value 65). An OPEN function call was attempted for a file in the open mode.

It is possible to use the Open function call as a statement. In this case a value that is returned by Open function is ignored.

The examples below illustrate possible Open function uses:

Example 1:

 Open (MyInFile, READ) < 0if
 trace ('It is not possible to open file', My{color:#000000}In{color}File)
 return
endif

Example 2:

Open (MyOutFile, WRITE) // value is ignoredreturn

Close Function

AppBuilder supports a with one parameter that is a file identifier. It returns an integer result. This function causes the file with theClose function
given identifier to be closed. This function returns zero if and only if the file was successfully closed. If the returned value is lesser than zero, it
indicates the following exception:

UNOPENED_FILE (value 66). A CLOSE function call was attempted for a file not in the open mode.

Example

 Close (MyFile) < 0if
 trace ('It is not possible to close file', MyFile)
 return
endif

Reading operation

The binary operation is used to read data from a file.>>

Syntax

reading-operation:

file-identifier >> destination

The destination type is based on the file characteristics:

If the file is a , the destination can be CHAR, DBCS or MIXED field.line-sequential
In other cases, the destination can be either VIEW or CHAR field. If the destination is a VIEW, then it can be a view attached to a file
Data Record or a view that is identical to the view attached to a file Data Record. If the destination is a CHAR field, then its size has to be
equal to or greater than the size of a view or field attached to some Data Record.

VARCHAR field cannot be a destination for the read operation. This is because the VARCHAR field is generated in the
COBOL program as a record containing two fields: length and storage area. If reading is performed directly to such a
record, then the first two bytes of the file record (they are not record length) are copied into a length field, which might
lead to an unpredictable program behavior. Supporting more sophisticated generation and setting the length field
correctly might result in generated code complication, along with flexibility losses.

The reading operation returns an integer value. If the return value is zero, then it indicates that the current reading operation is successfully
finished. If the return value is bigger than zero, then it indicates a possible exception: either the file's end is encountered or the reading operation
was not completed successfully. These values are stored in the system error set – IO_Return_Codes. The values are:

EOF (value -1). It indicates that the end-of-file is encountered.
READ_ERROR (value -2). It indicates that the reading operation was unsuccessfully finished.

The reading operation returns READ_ERROR value when a problem is encountered while reading a record (for instance, the buffer size - view or
field - is smaller than the file record size).

LONG_RECORD (value -3). It indicates that the destination is shorter than the file record. Such a value can be returned when a file has
variable organization only.

Semantics

The semantic of the reading operation is based on the physical file organization:

Line-sequential Files
Fixed Record Files
Variable Record Files

Getting File I/O Status

AppBuilder supports a FileIOStatus function with one parameter that is a file identifier. It returns an integer result. This function does not change
the file and returns current status of the file as set by the previous file operation (return value is zero if no errors happened). The status can be
any of the values listed in the IO_RETURN_CODES set (see description in Native File I/O Access Modes and Status Codes section).

Example

 Open (MyInFile, READ in FILE_ACCESS_MODES) <> 0if
 trace (‘It is not possible to open file ‘, MyInFile)
 trace (‘Error: ‘, SETDISPLAY (IO_RETURN_CODES, FileIOStatus (MyInFile)))
 {color}return

endif

In this example file open operation is performed so we should get a trace with error message saying if file is opened.

Next Function

Function Next has one parameter, which is a file; it returns an integer value, similar to a reading operation described below. If the next record
does not exist or is shorter than a DataRecord size (in case of some corrupt files), then EOF value is returned.

When this function is executed it performs read operation as described below but the record read from a file is stored in the internal buffer
generated in the COBOL program. Rule code has no access to this buffer but can analyze discriminant fields after NEXT was executed.

The read operation for the files with discriminant can be used with or without the call to the NEXT function. The semantics of the reading operation
are the following:

If the buffer is empty, then the reading operation reads the record from the file to a destination; the buffer remains empty.

If the buffer is not empty, then the reading operation moves the buffer content to a destination; this operation empties the buffer.

See Read Operation below for more details and examples.

Read operation

The binary operation >> is used to read data from a file.

Syntax

read_operation:

 file_identifier >> destination

The destination type is based on the file characteristics:

If the file is a line-sequential file, the destination can be CHAR, DBCS or varchar field.
In other cases, the destination can be VIEW, CHAR, DBCS or varchar field.
If the destination is a VIEW, then it can be a view attached to a file Data Record or a view that is identical to the view attached to a file
Data Record.
If the destination is a CHAR field, then its size has to be equal to or greater than the size of a view or field attached to some Data Record.
If destination is a VARCHAR field then its size has to be equal to or greater than the size of a view or a field attached to some Data
Record. A length of the VARCHAR field is set to the size of a read record.

The read operation returns an integer value.

If the return value is greater than zero or is equal to zero indicates that the current read operation is successfully and this value means a
length of the read record.
If the return value is less than zero, then it indicates a possible exception: either the file’s end is reached or the read operation is not
completed successfully. This values are defined in the system set IO_Return_Code (see description in Native File I/O Access Mode and
Status Codes section):

EOF
UNOPENED_FILE
LONG_RECORD

INCOMPLETE_RECORD
NON_READ_MODE

Semantics

The semantic of the read operation is based on the physical file organization:

Line-sequential Files
Fixed Record Files
Variable Record Files

Line-sequential Files

If a file has a organization, then the characters in the file record are read one at a time into the destination until one of the followingline-sequential
conditions occurs:

The (new-line character) is encountered. The delimiter is discarded. The remainder of the destination is filled with spacesrecord delimiter
(). It returns the number of bytes actually read from the file, without the record delimiter(s).the destination is longer than the file record
The has been reached. The entire target record area is filled with characters. If the next unread characters are theend of the destination
record delimiters, they are discarded. The next >> operation reads the first character of the next record (the destination has the same

). It returns the number of bytes actually read from a file, without the record delimiter(s).length as the file record
Otherwise . The current reading operation is completed and the next unread character fromthe destination is shorter than the file record
the current file record is the first character to be read by the next >> operation. In this case, the reading operation returns the
LONG_RECORD value.
The is encountered. The remainder of the destination is filled with spaces (). Itend-of-file the destination is longer than the file record
returns the number of bytes actually read from a file, without record delimiter(s).

The file codepage attribute is ignored and there is no codepage conversion while reading the line-sequential file.

Fixed Record Files

If a file has a organization, then DATA_SOURCE has more than one DATA_RECORD entity describing one of the record formats that canfixed
be stored in the file. Every DATA_RECORD is linked to a single VIEW object. The right operand of the reading operation could be any view in the
rule scope or any local view or any CHAR field.
The semantics of a reading operation are discriminant-dependent:

If a file has , then the reading operation inputs the next record from a file to a destination, as shown in no discriminants Example 1: File
.Without Discriminants

If a file has , then the rule code might first access a discriminant(s) to make a choice of concrete view that becomes thediscriminants
reading operation's destination, as shown in .Example 2: File With Discriminants
The program from a file without specifying the destination. This operation is implemented as reading the nextreads the next record
record into some internal buffer.
The program . This is implemented as reading from the buffer, transparent to the rule.analyzes discriminants
The program into a discriminant value-based chosen view. This is implemented as Overlay of the buffer into the specificreads the record
view.

In this case, the reading operation is not sufficient. It is necessary to have one additional function that reads the next physical record into an
internal buffer:

function Next has one parameter, which is a file; it returns an integer value, similar to a reading operation. If the next record does not
exist or is shorter than a DataRecord size (in case of some corrupt files), then EOF is returned.
a buffer, for storing the record, generates and it is initialized when the file is open. In addition, it allows accessing the fields declared as
discriminants.

The reading operation can also be used without the preceding call to the NEXT function. In this case, the semantics of the reading operation are
the following:

If the , then the reading operation reads the record from the file to a destination; the buffer remains empty.buffer is empty
If the , then the reading operation moves the buffer content to a destination; this operation empties the buffer.buffer is not empty

All buffer operations are transparent to the program and the program does not have direct access to the buffer. Only the Next and >> reading
operations might implicitly access or change the internal buffer; discriminant access might also access the internal buffer.

Example 1: File Without Discriminants

There is a fixed record file MyInFile with two types of records: View1 and View2 with the following file layout: View1 is always followed by View2.
The program should read this file and process its records.

dcl
 l_view1 like view1;
 l_view2 like view2;
 IO_RC integer;
enddcl

 Open (MyInFile, Read in File_Access_Mode) < 0if
 trace (‘File MyInFile cannot be open’)
 trace (MyInFile)
 return
endif

 set IO_RC := MyInFile >> l_view1do
 IO_RC >= 0if
 ProcessView1 (l_view1)
 set IO_RC := MyInFile >> l_view2{color}
 endif

 IO_RC >= 0while
 ProcessView2 (l_view2)
enddo

 IO_RC < 0 and IO_RC <> EOF in IO_Return_Codesif
 trace ('File Read Error:', SETDISPLAY(IO_Return_Codes, IO_RC))
endif

Example 2: File With Discriminants

There is a fixed record file MyInFile with two types of records: View1 and View2. One of the records has a discriminant: the field MyDiscrView1 is
discriminant of View1; View2 has no discriminant. The program should read this file and process with its records.

dcl
 l_view1 like view1;
 l_view2 like view2;
 read_ret_code integer;
enddcl

 Open (MyInFile, Read in File_Access_Mode) < 0if
 trace (‘File MyInFile cannot be open’)
 trace (MyInFile)
 return
endif

 set read_ret_code := Next (MyInFile)do
 read_ret_code = 0while

 MyInFile.View1.MyDscrView1 = ‘YES’if
 set read_ret_code := MyInFile >> l_view1
 // reading from a buffer does not generate any errors
// so error code is not analyzed
ProcessView1 (l_view1)
 else
 MyInFile >> l_view2
 ProcessView2 (l_view2)
 endif
enddo

EndOfFile condition

To check whether the file reading operation have reached end of file, Rules Language supports EOF function that returns TRUE if and only if the
end of the file had been reached by the previous reading operation.

// This is a file f with records of View1 type
 FileIOStatus (f) = 0do while

 f >> View1 // reads from buffer
// process View1 odd records herefor

 FileIOStatus (f) = 0if
 f >> View1 //reads from buffer
// process View1 even records herefor

 else
 EOF (f)if
 trace ('Warning: EOF - no more records in the file.')
 endif
 endif
enddo

Variable Record Files

If a file has a organization, then the file's next record is read one at a time into the destination until the end-of-file is encountered. If thevariable
record has a length greater than the destination, then the remainder is discarded and the reading operation returns LONG_RECORD value from
IO_Return_Codes.
The semantic of the reading operation is identical to the OVERLAY statement, where the source is the CHAR field with the same size as the file
record and the destination is a view or a field (for instance, the bytes from a file record are copied one by one into the memory area allocated by
the destination).
The file that has variable organization can also have discriminants. The discriminants' support is the same as for fixed organization files.

Write operation

The binary operation is used to write data to a file.<<

Syntax

writing-operation:

file-identifier << source

The source contains the data that should be written to a file. The type of the source depends on the file characteristics:

If a file has a organization, then the source can be a CHAR, DBCS, or MIXED field.line-sequential
In case of organization, the source can be either a VIEW or a CHAR/DBCS/MIXED field.fixed or variable

The write operation returns an integer value. If the returned value is zero, then it indicates that the current reading operation is finished
successfully. If the returned value is lesser than zero, then it indicates an exception. This values are defined in the system set IO_Return_Code
(see description in Native File I/O Access Mode and Status Codes section).

Semantics

If a file has a organization, then the new record is placed immediately after the last record written to the file by the previous writeline-sequential
operation. If the source is a CHAR/DBCS field, then the spaces (single byte and DBCS) at the end of the source are discarded, and the record
delimiter is added at the end of the source. The characters in the source from the first character up to and including the added record delimiter are
written to the file as one record.
If a file has a organization, then the new record is placed immediately after the last record written to the file by the previous writefixed or variable
operation.
For fixed or variable organization, if the source is a CHAR field, then the entire field content is written to the file. In all other cases the source is
considered the sequence of bytes and all the bytes in the source are written to the file.
If the file was open for the , then it causes an exception. If the file is open for the , then the first write operationRead operation Write operation
writes a record to a file at offset 0. If the file is open for , then the first write operation puts a record after the last record thatAppend operation
already exists in the file.

TRACE Function

You can use the TRACE function with a file identifier as a parameter. The output consists of information about a file (for example, logical and
native name, organizationType, etc.).

Support of Global Data Source

Data Sources can be shared between several rules. To support this feature it needs to mark as Global on the relationship between a rule and the
Data Source then such Data Source is shared between all the rules in the same transaction that also have the Global attribute for this Data
Source.

Native File I/O Access Mode and Status Codes

This paragraph contains a description of two new system sets that can be used to support a native file handling.

Table 13-10. FILE_ACCESS_MODE set

This set provides values to use them as second parameter of Open function call.

Set Symbol Name Set Symbol Value

READ r

WRITE w

UPDATE rw

APPEND a

Table 13-11 IO_RETURN_CODES set

This set is used to check error codes returned by Input/Output operations.

Set Symbol Name Set Symbol Value

SUCCESS 0

EOF -1

DATA_SOURCE_ERROR -2

READ_ERROR -3

OPEN_MODE_ERROR -4

OPEN_ERROR -5

LONG_RECORD -6

NON_EXISTING_FILE -7

OPEN_FILE -8

UNOPEN_FILE -9

NON_READ_MODE -10

INCOMPLETE_RECORD -11

WRITE_ERROR -12

NON_WRITE_MODE -13

IO_ERROR -128

Changes in the Rule Hierarchy

If a rule contains in its hierarchy a top-level view, then such a view cannot be used as a child of any other view in the rule scope. For example, if a
rule has a window attached and the window has a view attached, then such a view is a top-level view. As a result, such a view cannot be used as
a sub-view of the rule input view, or sub-rule output view or any other view that is visible to the rule.
Such a restriction is not enforced by the hierarchy, but by Codegen, because if a view is used as a sub-view of another view, then it no longer
exists in the rule hierarchy as a separate entity. If such a view were created as a separate entity, then it would be impossible to access its' fields,
and codegen would report such a reference as ambiguous.
This restriction creates certain design difficulties or inefficiencies for AppBuilder applications, especially for files. For example, if a view
OrderRecord is linked with a DataRecord, and the user wants to return such a record in the output view, then the only solution is to define view
Order with a structure identical to view OrderRecord and attach the view Order to the output view. In the rule code, the record can be read directly
to view B:

MyFile >> Order

This requires a duplicated view structure in the repository and, therefore Codegen generates two COBOL records (and two Java classes), with an
initialization code for both of them, although OrderRecord is not even used in the rule.
An alternative is to attach view OrderRecord to the DataRecord and as a subview of the output view. Codegen allows this, but with one condition
(which is already used for the views that are declared in the rule DCL section): if any top-level view from the rule scope is used as a sub-view of
any other top-level view, then such a view is no longer generated as a separate entity. In the example above, the view Order is no longer
necessary and the view OrderRecord can be directly attached to the output view and, subsequently, used in the rule code:

MyFile >> OrderRecord

The existing restriction cannot be removed for all views in the rule scope:

the rule input or output views cannot be used as sub-views of any other view;
the sub-rules' input/output views can be used, but it might require significant changes in the generation;
the global view can not be used.

Specific Considerations for ClassicCOBOL and OpenCOBOL

Specific Considerations for ClassicCOBOL and OpenCOBOL

The following sections describe the specific differences in the Rules Language elements that apply to both ClassicCOBOL and OpenCOBOL:

Size Limitations in ClassicCOBOL and OpenCOBOL
Comparing Views in ClassicCOBOL and OpenCOBOL
Double-Byte Character Set Functions in ClassicCOBOL and OpenCOBOL
SETDISPLAY in ClassicCOBOL and OpenCOBOL
User Components in ClassicCOBOL and OpenCOBOL

Size Limitations in ClassicCOBOL and OpenCOBOL

Data items larger than 16777215 bytes are not allowed. This same limitation also applies to the number of occurrences.
For more information, refer to .View

Comparing Views in ClassicCOBOL and OpenCOBOL

View comparison is implemented as a native COBOL record comparison. Because view comparison does not take into account the data type of
the fields in the view, it is possible for the comparison of two views to give a different result than the comparison of the fields in the view.
For more information, refer to .Comparing Views

Double-Byte Character Set Functions in ClassicCOBOL and OpenCOBOL

The following information pertains to the implementation of double-byte character set functions in ClassicCOBOL and OpenCOBOL:

CHAR function

With a CHAR argument, the CHAR function returns its argument.
With a MIXED argument, the CHAR function returns the argument that concatenates the deleted empty DBCS portions and successive
DBCS portions. This process is called normalization. The string returned has the same length, but if it has been shortened by
normalization, it is padded with single-byte spaces.
With a DBCS argument, the CHAR function returns the argument with shift control characters added before (a "shift-out" character) and
after (a "shift-in" character) the DBCS string.

MIXED function

With a CHAR and a MIXED argument, the MIXED function returns a normalized argument.
With a DBCS argument, the MIXED function returns the argument with shift control characters added before ("shift-out" character) and
after ("shift-in" character) given by the DBCS string.

DBCS function

With a CHAR and a MIXED argument, the DBCS function assumes that the first and last characters of a given CHAR string are "shift-out"
and "shift-in" control characters respectively, and returns the argument with the first and last characters deleted.
With a DBCS argument, the DBCS function returns its argument.

Some of these functions perform .Validation and Implementation of Double-Byte Character Set

SETDISPLAY in ClassicCOBOL and OpenCOBOL

In ClassicCOBOL and OpenCOBOL, the RTRIM function is required for DBCS display if the display length is less than 39 characters (78 bytes

plus 2 shift characters). If the display length is less than 39 characters, the returned value is padded with single-byte characters. If the returned
value that has been padded with single-byte characters is used as an argument in the SETDISPLAY function, the SETDISPLAY function returns
all spaces because the value with different types of trailing spaces or shift characters sequences are considered non-equal. See DBCS and

 and for details.MIXED Data Types SETDISPLAY

User Components in ClassicCOBOL and OpenCOBOL

ClassicCOBOL calls user components using the HPSCOMMAREA. In OpenCOBOL, the generated calling convention is optional to avoid
changing every user component. The global flag is used during COBOL generation to specify the generation of the HPSCOMMAREA or a
dynamic COBOL call. AppBuilder provides flag settings according to the component's target environment (CICS or BATCH).
AppBuilder generates the call differently for each target depending on how the user component accepts its parameters. The parameters are
global, so if you generate a component call, all the receiving components in the hierarchy must be coded in the same manner.
Each target environment flag has three settings:

Y Setting
N Setting
B Setting

Y Setting

The Y setting passes the parameters DFHEIBLK and HPSCOMMAREA, as it is done in standard COBOL. Using this setting ensures that all
previously written components will work as before. AppBuilder populates the input/output view address. To retrieve the address of working
storage, AppBuilder generates a contained program that receives the working storage view as a parameter and then uses ADDRESS OF to pass
the pointer back to the calling rule. This pointer then populates the INPUT/OUTPUT view pointer in the commarea.
The contained program is embedded in the main program and delimited by the IDENTIFICATION DIVISION and END PROGRAM statements. A
separate contained program must be built for each view address needed.

Calling Rule:

CALL 'ABIOADDR' INPUT-VIEW, INPUT-VIEW-PTR

MOVE VIEW-ADDRESS OF INPUT-VIEW TO IV-ADDRESS OF RULE-COMP-COMMAREA.
MOVE VIEW-ADDRESS OF OUPUT-VIEW TO OV-ADDRESS OF RULE-COMP-COMMAREA.
CALL 'ABCDEF' USING DFHEIBLK, RULE-COMP-COMMAREA.
IDENTIFICATION DIVISION.
PROGRAM-ID. ABIOADDR.
DATA DIVISION.
LINKAGE SECTION.
01 VIEW-ADDRESS-PTR POINTER.
01 INPUT-VIEW.
03 IN-DATA PIC X(80).
PROCEDURE DIVISION USING VIEW-ADDRESS-PTR, INPUT-VIEW.
SET VIEW-ADDRESS-PTR TO ADDRESS OF INPUT-VIEW.
END PROGRAM JMDADDR.

Called Component:

PROCEDURE DIVISION USING DFHEIBLK, RULE-COMP-COMMAREA.

N Setting

The N setting passes the INPUT and OUTPUT view as parameters. Use the same parameters for the calling components PROCEDURE
DIVISION statement. If you are calling CICS components that initiate CICS calls, ensure that the CICS translator uses the NOLINKAGE option.
The component must establish addressability to the EIB.

Calling Rule:

CALL 'ABCDEF' USING INPUT-VIEW, OUTPUT-VIEW

Called Component:

PROCEDURE DIVISION USING INPUT-VIEW, OUTPUT-VIEW

B Setting

The B setting passes a surrogate DFHEIBLK and DFHCOMMAREA along with an input/output view. AppBuilder needs this option for components
that run through the CICS translator, which by default puts the DFHEIBLK and DFHCOMMAREA on the PROCEDURE statement and LINKAGE
SECTION. The Commarea creates an artificial 1 byte parameter.

Calling Rule:

CALL 'ABCDEF' USING DFHEIBLK, RULE-COMP-COMMAREA, INPUT-VIEW,OUTPUT-VIEW.

Called Component:

PROCEDURE DIVISION USING DFHEIBLK,RULE-COMP-COMMAREA,INPUT-VIEW,OUTPUT-VIEW

Restrictions on Features

This section describes restrictions on features that apply to all AppBuilder releases regardless of target languages, and restrictions that apply to
specific target languages.

Restrictions on Features by Release
Restrictions on Features by Target Language

Restrictions on Features by Release

The following table lists restrictions on features for applicable releases that apply to all target languages unless specifically stated.

Restrictions specific to releases

Release Restrictions

AppBuilder 3.2 Not DBCS-certified

Macro support is available on the PC (client side), and on the mainframe; you can still prepare C to the host (UNIX) by
running macro expansion on the client.

AppBuilder 3.2
Host

Not DBCS-certified

AppBuilder
2.0.3.5 Host

PRAGMA SQLCURSOR is not supported.

Restrictions on Features by Target Language

The following table summarizes restrictions on features by target language that apply to all AppBuilder releases. Blank cells in the table below
indicate no restrictions for that language.

Restrictions on Features by Target Language

Feature C Java .NET ClassicCOBOL OpenCOBOL

3270 converse
mainframe system
components

 Not supported Not supported

COMMIT
TRANSACTION
statement

 Not supported Not supported

CONVERSE
statement

 Not supported Not supported Not supported

CONVERSE
WINDOW statement

 Not supported Not supported Not supported

CONVERSE REPORT
statement

Not
supported

 Not supported Not supported

Code generation Not DBCS
certified

 Not DBCS certified

DBCS and MIXED
parameters with string
functions

Not
supported

 Not supported

DBCS and MIXED
data

 Not supported No data validation is
performed.
Not supported for
OpenCOBOL client side
generation, except AIX.

DBCS object names Not supported Not supported 1

DBCS codepage Not supported OpenCOBOL support library is
not customized for any DBCS
codepage. Customizing
ABNLS C module will provide
the required functionary.

Decimal arithmetic
CALCULATOR mode

Used as
default.

Used as default. Used as default Not supported Not supported

Decimal Arithmetic
COMPATIBILITY
mode

 Not supported Not supported Not supported

Decimal arithmetic
COBOL

Not
supported

Not supported Not supported Used as default. Used as default.

Decimal fields Cannot be used with the
TRACE function. If a
decimal field is used, a
code generation error
message is received during
preparation.

Dynamic occurring
views

Not
supported

 Not supported Not supported

Escape sequences \a,
\v, ?

 Not supported Not supported

FRACTION Returns microseconds only,
See FRACTION in

 for details.OpenCOBOL

Global views Only within single
JVM instance

Only within single
.NET machine or
application
instance

LIKE clause

OBJECT data type,
ObjectSpeak and all
related statements
(NEW, method calls,
etc.)

Deprecated Not supported Not supported

object aliases
(see forAlias
information about the
Aliases object data
item)

Deprecated Not applicable Not applicable

OVERLAY statement
(Data types
representation is
platform specific,
which may result in
different results for an
overlay statement.)

Procedure calls
recursion

 Not supported for
procedure calls. No error
message generated if used,
but execution results will be
unpredictable

Not supported for procedure
calls. No error message
generated if used, but
execution results will be
unpredictable

ROLLBACK
TRANSACTION
statement

 Not supported Not supported

Set Define values
containing DBCS
characters

 Not supported Not supported 2

Set symbol Decimal
part is
truncated if
it is longer
than
declared in
the set.

If set symbol is
inconsistent with
the set definition,
the code
generator will
generate an error.

If set symbol is
inconsistent with
the set definition,
the code generator
will generate an
error.
If static set symbol
is changed, then
all the rules that
use such symbol
must be
re-prepared.

 Decimal part is truncated if it is
longer than declared in the
set.

SETDISPLAY and
SETENCODING

 Accept only LOOKUP and
ERROR sets as parameters

START
TRANSACTION
statement

 Not supported Not supported

subscript control No subscript
control at compile
time because of
dynamic views
support

No subscript
control at compile
time because of
dynamic views
support

TIMESTAMP Precision is up to the
microseconds only.

TIME, DATE, and
TIMESTAMP

 Representation is different
from all other platforms, which
might affect some of the
statements. OVERLAY is one
example of an affected
function.

 COBOL only allows the use of the Roman alphabet for program identifiers. Therefore, DBCS and MIXED identifiers used in Rules code are not1

supported. The preparation will not issue any error messages. However, the COBOL compiler issues error messaged if the generated COBOL
code is not correct.

 If Set Define values contain DBCS characters, this results in COBOL names containing DBCS and non-DBCS characters, which is not2

supported by the IBM COBOL compiler and results in a COBOL compiler error. If Define values contain only DBCS characters, the OpenCOBOL
generation option GENNOSUFF can be used to prevent the generation of mixed COBOL identifiers. Avoid the use of DBCS characters for define
values. When GENNOSUFF is used, use it for the entire application. When defining object names, avoid the generation of COBOL reserved
words, such as RETURN-CODE.

Supported Functions by Release and Target Language

The following table summarizes supported functions by release and target language. The target languages indicate where the code is generated.
Functions marked with an X in the table are supported in that release for that target language. A blank cell indicates the function is not supported.

Supported Functions by Release and Target language

 Function

Target Language
(X means supported)

 AB2035 Host AB32

 Classic
COBOL

 Open
COBOL

 C

Java

.NET

OpenCOBOL

 Host HP-UX AIX

ADDR(view) X X X X X

APPEND X X

DELETE X X

INSERT X X

REPLACE X X

RESIZE X X

OCCURS X X X X X X X X

SIZEOF X X X X X X X X

CLEARNULL X X

ISNULL X X

HIGH_VALUES X X X X X X X X

LOW_VALUES X X X X X X X X

TRACE X X X X X X X X

SETDISPLAY X X X X X X X X

SETENCODING X X X X X X X X

CEIL X X X X X X X X

FLOOR X X X X X X X X

ROUND X X X X X X X X

TRUNC X X X X X X X X

INCR1 X X X X X X X

DECR2 X X X X X X X

CHAR(integer) X X X X X X X X

CHAR(char) X X X X X X X X

CHAR(dbcs) X X X X X X X

CHAR(mixed) X X X X X X X

CHAR(dec) X X X X X X X X

CHAR(integer, char) X X X X X X X X

CHAR(dec, char) X X X X X X X X

CHAR(dec, char, char) X

CHAR(time) X X X X X X X X

CHAR(date) X X X X X X X X

CHAR(date, char) X X X X X X X X

CHAR(date,mixed) X X X X

CHAR(time, char) X X X X X X X X

CHAR(time, mixed) X X X X

CHAR(timestamp) X X X X X X X

CHAR(timestamp, char) X X X X X X

DBCS(dbcs) X X X X X

DBCS(char) X X X X

DBCS(mixed) X X X X

MIXED(mixed) X X X X X

MIXED(char) X X X X X

MIXED(dbcs) X X X X X

DATE X X X X X X X

DATE(dbcs) X X X X

DATE(dbcs,char) X X X X

DATE(dbcs,mixed) X X X X X

DATE(timestamp) X X X X X X X X

DATE(char) X X X X X X X X

DATE(integer) X X X X X X X X

DATE(char,char) X X X X X X X X

DATE(mixed) X X X X

DATE(mixed,char) X X X X

DATE(mixed,mixed) X X X X

TIME X X X X X X X X

TIME(integer) X X X X X X X X

TIME(dbcs) X X X X

TIME(dbcs,char) X X X X

TIME(dbcs,mixed) X X X X X

TIME(mixed) X X X X

TIME(mixed,char) X X X X

TIME(mixed,mixed) X X X X

TIME(timestamp) X X X X X X X

TIME(char) X X X X X X X X

TIME(char,char) X X X X X X X X

TIMESTAMP X X X X X X X X

TIMESTAMP(char) X X X X X X

TIMESTAMP(date,time,integer) X X X X X X X X

HOURS(time) X X X X X X X X

MONTH(date) X X X X X X X X

YEAR(date) X X X X X X X X

DAY(date) X X X X X X X X

DAY_OF_YEAR(date) X X X X X X X X

DAY_OF_WEEK(date) X X X X X X X X

MILSECS(time) X X X X X X X X

MINUTES(time) X X X X X X X X

MINUTES_OF_DAY X X X X X X X X

NEW_TO_OLD_DATE(date) X X X X X X X X

NEW_TO_OLD_TIME(time) X X X X X X X X

OLD_TO_NEW_DATE(integer) X X X X X X X X

OLD_TO_NEW_TIME(integer) X X X X X X X X

SECONDS(time) X X X X X X X X

SECONDS_OF_DAY(time) X X X X X X X X

INT(char) X X X X X X X X

INT(time) X X X X X X X X

INT(date) X X X X X X X X

INT(char,char) X X X X X X X X

INT(char,char,char) X X

DECIMAL(char) X X X X X X X X

DECIMAL(char,char) X X X X X X X X

DECIMAL(char,char,char) X X

FRACTION(timestamp) X X X X X X X X

GET_ROLLBACK_ONLY X

SET_ROLLBACK_ONLY X

HPSCOLOR(integer) X

RGB(integer,integer,integer) X X

HPSERROR X

HpsResetError X

HpsErrorMessage(integer) X

LOC(view):CHAR X X X X X X

LOC(view):OBJECT X X X X X X X X

LOC(integer):OBJECT X X X X X X X X

LOC(smallint):OBJECT X X X X X X X X

LOC(char):OBJECT X X X X X X X X

LOC(dbcs):OBJECT X X X X X X X X

LOC(mixed):OBJECT X X X X X X X X

LOC(dec):OBJECT X X X X X X X X

LOC(date):OBJECT X X X X X X X X

LOC(time):OBJECT X X X X X X X X

LOC(timestamp):OBJECT X X X X X X X X

LOC(boolean):OBJECT X X X X X X X X

LOC(object):OBJECT X X X X X X X X

VERIFY(char,char):smallint X X X X X X X X

VERIFY(dbcs,char) X X X X

VERIFY(mixed,char) X X X X

VERIFY(mixed,mixed) X X X X

VERIFY(mixed,dbcs) X X X X

LOWER(char):char X X X X X X X X

LOWER(dbcs):dbcs X X X X

LOWER(mixed):mixed X X X X

UPPER(char):char X X X X X X X X

UPPER(dbcs):dbcs X X X X

UPPER(mixed):mixed X X X X

STRLEN(char):smallint X X X X X X X X

STRLEN(dbcs):smallint X X X X

STRLEN(mixed):smallint X X X X

STRPOS(char,char):smallint X X X X X X X X

STRPOS(mixed,mixed):smallint X X X X X

STRPOS(mixed,dbcs):smallint X X X X X

SUBSTR(char,integer,integer):char X X X X X X X X

SUBSTR(char,integer):char X X X X X X X X

SUBSTR(dbcs,integer):dbcs X X X X

SUBSTR(dbcs,integer,integer):dbcs X X X X

SUBSTR(mixed, integer):mixed X X X X

SUBSTR(mixed,integer,integer):mixed X X X X

RTRIM(char):char X X X X X X X X

RTRIM(dbcs):dbcs X X X X

RTRIM(mixed):mixed X X X X

LOOKUP and ERROR set types X X X X X X X X

GETRULESHORTNAME X X X X X X X

GETRULELONGNAME X X X X X X X

GETRULEIMPNAME X X X X X X X

1 INCR has a restriction in AppBuilder 3.2. For details, see .C generation restrictions

2 DECR has a restriction in AppBuilder 3.2. For details, see .C generation restrictions

Code Generation Parameters and Settings

Code Generation Parameters and Settings

AppBuilder 3.2 Rules Language Reference Guide

The AppBuilder code generation facility uses many parameters. AppBuilder comes with predefined parameters that are optimized for most
applications.

Changing any of the predefined parameters can cause unexpected results.

Parameters that control code generation options can be specified from the command line or in the hps.ini file for the workstation products. For
mainframe products parameters can be specified either in the EXEC statement or in the code generation INI file defined by the DD:

//CFG DD DISP=SHR,DSN=&USRVQUAL..CGTABLE(CODEGEN)

where is the prefix for Enterprise Repository USER datasets that are versioned.&USRVQUAL

The original member (CODEGEN) within this dataset can be found in &BASEQUAL..CGTABLE where &BASEQUAL is the
prefix for Enterprise Repository BASE level datasets. Copy this information into the user dataset above and then modify it.

The following topics are discussed in this chapter:

INI File Settings
Command Line Parameters Settings
Processing Order for Parameters
Code Generation Limitations
Supported Codepages

INI File Settings

INI files on the workstation and the Host have similar structures. They are divided into sections. A line starting with semicolon in the first position is
the comment line. All the required settings are created by the install; however, you can insert additional settings if necessary. See also Additional

.Code Generation Settings
The code generation facility uses the following INI file sections:language and platform independent

[CodeGen]
[CODEGENPARAMETERS]
[MacroDomains]
[MacroDefinitions]
[CodegenPragmas]

The code generation facility uses the following INI file sections. Settings in these sections apply to only onelanguage and platform dependent
target language. These settings will overwrite settings from the language and platform independent sections if applicable. See Settings Available

 for information about the settings you set in these sections.in all Language Specific Sections

Language and Platform Dependent Code Generation Settings

Section Description

[OpenCobolGen] This section contains values that overwrite any settings from the common sections and is used only for OpenCOBOL.

[CobolGen] This section contains values that overwrite any settings from the common sections and is used only for ClassicCOBOL.

[CGen] This section contains values that overwrite any settings from the common sections and is used only for C.

[CServerGen] This section contains values that overwrite any settings from the common sections and is used only for C.

[CSharpGen] This section contains values that overwrite any settings from the common sections and is used only for C#.NET generation,
on both client and server side.

[JavaGen] This section contains values that overwrite any settings from the common sections and is used only for Java.

[JavaServerGen] This section contains values that overwrite any settings from the common sections and is used only for Java.

[JavaHTMLGen] This section contains values that overwrite any settings from the common sections and is used only for Java.

[JavaBatchGen] This section contains values that overwrite any settings from the common sections and is used only for Java.

[CodeGen]

See the following tables for Keys, sample values, and descriptions available in the CodeGen section:

General settings for the Codegen section
Workstation specific settings for Codegen section

Host specific settings for Codegen section

General settings for the Codegen section

This table lists the settings that can be set either on the workstation or on the Host:

General settings for the Codegen section

Key Possible Values Descriptions

FLAG < >flag_name This is used to specify additional code generation parameters or flags. For example, the flag
GENNOSUFF can be defined as FLAG=GENNOSUFF.
Each flag must be specified on a separate line. The total number of flags cannot exceed 32.
See for information about setting a flag from theCommand Line Parameters Settings
command line.

R2C_CODEGEN_TYPE C This setting defines the language and environment. The default is C. B is for COBOL. J is for
Java. See parameter for additional values.-C<parameter_value>

R2C_CODEPAGE This setting defines the codepage for COBOL generation. See forSupported Codepages
additional information.

R2C_INCLUDE_DIR %hpsini%\nt\sys\inc
(default)

This setting indicates the directory for include files specified in CG_INCLUDE statement. For
more information, see . Including Files
If the directory is specified in the code generation parameter, this setting is overwritten. For
information about the code generation parameter, see .General Parameters

Workstation specific settings for Codegen section

This table lists the settings for the workstation only.

Workstation specific settings

Key Possible Values Descriptions

R2C_MSG_FILE e:\AppBuilder\ad\cfg\cg\cg.MSG Location of the code generation error message file

R2C_TABS_DIR e:\AppBuilder\temp Location of code generation data files

R2C_CODEGEN_DIR e:\AppBuilder\ad\cfg\cg Location of other code generation data files

R2C_BLD_DIR e:\AppBuilder\ad\cfg\cg Directory to find temporary BLD files

R2C_WORK_DIR e:\AppBuilder\temp Directory to create all temporary work files

R2C_OUTPUT_DIR e:\AppBuilder\temp Directory to create output files

R2C_SOURCE_DIR e:\AppBuilder\temp Directory to find rule source

R2C_PNL_DIR e:\AppBuilder\temp Directory to find window panel files

R2C_BINDFILE_DIR e:\AppBuilder\bnd Directory to find rule bind file

R2C_RC_DIR e:\AppBuilder\temp Directory to create RC files

R2C_VW_DIR e:\AppBuilder\temp Directory to create VW files

R2C_ERR_DIR e:\AppBuilder\temp Directory to create temporary error list files

R2C_LST_DIR e:\AppBuilder\temp Directory to create listing with rule preparation results

Host specific settings for Codegen section

This table lists the settings for the Host only.

Host specific settings

Key Possible Values Descriptions

R2C_MSG_FILE DD:CFG(CG) Location of the code generation error message file

R2C_CODEPAGE Ko_KR.IBM-933 Valid for COBOL and OpenCOBOL only. Code page used for DBCS string functions.

[CODEGENPARAMETERS]

The CODEGENPARAMETERS section contains parameters that control how the code is generated. See the following tables for available
settings:

General settings in CodegenParameters section
OpenCOBOL specific settings in CodegenParameters section
Java specific settings in CodegenParameters section
C specific settings in CodegenParameters section

General settings in CodegenParameters section

This table lists the settings that can be set either on the workstation or on the Host:

General settings in the CODEGENPARAMETERS section

Key Possible Values Descriptions

PARAM < >listparameters This setting is used to list additional code generation parameters.This list is added to the
end of the command line parameters. See forProcessing Order for Parameters
additional information.

DFLTDTFMT %0m/%0d/%Y Valid for C, ClassicCOBOL, and OpenCOBOL. This format is used for DATE and CHAR
functions when the second parameter is omitted. For Java, see
DEFAULT_DATE_FORMAT in appbuilder.ini.

DFLTTMFMT %0t:%0m:%0s Valid for C, ClassicCOBOL and OpenCOBOL. This format is used for TIME and CHAR
functions when second parameter is omitted. For Java, see DEFAULT_TIME_FORMAT
in appbuilder.ini.

DB2DTFMT %Y-%0m-%0d Valid for C and ClassicCOBOL only. This format is used to convert date fields when
calling DB2.

DB2TMFMT %0t.%0m.%0s Valid for C and ClassicCOBOL only. This format is used to convert time fields when
calling DB2.

NLSIN <character_sequence_1> If both values NLSIN and NLSOUT are defined then they are used to convert all long
names from repository or the DCL ENDDCL section. If character_sequence_1 and
character_sequence_2 have different lengths then the longer one will be truncated.
When the long name is converted, all characters in the name included in NLSIN are
replaced with characters from NLSOUT that have the same index. For example, the first
character from NLSIN is replaced with the first character in NLSOUT. No verification is
done, and the resulting name might be ambiguous.

NLSOUT <character_sequence_2>

NLSTABLE .932 Use NLSTABLE to run code generation with a codepage that is different than the current
locale. See C function setlocale for more details on acceptable values.
The specified codepage support must be installed on the machine.

CHECK_DEC_FORMAT YES, NO This parameter controls constant numeric format strings verification (compile time) for
CHAR, INT and DEC functions. Default value is YES.

 Format string validation performed by CHECK_DEC_FORMAT CodeGenNote:
parameter is split into runtime validation and compile time validation:

Runtime validation is controlled by CHECK_DEC_FORMAT parameter from [AE
RUNTIME] in the HPS.ini section for generation that uses C runtime. The
default value is NO.
Runtime validation for Java is controlled by the CHECK_DEC_FORMAT
parameter from the [NC] section of APPBUILDER.ini. Runtime default value is
NO.

For more details, see also . Format string validation

For details about error handling issues due to new format string validation rules,
see .Format String Validation Error Handling

OpenCOBOL specific settings in CodegenParameters section

This table lists the settings that are supported for OpenCOBOL only.

OpenCOBOL specific settings in the CODEGENPARAMETERS section

Key Possible Values Descriptions

CompareDatesAsString N This setting controls how date comparisons are generated.
If set to Y, date fields are compared as strings where the result is
defined by the environment.
If set to N, date fields are converted to integer values and compared.
This comparison is platform independent.
In AB2032 string comparison is used only in host variables.
See . In all other cases, the date values are convertedDATEDB2CMP
to integer values and then compared.

DATEDB2CMP 0001-01-01 This is the value to compare all host Date values with. See
 for more details.DATEDB2DFLT

DATEDB2DFLT 0001-01-01 The value to assign to a DATE host variable if the variable is less than
DATEDB2CMP.

DATEFMT %Y-%0m-%0d This format is used when a support library function is called. Only the
delimiter can be changed by the end user.

DATEINIT 0000-00-00 This setting is used to initialize DATE type fields. Only delimiters and
separate digits can be changed by the end user, however structure
should remain the same. Note that corresponding delimiters in
DATEFMT and DATEINIT parameters should coincide.

DEFAULT_CENTURY 1900 This is the value for the century in the DATE function when only two
digits are used for the year in the input and format strings. This value
would be added to the two digit year when parsed. This value is also
passed to the support library functions. The default value is 1900. To
change this value for runtime, the rule must be re-prepared.
This setting can be overridden by PRAGMA CENTURY statement.
See also DEFAULT_CENTURY in appbuilder.ini and
DEFAULT_CENTURY in the [AE Runtime] section of the HPS.INI.

DFLTTSFMT %0o-%0d-%Y.%0t.%0m.%0s.%f This format is used for TIMESTAMP and CHAR functions, when the
second parameter was omitted.

OCC_VIEW_SIZE_THRESHOLD <integer> This setting specifies the threshold of the occurring view size to
determine whether or not fields in the occurring views are initialized.
This setting must be used with the code generation parameter flag
-FNCOCC. For example, if OCC_VIEW_SIZE_THRESHOLD=299, all
occurring views are initialized if the number of occurrences is less or
equal to 299, but they are NOT initialized if the number of occurrences
is 300 or greater. If this setting is zero or not specified, all occurring
views are initialized.

SQLINITFLAG 0 This controls whether SQL-INIT-FLAG
is reset to 0 in each rule. If the setting is equal to 0, the MOVE ZERO
TO SQL-INIT-FLAG is generated for each database rule. By default,
SQL-INIT-FLAG is not initialized.

 When COBOL SQL co-processor for DB2 is used, this flagNote:
should be removed (disabled).

TIMEFMT %0t.%0m.%0s.%0f This format is used when a support library function is called. Only the
delimiter can be changed by the end user.

TIMEINIT 00.00.00.000 This value is used to initialize TIME type fields.

TIMESTAMPDB2CMP 0001-01-01-00.00.00.000000 The value to compare all host TIMESTAMP variables with. See
 for more details.TIMESTAMPDB2DFLT

TIMESTAMPDB2DFLT 0001-01-01-00.00.00.000000 The value to assign to a TIMESTAMP host variable if it is less than
TIMESTAMPDB2CMP.

TIMESTAMPFMT %Y-%0o-%0d-%0t.%0m.%0s.%0f This format is used when support library function is called. Only
delimiters can be changed by the end user.

TIMESTAMPINIT 0000-00-00-00.00.00.000000 This value is used to initialize TIMESTAMP type fields.

Java specific settings in CodegenParameters section

This table lists the settings that are supported only for Java.

Java specific settings in the CODEGENPARAMETERS section

Key Possible Values Descriptions

SYSTEMVIEWPACKAGE appbuilder.systemviews This is not available in AB3.1 or later versions.

GLOBAL_PACKAGE This is not available in AB3.1 or later versions.

SET_PACKAGE set This is not available in AB3.1 or later versions.

REFLECTION_VIEW_MAP This is not available in AB3.1 or later versions.

STATIC_CLEAR This is not available in AB3.1 or later versions.

VIEW_PACKAGE view This is not available in AB3.1 or later versions.

COMPONENT_PACKAGE component This is not available in AB3.1 or later versions.

COPYFROM_NULL_PARAMETERS_THRESHOLD [number(percent)] This number is a threshold percentage for determining a way
of views mapping generation. The first option is to use view
copyFrom method with a list of view fields. It is used when the
percentage of destination view fields, which have no
corresponding field in the source view (i. e. passed as null to
copyFrom method), is less then this parameter value.
Otherwise the second option is: field-to-field assignment is
generated directly in the rule.
Set this parameter to 100 for best generated code
maintainability. Set it to 0 for best performance.
Default value is 10.

GENERATE_RULE_CALLS_TRACE When this is set to YES, debug level TRACE statements are
generated at the beginning and end of each rule. When this is
set to NO, debug level TRACE statements are not generated.
Debug level TRACE statements are generated conditionally,
so these statements can be disabled at runtime, if the debug
option is turned off.

AUTOCOMMIT false By default, DB2 creates a connection with AutoCommit set to
TRUE, which disables all transaction control. To enable
transaction control with SQL statements, COMMIT and
ROLLBACK connection method setAutoCommit(false) must be
invoked.
Generated Java code will have setAutoCommit() call with a
parameter equal to the value specified by AUTOCOMMIT
(case-sensitive). If the AUTOCOMMIT key is not set, no call is
generated.

JAVA_PERSISTENT_CURSOR [YES][NO] This parameter controls SQL cursor persistence. If set to YES
then an SQL cursor will be persistent. Persistence means that
a cursor created by a particular rule must be retained past the
end of the rule invocation and made available to subsequent
invocations of that rule within the same scope until explicitly
closed; however, in the case of executing in a server request
scope, the request terminates. Setting to YES is equivalent to
setting command line flag SQLPERSIST.
Possible values are YES or NO (default).

READ_ONLY_SQL_CURSOR [YES][NO] This parameter configures the generation of an SQL cursor
which has no explicit FOR UPDATE specification.

When this parameter is set to YES, an SQL cursor having no
explicit FOR UPDATE specification is generated as read-only
sqlj iterator. If there is an attempt to perform an UPDATE or
DELETE operation positioned by this cursor in the rule code,
the code generation submits an error. An SQL cursor which
has an explicit FOR UPDATE clause in its declaration is
generated as an updatable sqlj iterator.

When this parameter is set to NO, an SQL cursor having no
explicit FOR READ ONLY (FETCH ONLY) specification is
generated as an updatable sqlj iterator. Cursor explicitly
declared as READ ONLY is generated as a read-only iterator.

FLOATING_POINT_STANDARD IEEE754
HEXADECIMAL

This parameter specifies the floating point types ranges.

DATA_CONVERTER <qualified java class
name>

This parameter specifies the Java class implementing the
appbuilder.util.AbfDataConverter interface, a class used for
converting data (views, fields) to a char[] array and reverse.
The data conversion is performed for OVERLAY and
REDEFINE operations.
Also, data converter counts the size of data as a size of its
converted representation. The result of size count is the result
of Rules SIZEOF std function.

ASSERT_VIEW_IDENTITY [YES][NO] Default value is YES. YES or NO indicates whether CodeGen
should generate assertIdentity calls to ensure that the views
used in the rule are of the proper version.

ASSERT_VIEW_IDENTITY also specifies whether to generate
getHash() method in a view class.
If set to YES, then the getHash method is generated and
called to ensure the proper view version.
If set to NO, then the getHash method is not generated and
not called.

GENERATE_VIEW_FIELD_ACCESSORS [YES][NO] This flag is valid for Java generation only. Default value is NO.
If set to YES, the generated view java class contains the view
field accessor methods (getXXX setXXX). If set to NO, the
public field accessors are not generated.

GENERATE_IO_VIEW_TRACE [YES][NO] This setting affects Java generation only. When
GENERATE_IO_VIEW_TRACE is set to YES the input view
trace is generated at the beginning of the rule, while the output
view trace is generated at the end of the rule.
TRACE statements are generated conditionally, so these
statements can be disabled at runtime. At runtime they are
controlled by APP_LOGGER.INFO level.

ALWAYS_GENERATE_USER_TRACE [YES][NO] This setting affects Java generation only. With
ALWAYS_GENERATE_USER_TRACE codegen parameter
set to YES, all user-coded TRACE statements are always
generated in the target code (even with Rule debug option off)
and can be enabled or disabled through runtime settings.
When set to NO and codegen command-line flag GENTRACE
is specified, no user TRACE statements are generated in the
Java code.
When debugging info generation is ON (-yd commandline
parameter is not specified for codegen), all user TRACE
statements from the rule source code are generated.

GENERATE_STATELESS_RULE [YES][NO] This setting affects Java generation only. When set to YES, it
determines the rule stateless generation, when possible.
The default value is NO.

INLINE_VIEW_COPY [YES][NO] When set to YES, the sequence of Java statements
corresponding to rules MAP statement with view arguments is
generated in the rule class as is (inline).
When set to NO, this sequence is enclosed to a private rule
class method and MAP is generated as call to the method (see
also). INLINE_VIEW_COPY_FIEL DS_LIMIT
The default value is NO.

INLINE_VIEW_COPY_FIEL DS_LIMIT <number> When INLINE_VIEW_COPY is set to NO, this number
determines the maximum number of fields in a view V for
which statement MAP ... TO V is generated inline. If the
number of fields exceeds this limit, then the Java code
corresponding to MAP with destination view V is enclosed in a
private rule class method (see also). INLINE_VIEW_COPY
The default value is 2.

EXPAND_RULE_SIGNATURE [YES][NO] This setting affects Java generation only.
When set to YES, the rule and subrule signatures are
expanded if possible.
The default value is NO.

MAX_SUMMARY_IO_VIEW_FIELDS 255 This setting affects Java generation only. It sets the maximum
number of input and output view fields (summary) for which
expanding is provided.

LAZY_INSTANTIATION_ENABLED [YES][NO] If this parameter is set to YES, all local variables and views
(excluding redefined views and input/output views) are
instantiated when they are explicitly accessed for the first time
and released after the last use.
The default value is NO.

C specific settings in CodegenParameters section

This table lists the settings that are supported only for C.

C specific settings in the CODEGENPARAMETERS section

Key Possible
Values

Descriptions

INDEX_CONTROL_ON YES Specify if generated C code should perform index checking when accessing occurring views.
Values: YES or NO

INDEX_CONTROL_ABORT NO Specify if rule should abort at execution time if index is out of bounds when accessing occurring
views. Values: YES or NO

[MacroDomains]

This section contains Macro Domains definitions. See for more information.Validating Macros in Domain

Settings in the MacroDomains section

Key Possible Values Descriptions

LANGUAGE Java,C,COBOL,OpenCOBOL This setting defines all possible values for macro LANGUAGE.

ENVIRONMENT Server,HTML,GUI This setting defines all possible values for macro ENVIRONMENT.

[MacroDefinitions]

This sections defines macros that can be used for all target languages and platforms. The MacroDefinitions section can be viewed and updated
from button.Construction Workbench > Tools > Workbench Options > Preparation tab > Conditionals

[CodegenPragmas]

PRAGMA statements are special commands that control certain features of the compiler.

<pragma_line>

...
<pragma_line>

where pragma_line has correct Rules Language syntax. See for more information.Compiler Pragmatic Statements

Settings Available in all Language Specific Sections

The following table lists key settings, sample values, and descriptions of parameters that can be used in the language and platform dependent
sections listed in :Language and Platform Dependent Code Generation Settings

Settings available in all language specific code generation sections

Key Possible Values Descriptions

MACRO LANGUAGE=Java
ENVIROMENT=GUI

This defines a macro that is language or environment specific.

PARM PARAM=< listparameters> This setting is manually inserted by the user, and overwrites the PARAM
setting from the [CodegenParameters] section.

PARM <ParameterName>=<parameter_value> This setting is manually inserted by the user, and overwrites the setting
from the [CodegenParameters] section with name ParameterName
giving it the value parameter_value.

R2C_STANDARD_TABS e:\AppBuilder\ad\cfg\cg\javas.tab Specifies the location of the code generator data file.

R2C_OUT_EXT .java Specifies the extension to use for all generated programs

Examples of settings in language specific sections

[JavaGen]
R2C_STANDARD_TABS=e:\AppBuilder\ad\cfg\cg\javas.tab
; location of code generator data file
R2C_OUT_EXT=.java
; extension to use for all generated programs
MACRO=LANGUAGE=Java
MACRO=ENVIRONMENT=GUI
; define a macro that is language or environment specific

[COBOLGEN]
R2C_STANDARD_TABS=DD:CFG(COBOLTAB)
; location of code generator data file

PARM=PARAM= -H -VMO -!O -J -YG
; Default parameters setting for COBOL generation

[OPENCOBOLGEN]
R2C_STANDARD_TABS=DD:CFG(OCOBOLT)

PARM=PARAM= -VMC -fdyncall -yz
; Default parameters setting for Open COBOL generation
PARM=DATEINIT=0000/00/00

Additional Code Generation Settings

The DECIMAL_ARITHMETIC_MODE setting in the [AP Windows] section of the Hps.ini file defines the arithmetic used in the generated program.
Three values are supported:

COMPATIBILITY for HPS532 compatibility
COBOL for COBOL compatibility
CALCULATOR uses calculator rules and is compatible HPS540 NT. This value must be set using the configurator.

Command Line Parameters Settings

You can set additional code generation parameters from the command line. You can also list these parameters as values for the PARAM settings
in the INI file. Each parameter must begin with the dash symbol (-) . Parameters must be separated by at least one space. Parameters are not
case sensitive, with the exception of -P. See for information about how the INI settings and command lineProcessing Order for Parameters
parameters are processed.

General Parameters
Workstation Specific Parameters
ClassicCOBOL and OpenCOBOL Specific Parameters
View Initialization Parameters
ClassicCOBOL Specific Parameters
OpenCOBOL Specific Parameters
C Specific Parameters
Java Generation Parameters

General Parameters

If restrictions are not specifically mentioned in the parameter description, the parameter can be used for all platforms, languages, and
environments.

-C<parameter_value>
-F<flag_name>
-H
-J
-P<parm_name=value>
-yk
-V<parameter_value>
-yp[<pragma_line>]
-yx<macro_name=macro_value>
-DU<dir>
-ym
-yt

-C<parameter_value>

-C parameter defines the language and environment as follows:

C Generates a C program. The second letter defines environment as
follows:

 S server

 C client. This is the default value.

B Generates a ClassicCOBOL program.

J Generates for Java generation. The second letter defines
environment as follows:

 S server

 C client. This is the default value.

 H HTML / Servlet

 B Java Batch

O Generates for OpenCOBOL. The second letter defines environment
for user calls as follows:

 Y Passes the parameters DFHEIBLK and HPSCOMMAREA

 N Passes only the input and output views as parameters. This is the
default value.

 B Passes dummy DFHEIBLK and HPSCOMMAREA along with the
input and output views.

 C Passes DFHEIBLK and HPSCOMMAREA along with the input and
output views.

S Generates for C# .NET. The second letter defines environment as
 follows:

 C client. This is the default value.

 S server

 B batch (nearly the same as server but standalone)

 W WPF client

In the following example, is the parameter for selecting language and environment, and specifies that ClassicCOBOL is generated:-C B

-CB

-F<flag_name>

-F parameter is used to specify additional code generation parameters referred to as flags. For example, the flag MEXCI can be passed to code
generator as -FMEXCI. See also for setting a flag in the INI file.FLAG
The following flag_name can be specified in the parameter list using -F<flag_name>:

Flag Name Description

CMNT Include user's comments from the rule in the generated code.

NOSRC Do not include rule source lines in the generated code.

NOLINE Do not include rule source line number information in the generated code. This option is not supported for C.

MEXCI Use case-insensitive comparison in macros. See for details.Case-sensitivity

MEXPDFMOFF Switches off the following predefined macros:

CG_RULE_TRANSLATION_DATE
CG_RULE_TRANSLATION_TIME
CG_RULE_TRANSLATION_TIMESTAMP
CG_CODEGEN_VERSION
CG_RULE_SHORT_NAME
CG_RULE_LONG_NAME
CG_RULE_IMP_NAME
CG_DEBUG

For more information about the predefined macros, see .Predefined Macros

PNC Normally, code generator verifies that a rule calls other rules and components for the supported platforms only. With this flag
there is no verification. In this case it is the developers' responsibility to ensure that generated code is correct.

URCOPT Disables optimization for unreachable code. This is not supported for ClassicCOBOL or OpenCOBOL.

SHORTINTRO It controls the generation of extended information at the beginning of every generated file.

When this flag is , cogeden produces common information about the list of changes. not specified
When this flag is , codegen produces a short description of the date and time when the code wasspecified
generated, also offering details about the codgen's version.

For Java, when this flag is not specified, the information produced by codegen looks as follows:

 /* Code generated by: AppBuilder
 * rule: CDGN_OBJ_REF_1_R

 * Code generated on: Mon Jan 10 15:33:51 2005
 * Codegen version CG0100_RFX. Build Dec 16 2004 at 17:04:06
 * Options used: -cjc -vdn -ye -ym -j -dfe:\ad\codegen\codegen.cfg

 * -fparms
 * [CODEGENPARAMETERS]
 * DFLTDTFMT=%0m/%0d/%Y
 * DFLTTMFMT=%0t:%0m:%0s

 * DB2DTFMT=%Y-%0m-%0d
 * DB2TMFMT=%0t:%0m:%0s

 * SYSTEMVIEWPACKAGE=com.level8.appbuilder.systemviews
 * GLOBAL_PACKAGE=

 * SET_PACKAGE=
 * VIEW_PACKAGE=

 * COMPONENT_PACKAGE=component
 * OCC_VIEW_SIZE_THRESHOLD=1000

 */

When this flag is specified, codegen will produce short description:

 /* Code generated by: AppBuilder
 * rule: GIFT_SETVIEW_SL_DIS

 * Code generated on: Thu Apr 07 05:37:01 2005
 * Codegen version CG0101_BASE:CG0101_RFX. Build Apr 6 2005 at

 14:18:45
*/

NOMIXVAL Use this flag to avoid the generation of DBCS and MIXED string validation for Classic COBOL code. When used, the
generated code does not check the validity of DBCS and MIXED strings for validity, clean invalid ones and invoke
DBCS-ABEND handler.

SIZEOF This flag helps you to calculate the SizeOf function call as
 . sizeof (one_view_occurrence)*number_of_occurrence

If this flag is not used, then SizeOf is calculated as

 . sizeof (one_view_occurrence)

When applied to a view with more than one occurrence, the SIZEOF function produces different results in C than on other
platforms, like in the example below, where, for the view V:

 DCL
 i integer;

 v view contains i;
 vv view contains v(10);

 ENDDCL

the SIZEOF function returns 4 (size of the INTEGER field) in ClassicCobol, OpenCobol and in Java modes, while in C it
returns 40, which is 4 multiplied by the number of occurrences, i.e. 10.

Without the SIZEOF flag, the SIZEOF of a view is NOT multiplied by the number of occurrences (in the previous example, the
result will be 4 in C mode too); with this flag specified, the result is always multiplied by the number of occurrences and is 40
for all the platforms.

-H

-H parameter is deprecated for ClassicCOBOL generation. It may be used but it has no effect on the generated code. Starting with AppBuilder 3.1
and RFX CG0304 only necessary conversions are performed. It is possible, but highly unlikely that the default standard parameters for
ClassicCOBOL generation were modified to exclude -H and to take advantage of the incorrect values for some host variables. If this is the case
then the rule code should be reviewed to ensure that it is still works the accepted way. For details about -H parameter, see Using SQL host
variables in the rules for Classic COBOL, OpenCOBOL, and C generation.

-J

-J parameter enables DBCS support.

-P<parm_name=value>

This parameter has the following restrictions:

The parm_name cannot contain spaces or equal (=) symbols.
The value starts with the first symbol after equal (=) sign and ends with the first space.
The value after equal (=) sign is case-sensitive.

-yk

Use this setting to disable new keywords. See .Reserved Words

-V<parameter_value>

-V parameter controls how some constructs are generated as follows:

M Defines how to generate and evaluate math
statements.

 N Use compile time optimization and CALCULATOR mode.
 CALCULATOR arithmetics is used as default for Java and C generations.Note:

 O Compatible with HPS 5.3, and compile time optimization is not performed.
 This is the default value.Note:

 C Use COBOL rules.
 (COBOL arithmetic) is used by default in the cases of ClassicCOBOL andNote:

OpenCOBOL generations

T Defines how to generate subtraction INT -
TIME.

 N Produces TIME value (DEFAULT).

 O Produces INT value.

C Defines how to format ClassicCOBOL code.

 L Uses long name based identifiers.

 S Uses short/implementation name based identifiers. This is the default.

-yp[<pragma_line>]

The < > must specify pragma construction with Rules Language syntax. For example:pragma line

-yp[pragma keywords off (object)]

-yx<macro_name=macro_value>

This parameter defines macro with the name specified by and the value specified by . The following restrictions apply:macro_name macro_value

The and cannot contain spaces or the equals (=) symbol.macro_name macro_value
The and after the equal (=) sign are case-sensitive.parm_name macro_value

For example,

-YXTARGET=Java

Macro definitions can also be set in the ini files. See for more details.[MacroDefinitions]

-DU<dir>

Specifies the directory for include files. -DU setting overwrites the R2C_INCLUDE_DIR setting in the ini file.
For example, the following parameter specifies the directory to be DD:INCLUDE.

-DUDD:INCLUDE

-ym

Specifies whether macro preprocessor is invoked by the code generator.

-yt

The code generation command line parameter -yt can be used to specify a database engine:

-yt<db>

where is one of:<db>

db2 – for IBM DB2
ora – for Oracle
sql – for Microsoft SQL Server.

When using the Oracle option, the "FOR READ ONLY" clause of cursor declaration is skipped in result Java code.

Workstation Specific Parameters

Unless otherwise noted in the parameter description, settings can be used for all supported languages and environments.

-YC<parameter_value>
-F<flag_name> for Workstation
-E<parameter_value><Ext>
-D<parameter_value><File/DirName>
-N<parameter_value>
-G<country>

-YC<parameter_value>

This parameter is used only for client side OpenCOBOL. It sets the language for generated view, and specifies copybooks used during
component and set preparation. The following table shows the possible values for this parameter:

C

PL/I

COBOL

OPENCOBOL

Assembler

-F<flag_name> for Workstation

The following flag_name can be specified in the parameter list using -F<flag_name>:

Flag
Name

Description

OCDIR This option is used only for client-side OpenCOBOL. If the option is specified, then views are generated in
<R2C_OUTPUT_DIR>\view and sets are generated in <R2C_OUTPUT_DIR>\set where <R2C_OUTPUT_DIR> is the value from
HPS.INI. If the rule has no views or sets attached, then it is not necessary for either directory to exist, or they can be empty. If this
option is not specified, views and sets are generated to <R2C_OUTPUT_DIR>.

SCCOPY This option is used only for client-side OpenCOBOL. If this option is specified, only copybooks for sets and views are generated.
Generated copybooks language is determined by the -YC parameter.

-E<parameter_value><Ext>

-E parameter defines the extension for files types as specified by the following second letters. The < > must include the leading period (.). TheExt
following table describes the possible values for this parameter:

I LOG file extension

X CGMEX file extension

B bind file extension

G output bind file extension

R rule file extension

O generated C or COBOL file extension

C RC file extension

W VW file extension

E errors file extension

L listing file extension

T tables file extension

P panel file extension

Q tree file extension

D BLD file extension

H Panel script file extension

K RW script file extension

SVO OpenCOBOL View copybook

SSO OpenCOBOL Set copybook

SVB Component View COBOL copybook

SVP Component View PL\1 copybook

SSB Set COBOL copybook

SSP Set PL\1 copybook

SSC Set C copybook

SSA Set Assembler Source

For example, the following parameter sets extension for generated C code to 'C' instead of 'PCC', which is the default:

-EC.C

-D<parameter_value><File/DirName>

-D parameter defines the directory or file name for the following files:

B Directory that contains bind file

C RC file directory

D BLD file directory

E Errors file directory

F Config file name

G Code Generation home directory

I LOG file directory, DEFAULT WorkDir

K Work directory for temporary files

L Listing file directory

M Messages file name

N Standard code generation tables name

O Directory that contains generated C or COBOL program

P Directory that contains panel file

Q Tree files directory

S Directory that contains source rule file

T Tables file name

W VW file directory

X Directory that contains generated CGMEX file, DEFAULT WorkDir

H Panel script file directory

R RW script file directory

-N<parameter_value>

-N parameter specifies the name of the file to use during code generation as follows:

X CGMEX file name

I LOG file name

Q Tree file name

T Tables file name

E Error file name

D BLD file name

B Bind file name

P Panel file name

H Panel script file name

R RW script file name

-G<country>

This parameter has the same functionality as in the INI file.NLSTABLE

ClassicCOBOL and OpenCOBOL Specific Parameters

These parameters are only supported for ClassicCOBOL and OpenCOBOL.

-YZ
-yi

-YZ

In OpenCOBOL, this disables DATE and TIMESTAMP verification, which normally occurs before they are passed to SQL statements.
In ClassicCOBOL, this disables generating IF (... < 367), which verifies that the date value is correct when converting an AppBuilder date to an
SQL date and back.
For more details, see the description of ini file settings and .DATEDB2CMP TIMESTAMPDB2CMP

-yi

This parameter uses the INITIALIZE statement to initialize or CLEAR views. The generated code uses the INITIALIZE statement to initialize views
instead of the MOVE SPACES/ MOVE ZEROES method. also affect how views are initialized.View Initialization Parameters

View Initialization Parameters

The parameters in this section are supported only for ClassicCOBOL and OpenCOBOL unless otherwise noted. The default parameters provide a
logically correct application; however, it might not be the best performance alternative. AppBuilder provides several optional code generation
parameters. Analyze and test your application to determine which parameters work best for your application. For example, you can choose
between the INITIALIZE statement and the older MOVE SPACES / MOVE ZEROES method.
There are also several options that use statically-initialized structures in COBOL working storage that map to the identical structure. Determine
which is best for your installation. The MOVE SPACES / MOVE ZEROES default might be more efficient if your views have an OCCURS clause
because the INITIALIZE view statement generates more assembler statements in the COBOL II compiler.
Views available for a rule fall into two categories:

Views visible only for a given rule: These are local variables, auxiliary and temporary variables used in generated views and BINDFILE
views declared as Working views. These views are put into the WORKING-STORAGE section during code generation.
External views, visible to other rules and components: These are rules and components, input/output views, and global views. These
views are put into the LINKAGE section during code generation.

All WORKING-STORAGE and some LINKAGE section views are required to be initialized at the beginning of rule execution.

If specified, AppBuilder can create a duplicate copy of the view in COBOL working storage, then move the COPY structure to the view during
initialization. Depending on view sizes, occurring views, and number of numeric fields, this can improve performance significantly. However, it also
increases the size of the load module by the size of the views. This might require maintenance if the application must be moved because of disk
space considerations.

-F<flag_name> for View Initialization

The following flag_name can be specified in the parameter list using -F<flag_name>. Only one flag can be used at a time:

Flag
Name

Description

LVI This parameter initializes the linkage view statically. A view copy is created in working storage and initialized statically. The "MOVE
copy TO view" statement is used each time the view is initialized or the CLEAR statement is used. In this case, the -YI parameter is
ignored.

WVI This parameter initializes the working storage view statically. A view copy is created in working storage and initialized statically. The
"MOVE copy TO view" statement is used each time the view is initialized. In this case, the -YI parameter is ignored.

IP This parameter generates the INITIAL property. The INITIAL property places a program and any programs it contains in their initial
states. A program is in its initial state when:

Data items having VALUE clauses are set to the specified value.
Altered GOTOs and PERFORM statements are set to their initial states and internal files are closed.

SWVI This is not supported in OpenCOBOL. This parameter initializes working storage view statically using the VALUE clause. The rule code
must take care of its local and working view initialization; otherwise, a subsequent rule call might lead to an error. When the CLEAR
statement is used, the view is initialized using the INITIALIZE statement. In this case, the -YI parameter is ignored.

ClassicCOBOL Specific Parameters

These parameters are only supported for ClassicCOBOL.

-YG
-KNN
-yd
-YO and -!O

-YG

This parameter enables global view support.

-KNN

All expressions with decimal fields with lengths less than NN are generated using native COBOL arithmetic. NN must be a number between 15
and 31. The default value is 18.

-yd

When this parameter is set, the GOTO DEPENDING ON statement in the beginning of a COBOL rule is not generated.

-YO and -!O

Setting either of these parameters enables generation of additional parameters for HCGOPER call.
 is required for !O.-VMO -

OpenCOBOL Specific Parameters

The following parameters affect the style of the generated code:

-YQM
-YQF
-YQU
-F<flag_name> for OpenCOBOL

-YQM

When this parameter is set, the minimum number of qualifications for the fields are generated in the view.

-YQF

When this parameter is set, the full qualification for the fields is generated in the view. This is the opposite of YQM.

-YQU

When this parameter is set, only those qualifications that were used in the rule source are generated. This is the default.

-F<flag_name> for OpenCOBOL

The following flag_name can be specified in the parameter list using -F<flag_name>:

Flag Name Description

GENNOSUFF Suffixes are generated by default. If you use the GENNOSUFF parameter which generates objects without suffixes, the
generated code might contain name conflicts or reserved words that generate COBOL compile errors. For example, if the field
RETURN_CODE is used in a rule rather than generating RETURN_CODE_F, the generated COBOL field is a
RETURN_CODE, an invalid local variable.
Do not use the GENNOSUFF parameter unless you verify that no objects generated conflict with AppBuilder Rules reserved
words, COBOL reserved words, DB2 reserved words, or the name of other parts of your application. Refer to Reserved Words
.

Please also consider possible conflicts with the names defined in standard OpenCOBOL copybooks. Since
they might change in the future releases, there is no guarantee that the existing code will be prepared
correctly!

LONGNAME This parameter generates long names for the following:

PROGRAM-ID
Rule names in the CALL statement
Names of Views and Sets in COPY statement
Copybook names of Views and Sets
When this flag is not used, the rule implementation name is used. This flag can only be used for code generation and
is not supported in the host preparation or in the OpenCOBOL client side code generation. If this option is used during
preparation, it fails in the link step because only rule implementation names are supported at the link time.

MOVEC This uses MOVE CORRESPONDING instead of the MOVE statement when generating view to view mapping. This phrase is
used only when same-name mapping is performed and when its syntax is the same as Rules Language syntax.

NOLINE Controls inclusion and generation of source line numbers information in the generated Java and COBOL code. When flag is
used, no line numbers are generated.

NOSRC Controls inclusion of rule source code in the generated code for all platforms. When the flag is used, no rule source code is
generated.

NOVIEW Does not generate view and set copybooks. They are generated by default.

C5SET When C5SET is used, then all fields and set elements of type INTEGER or SMALLINT are generated as COMP-5 items. Verify
that your host compiler supports COMP-5 clause when it is used together with VALUE clause. For example, "IBM COBOL for
OS/390 & VM 2.2.0" does not support this and generates an error message IGYGR1081.

ICW Ignores converse window statements.

VERDT Generates extra COBOL code to verify the Date or Time function result when a format function is generated without a support
library call. When this flag is specified, if the Date or Time function returns an invalid value, it is converted to a special value so
that the INT function returns -1 when applied to it.

DYNCALL Generates a dynamic rule calls.

RTCALL Generates all Date/Time/Char conversion functions as library calls.

NOVIEW Do not generate copybooks for views and sets. They are generated by default.

GENPERIOD Generate period after each COBOL statement.

NOSSR Generate more efficient and readable COBOL code without support for COBOL compiler SSRANGE option. NOSSR is the
default.
If NOSSR is not specified, the generated code for all rules statements with exception of TRACE is safe to be used with
SSRANGE COBOL compiler option. String concatenation and some other constructions are less efficient in this case.
The main source for incompatibility with the COBOL compiler SSRANGE option is empty VARCHAR fields that have length 0,
but 0 is not allowed in the reference modification for COBOL.

RTDTI Generate INT(date) function as library call. With support library call, INT(date) function performance
is approximately twice better comparing to a native COBOL version.

UNIX This flag must be specified when generating OpenCOBOL for HP-UX.
When UNIX is specified:

SOURCE-COMPUTER and OBJECT-COMPUTER phrases are not generated.
Calls to the following system components are generated directly, for example, not using SYSCOMP proxy, DFHEIBLK
and RULE-COMP-COMMAREA:

- HPS_OPEN_FILE_LOCATE_MODE
- HPS_CLOSE_FILE_LOCATE_MODE
- HPS_WRITE_FILE_LOCATE_MODE
- HPS_READ_FILE_LOCATE_MODE
- HPS_TRUNC_FILE_LOCATE_MODE
- HPSPARM
Call to HPSMODE component returns "BATCH".
Call to HPS_GET_ENVIRONMENT returns "UNIX".
Call to TIMESTAMP function without arguments is generated differently. Precision of fraction of returned TIMESTAMP
value is 6 digits in this case.
If rule contains calls to system components, but not to user components, HPSCOMM copybook is not generated.
SQLCA copybook renamed to ABSQLCA.
EXEC SQL INLCUDE is used instead of COPY to include view copybooks.

Note. Unix prepare also requires flags and .C5SET RTDTI

AIX This flag must be used instead of UNIX flag when target platform is AIX. Only one flag AIX or UNIX is allowed!

NCOCC Do not initialize occurring views. This flag must be used with the initialization setting OCC_VIEW_SIZE_THRESHOLD in the
[CODEGENPARAMETERS] section. For more information, see .Initialization of Occurring Views in OpenCOBOL

OPTNOCOND In case when conditional statement has empty then-part, it is optimized usually in the following way:
if <condition> then else <statements> endif
is converted to
if not <condition> then <statements> endif
The OPTNOCOND flag is used to avoid this optimization.

UC This flag must be used when the targtet platform is AIX running with Korean codepage.

NOINSPSTRP This flag controls the generation of the STRPOS function call. When this flag is specified, the INSPECT statement is not used
for the STRPOS function call. This flag is supported for OpenCOBOL only!

NATIONAL This flag enables a special implementation of Character String Functions for the strings containing national symbols. This
parameter generates all calls of UPPER and LOWER functions so that national symbols in the argument string are correctly
handled.

When this flag is specified, functions UPPER and LOWER are implemented (using the temporary variable with NATIONAL
data type which receives the argument of the function) and are passed to COBOL functions UPPER-CASE or LOWER-CASE.
The CODEPAGE(N) parameter with the corresponding codepage number for the Host is passed to the COBOL compiler.

For OpenCOBOL, this parameter might be added to the OCCPARM1= or OCCPARM2= values in the section (COBOL) of
@MSVENV initialization member.

VCTRACE This flag instructs codegen to generate an IF condition for every VARCHAR argument of TRACE statement to verify that its
length is not zero. If it is not specified, clearing of the varchar variable directly before tracing might lead to an abend at
run-time.

C Specific Parameters

The following parameter is supported for C generation only.

-I

This parameter disables the generation of index checking for subscripted views.
If this parameter is specified, no index checking routines are generated. If subscript is out of range, the application might or might not abort; in
either case, the first occurrence is not assumed.
This parameter also disables effect of INDEX_CONTROL_ON and INDEX_CONTROL_ABORT Hps.ini settings.

Java Generation Parameters

The following parameters are supported for Java generation only.

-yd
-F<flag_name> for Java generation
-KNN

-yd

This parameter disables the generation of debugging information.

-F<flag_name> for Java generation

The following flag_name can be specified in the parameter list using -F<flag_name>:

Flag Name Description

JAVASTYLE This option can be specified in the parameter list using . If set the Java generation will use Java style for-F<option name>
code blocks instead of C style. For example:

 private void initListeners() {
 createListeners();

 }
instead of

 private void initListeners()
 {

 createListeners();
}

GENSYSVIEW This option can be specified in the parameter list using . It generates system views. System views are not-F<option name>
generated by default.

IOVIEW This option can be specified in the parameter list using . With this flag the Rules Language generates only-F<option name>
main rule input and output view classes, including any subview classes. Rule syntax checking is not performed.

ROCRS This option can be specified in the parameter list using . When this command line flag is up, every SQL-F<option name>
cursor having no explicit FOR UPDATE clause in its declaration is generated as a read only sqlj iterator. An attempt to use a
read only cursor in positioning UPDATE or DELETE operations leads to preparation error.

SQLCASTOFF This option can be specified in the parameter list using . This flag turns off CAST generation in SQL-F<option name>
conditions for host variables in Java.
By default, the construction (and other comparison options, such as: <, >, <=, >=) when used in an:host_var1 = :host_var2
SQL ASIS statement body is generated the following way:

 :host_var1 = CAST(:host_var2 AS <var2 type>)

If SQLCASTOFF is specified, then this construction is generated as is without CAST.

Specifying this flag can cause a DB2 runtime exception for prepared DB2 rules because the construction
 without explicit CAST specification is not accepted by the DB2 SQL parser. :host_var1 = :host_var2

STLS This option can be specified in the parameter list using . This flag determines the stateless rule generation.-F<option name>

AGGR This option can be specified in the parameter list using . This flag determines the rule aggregate generation.-F<option name>

SIG This option can be specified in the parameter list using . This flag determines the rule signature expansion.-F<option name>

1.
2.

3.

4.
5.

-KNN

In Java generation, this parameter sets the threshold value for decimal variable length which controls the data type and transformation routines
used for host variable generation. The resulting code is DBMS- dependent. Current used types are listed in the following table:

DBMS vs DEC length <=NN >NN

DB2 java.math.BigDecimal java.lang.String

Oracle java.math.BigDecimal java.math.BigDecimal

Default double double

Processing Order for Parameters

All settings are processed in the following order:

All default values are set.
The command line is parsed to determine the location of the INI file, the target language, and the environment if they are different from
the default settings.
The INI file and platform independent sections are read. If the target platform was not specified on the command line and a value is
specified in the INI file, it is used.
Language depended sections are processed.
All other command line parameters are processed. The parameters are read from the left to right and processed one by one. The
parameter processed last takes precedence. In most cases, parameters are not verified against platform, target language, conflicts, or
overwriting.

Code Generation Limitations

Rules Language generates programs in C, Java, or COBOL languages. There are certain limitations imposed to the generated programs by
corresponding C, Java or COBOL compilers.
General restriction, which applies to all platforms and languages, concerns the ability to nest statements (IF, CASEOF, DO statements,
expressions and conditions with brackets, including nested functions calls). While it is not possible to give the exact limit, 30 nested statements
are always supported.

Java Restrictions

Java compiler imposes restriction on number of fields of view. It is not possible to give the exact limit, but it is not recommended to have more
than 2000 fields in view.

C Restrictions

Microsoft 32-bit C/C++ Optimizing Compiler has limitation on string literal - its length cannot exceed 2048 characters. SQL preprocessor(R)
converts each SQL ASIS block to a string literal; this imposes limitation on SQL ASIS block - there can't be more than 2048 symbols, including
white-space.

Supported Codepages

The RC2_CODEPAGE parameter of the Hps.ini file defines the codepage in both ClassicCOBOL and OpenCOBOL on the host. Several string
functions use the codepage setting when working with MIXED or DBCS values. For example, the function UPPER(DBCS) uses this setting. The
following is a list of all the codepage names for Japanese and Korean locales:

Ja_JP.IBM-290
Ja_JP.IBM-930
Ja_JP.IBM-939
Ja_JP.IBM-1027
Ja_JP.IBM-1390
Ja_JP.IBM-1399
Ko_KR.IBM-933
Ko_KR.IBM-1364

For a list of all the possible values for codepages refer to the IBM OS/390 C/C++ Programing Guide (Appendix D).

Reserved Words

Reserved Words

AppBuilder 3.2 Rules Language Reference Guide

Reserved words have special meaning in the Rules Language. Do not use these words to name entities or variables in the application. Using a
reserved word results in syntax errors when preparing the rule.

For applications written prior to HPS 5.4, you can disable some of the keywords by including the line PARAM=-yk in the
[CodeGenParameters] section of the Hps.ini file, or with the PRAGMA KEYWORD statement. This allows you to compile the
application with AppBuilder but prohibits you from using the functionality embodied in the new keywords.

The lists of reserved words differ for each target language. Refer to the following tables:

Reserved Words for Java
Reserved Words for C
Reserved Words for ClassicCOBOL
Reserved Words for OpenCOBOL

For keywords that can be disabled with PRAGMA KEYWORD, refer to the following tables:

Keywords for Java that can be Disabled with PRAGMA KEYWORD
Keywords for C that can be Disabled with PRAGMA KEYWORD
Keywords for ClassicCOBOL that can be Disabled with PRAGMA KEYWORD
Keywords for OpenCOBOL that can be Disabled with PRAGMA KEYWORD

For keywords that can be disabled with -YK, refer to the following tables:

Keywords for Java that can be Disabled with -YK
Keywords for C that can be Disabled with -YK
Keywords for ClassicCOBOL that can be Disabled with -YK
Keywords for OpenCOBOL that can be Disabled with -YK

Reserved Words for Java

AND APPEND ASIS BASED

BREAK BY CASE CASEOF

CATCH CEIL CHAR CLASS

CLEAR CLOSE CLOSELOG COMMIT

COMPONENT CONTAINS CONTINUE CONVERSE

CURSOR DATE DAY DAY_OF_WEEK

DAY_OF_YEAR DBCS DCL DEC

DECLARE DELETE DETACH DIV

DO DOUBLE ELSE END

ENDCASE ENDDCL ENDDO ENDIF

ENDPROC ENDSQL ENDTRY EVENT

EXCEPTION EXTERN FALSE FETCH

FLOAT FLOOR FOR FRACTION

FROM GETRULEIMPNAME GETRULELONGNAME GETRULESHORTNAME

GOTO HANDLER HIGH_VALUES HOLD

HOURS IF IN INDEX

INIT INSERT INSET INSTANCE

INT INTEGER INTO ISCLEAR

LIKE LISTENER LOC LONGINT

LOW_VALUES LOWER MAP MILSECS

MINUTES MINUTES_OF_DAY MIXED MOD

MODULE MONTH NEST NEW

NEW_TO_OLD_DATE NEW_TO_OLD_TIME NIL NOT

NOWAIT OBJECT OCCURS OF

OLD_TO_NEW_DATE OLD_TO_NEW_TIME OPEN OPENLOG

OR OTHER OVERLAY PERFORM

PIC POINTER PRAGMA PRINT

PRINTER PROC PTR REDEFINE

REDEFINES REPLACE REPORT RESIZE

RETURN RGB ROLLBACK ROUND

RTRIM RULE SECONDS SECONDS_OF_DAY

SECTION SET SETDISPLAY SETENCODING

SIZEOF SMALLINT SQL START

STARTINTERVAL STARTTIME STRING STRLEN

STRPOS SUBHEADER SUBSTR SWITCH

TERMINAL THROW TIME TIMESTAMP

TO TRACE TRANSACTION TRUE

TRUNC TRY TYPE UPPER

USE VARCHAR VERIFY VIA

VIEW VOID WHILE WINDOW

WITH YEAR

Keywords for Java that can be Disabled with PRAGMA KEYWORD

BREAK CATCH CLASS CLOSE

CONTINUE CURSOR DECLARE DOUBLE

ENDTRY EXCEPTION FALSE FETCH

FLOAT FOR GOTO HANDLER

HOLD INTO LISTENER MODULE

NEW OBJECT OPEN PTR

REDEFINE REDEFINES SET STRING

SWITCH THROW TRUE TRY

TYPE VIA VOID WITH

Keywords for Java that can be Disabled with -YK

BREAK CATCH CLASS CLOSE

CONTINUE CURSOR DECLARE DOUBLE

ENDTRY EXCEPTION FALSE FETCH

FLOAT FOR GOTO HANDLER

HOLD INTO LISTENER MODULE

NEW OBJECT OPEN PTR

REDEFINE REDEFINES STRING SWITCH

THROW TRACE TRUE TRY

TYPE VIA VOID WITH

Reserved Words for C

AND ASIS BASED BREAK

BY CASE CASEOF CATCH

CEIL CHAR CLASS CLEAR

CLOSELOG COMMIT COMPONENT CONTAINS

CONTINUE CONVERSE DATE DAY

DAY_OF_WEEK DAY_OF_YEAR DBCS DCL

DEC DETACH DIV DO

DOUBLE ELSE END ENDCASE

ENDDCL ENDDO ENDIF ENDPROC

ENDSQL ENDTRY EVENT EXCEPTION

EXTERN FALSE FLOAT FLOOR

FOR FRACTION FROM GOTO

HIGH_VALUES HOURS HPSColor HPSError

HPSErrorMessage HPSResetError IF IN

INDEX INIT INSET INSTANCE

INT INTEGER ISCLEAR LIKE

LOC LOW_VALUES LOWER MAP

MILSECS MINUTES MINUTES_OF_DAY MIXED

MOD MODULE MONTH NEST

NEW_TO_OLD_DATE NEW_TO_OLD_TIME NOT NOWAIT

OBJECT OCCURS OF OLD_TO_NEW_DATE

OLD_TO_NEW_TIME OPENLOG OR OTHER

OVERLAY PERFORM PIC POINTER

PRAGMA PRINT PRINTER PROC

PTR REDEFINE REDEFINES REPORT

RETURN RGB ROLLBACK ROUND

RTRIM RULE SECONDS SECONDS_OF_DAY

SECTION SET SETDISPLAY SETENCODING

SIZEOF SMALLINT SQL START

STARTINTERVAL STARTTIME STRING STRLEN

STRPOS SUBHEADER SUBSTR SWITCH

TERMINAL THROW TIME TIMESTAMP

TO TRACE TRANSACTION TRUE

TRUNC TRY TYPE UPPER

USE VARCHAR VERIFY VIA

VIEW VOID WHILE WINDOW

YEAR

Keywords for C that can be Disabled with PRAGMA KEYWORD

BREAK CATCH CLASS CONTINUE

DOUBLE ENDTRY EXCEPTION FALSE

FLOAT FOR GOTO MODULE

OBJECT PTR REDEFINE REDEFINES

SET STRING SWITCH THROW

TRUE TRY TYPE VIA

VOID

Keywords for C that can be Disabled with -YK

BREAK CATCH CLASS CONTINUE

DOUBLE ENDTRY EXCEPTION FALSE

FLOAT FOR GOTO MODULE

OBJECT PTR REDEFINE REDEFINES

STRING SWITCH THROW TRACE

TRUE TRY TYPE VIA

VOID

Reserved Words for ClassicCOBOL

ADDR AND ASIS BASED

BOOLEAN BREAK BY CASE

CASEOF CATCH CEIL CHAR

CLASS CLEAR CLOSELOG COMMIT

COMPONENT CONTAINS CONTINUE CONVERSE

CURSOR DATE DAY DAY_OF_WEEK

DAY_OF_YEAR DBCS DCL DEC

DECLARE DETACH DIV DO

DOUBLE ELSE END ENDCASE

ENDDCL ENDDO ENDIF ENDPROC

ENDSQL ENDTRY EVENT EXCEPTION

EXTERN FALSE FLOAT FLOOR

FOR FRACTION FROM GOTO

HIGH_VALUES HOURS IF IN

INDEX INIT INSET INSTANCE

INT INTEGER ISCLEAR LIKE

LOC LOW_VALUES LOWER MAP

MILSECS MINUTES MINUTES_OF_DAY MIXED

MOD MODULE MONTH NEST

NEW_TO_OLD_DATE NEW_TO_OLD_TIME NOT NOWAIT

OBJECT OCCURS OF OLD_TO_NEW_DATE

OLD_TO_NEW_TIME OPENLOG OR OTHER

OVERLAY PERFORM PIC POINTER

PRAGMA PRINT PRINTER PROC

PTR REDEFINE REDEFINES REPORT

RETURN ROLLBACK ROUND RTRIM

RULE SECONDS SECONDS_OF_DAY SECTION

SET SETDISPLAY SETENCODING SIZEOF

SMALLINT SQL START STARTINTERVAL

STARTTIME STRING STRLEN STRPOS

SUBHEADER SUBSTR SWITCH TERMINAL

THROW TIME TIMESTAMP TO

TRACE TRANSACTION TRUE TRUNC

TRY TYPE UPPER USE

VARCHAR VERIFY VIA VIEW

VOID WHILE WINDOW YEAR

Keywords for ClassicCOBOL that can be Disabled with PRAGMA KEYWORD

BREAK CATCH CLASS CONTINUE

CURSOR DECLARE DOUBLE ENDTRY

EXCEPTION FALSE FLOAT FOR

GOTO MODULE OBJECT PTR

REDEFINE REDEFINES SET STRING

SWITCH THROW TRUE TRY

TYPE VIA VOID

Keywords for ClassicCOBOL that can be Disabled with -YK

BREAK CATCH CLASS CONTINUE

CURSOR DECLARE DOUBLE ENDTRY

EXCEPTION FALSE FLOAT FOR

GOTO MODULE OBJECT PTR

REDEFINE REDEFINES STRING SWITCH

THROW TRACE TRUE TRY

TYPE VIA VOID

Reserved Words for OpenCOBOL

ADDR AND ASIS BASED

BREAK BY CASE CASEOF

CATCH CEIL CHAR CLASS

CLEAR CLOSELOG COMMIT COMPONENT

CONTAINS CONTINUE CONVERSE DATE

DAY DAY_OF_WEEK DAY_OF_YEAR DBCS

DCL DEC DETACH DIV

DO DOUBLE ELSE END

ENDCASE ENDDCL ENDDO ENDIF

ENDPROC ENDSQL ENDTRY EVENT

EXCEPTION EXTERN FALSE FLOAT

FLOOR FOR FRACTION FROM

GOTO HIGH_VALUES HOURS IF

IN INDEX INIT INSET

INSTANCE INT INTEGER ISCLEAR

LIKE LOC LOW_VALUES LOWER

MAP MILSECS MINUTES MINUTES_OF_DAY

MIXED MOD MODULE MONTH

NEST NEW_TO_OLD_DATE NEW_TO_OLD_TIME NOT

NOWAIT OBJECT OCCURS OF

OLD_TO_NEW_DATE OLD_TO_NEW_TIME OPENLOG OR

OTHER OVERLAY PERFORM PIC

POINTER PRAGMA PRINT PINTER

PROC PTR REDEFINE REDEFINES

REPORT ROLLBACK ROUND RTRIM

RULE SECONDS SECONDS_OF_DAY SECTION

SET SETDISPLAY SETENCODING SIZEOF

SMALLINT SQL START STARTINTERVAL

STARTTIME STRING STRLEN STRPOS

SUBHEADER SUBSTR SWITCH TERMINAL

THROW TIME TIMESTAMP TO

TRACE TRANSACTION TRUE TRUNC

TRY TYPE UPPER USE

VARCHAR VERIFY VIA VIEW

VOID WHILE WINDOW YEAR

Keywords for OpenCOBOL that can be Disabled with PRAGMA KEYWORD

BREAK CATCH CLASS CONTINUE

DOUBLE ENDTRY EXCEPTION FLOAT

FALSE FOR GOTO MODULE

OBJECT PTR REDEFINE REDEFINES

SET STRING SWITCH THROW

TRUE TRY TYPE VIA

VOID

Keywords for OpenCOBOL that can be Disabled with -YK

BREAK CATCH CLASS CONTINUE

DOUBLE ENDTRY EXCEPTION FALSE

FLOAT FOR GOTO MODULE

OBJECT PTR REDEFINE REDEFINES

STRING SWITCH THROW TRACE

TRUE TRY TYPE VIA

VOID

Decimal Arithmetic Support
For backwards compatibility, AppBuilder has three different arithmetic implementations:

Calculator Arithmetic — decimal arithmetic introduced in Seer*HPS 5.4.0 and implemented in AppBuilder. This arithmetic is not supported
on the mainframe platform.
COBOL Arithmetic — decimal arithmetic introduced and implemented in Seer*HPS 5.4.1 that conforms to COBOL rules for calculating
the precision of intermediate results.
Compatible Arithmetic — arithmetic that uses two sets of arithmetic functions, one for constant expression evaluation and another for
runtime calculations.

See , , and Specific Considerations for C Specific Considerations for ClassicCOBOL Restrictions on Features by Target
 for arithmetic support platform specifics.Language

The following topics are also discussed in this chapter:

Native versus Runtime Support Calculations
Platform Support
Implementation of DIV and MOD
Mapping to and from Numeric Data Items
Overflow Returned

The evaluation of every formula is divided into the sequence of basic operations, such as binary and unary operations, and standard and
user-defined function calls. Operator precedence and parentheses control the order of the operations. Each operation produces an intermediate
result (IR).

Native versus Runtime Support Calculations

Calculation of arithmetic expressions during rule execution can be performed using target language (C or COBOL) arithmetic operations or using
routines included in runtime support libraries. These two methods are referred to as and support calculations.native runtime

Native calculations are somewhat faster, but they cannot always be used. For example, C does not support operations with long DECIMAL
values.

If all of the following conditions are true for an expression in the rule, then native calculations are used:

All the operands in the expression and destination field (if present) are of native type (The set of native types is different for each

implementation of runtime arithmetic support.)
The expression does not contain the mathematical functions CEIL, FLOOR, ROUND, or TRUNC.
Local procedures or object methods returning non-native types are not used.
There are no division (/), exponentiation (**), INSET, DIV, or MOD operations in the expression.

Refer to for important issues about the differences in the error handling during native calculations.Error Handling

Platform Support

Different types of arithmetic are supported on the and .PC Platform Mainframe Platform

PC Platform

On a PC platform, all arithmetic modes are fully supported and implemented. Arithmetic mode is switched by the DECIMAL_ARITHMETIC_MODE
parameter in the AP < > section of the HPS.INI initialization file. This parameter can have the following values:platform

CALCULATOR - for arithmeticcalculator
COBOL - for COBOL arithmetic
COMPATIBILITY - for arithmeticcompatible

Mainframe Platform

COBOL arithmetic mode is the only fully-supported arithmetic on the mainframe. However, you can choose to perform constant folding using any
of the three described arithmetic modes: , COBOL, or .calculator compatible

Calculator Arithmetic

The primary difference between and COBOL arithmetic is the rules for calculating intermediate result precision.calculator

Calculator arithmetic provides intermediate result precision to 63 (sixty-three) decimal digits independent of the precision of the operands
involved. If the result has more than 63 digits, it is truncated using the rules explained below.

Example: Calculator Arithmetic

Assume that the intermediate result of an arithmetic operation has I integer and D fractional places:

If , then an overflow error occurs.I > 63
If , then if , then digits of the fractional part is truncated.I <= 63 I + D > 63 I + D - 63

In the following Rules code:

DCL
 D3100, D3100A DEC(31);
 D3131, D3131A DEC(31,31);
ENDDCL
> case 1 <
MAP 10**30 TO D3100
MAP D3100*D3100*D3100 TO D3100A *> Case 1: Overflow <*
> case 2 <
MAP 10**(-30) TO D3131
MAP D3131*D3131*D3131 TO D3131A *> Case 2: D3131A = 0 <*
RETURN

In case 1, the result of the first multiplication is , and the result of the second one is , but , so an overflow occurs.10**60 10**90 I = 90 > 63

In case 2, the result of the first multiplication is , and the result of the second one is . Here , and , so 10**(-60) 10**(-90) I = 0 D = 90 90 -
 digits are truncated. As remaining digits are zeroes, the result is zero.63 = 27

Native Types in Calculator Arithmetic

Native types in arithmetic are INTEGER and SMALLINT on all platforms.calculator

Calculator arithmetic does not use native COBOL arithmetic for DECIMAL data type. Runtime procedures are used instead, and performance is
sacrificed for increased precision when using rules on the mainframe.calculator

Constant Expressions in Calculator Arithmetic

Constant expressions are computed during compile time. If an overflow occurs during these computations, an error message is generated. In any
case, when the integer part is truncated, an error message is issued. If the fractional part is truncated, only a warning message is generated.

When the integer part of the result has more than 31 digits:

A warning message is issued if the constant expression is a part of an arithmetic formula containing non-constant operands.
An error message is issued if, for example, there are only numeric literals and the whole expression can be calculated during compile
time.

COBOL Arithmetic

COBOL arithmetic support includes these topics:

Native Types in COBOL Arithmetic
dmax Parameter
Truncation Rules for Intermediate Result
Length and Scale of Function Results
Constant Expressions in COBOL Arithmetic

Intermediate result precision in the COBOL arithmetic rules depends on the precision of the operands and the precision of the destination field.

Assume that the operands of the binary operation have i1 or i2 integer places and d1 or d2 decimal places, respectively. Then, the intermediate
result has the number of the integer and decimal places (ir and dr, respectively) as shown in the following table.

COBOL Arithmetic Intermediate Results

Operation Integer Places Decimal Places

+ or - (i1 or i2) + 1, whichever is greater d1 or d2, whichever is greater

* i1 + i2 d1 + d2

/ i1 + d2 Dmax

DIV i1 + d2 0

MOD i1+i2+d2+1 Max(d1,d2)

** 63 – dr Max(d1,d2,dmax)

Math functions See .Length and Scale of Function Results

Operation MOD is implemented as a composition of 3 operations: op1 - (op1 div op2) * op2

Native Types in COBOL Arithmetic

Native types in COBOL arithmetic are listed in the following table:

Native types in COBOL arithmetic

Platform Types

PC platform INTEGER or SMALLINT

MainFrame platform INTEGER, SMALLINT and DEC or PIC values with length less than extended precision threshold ().EPT

If native C or COBOL arithmetic is used, it is possible to detect whether an overflow has occurred.not

dmax Parameter

The parameter, is a precision parameter that is defined for the expression according to the rules outlined below. Note that isdmax dmax
calculated for an expression "as a whole". For example, all subexpressions of the MAP statement source have the same .dmax

Calculation for is done separately (independent of the enclosing expression) for:dmax

The source of the MAP statement
Arguments to user procedure calls (even if used inside an expression)
Arguments to standard functionsnon-math

Arguments of standard math functions (ROUND, TRUNC, CEIL and FLOOR) are processed as follows: the first argument is considered a
subexpression of the enclosing expression and for the second argument is calculated separately.dmax

For an expression, is calculated as the maximum of (as defined below) and the (thedmax scales of operands scale of the target of an expression
target of a MAP statement or procedure parameter).

The operand of an expression can be: data fields, constants, user procedure calls, and standard functions. The scale for these operands is:

Data fields The scale of the data field. For integer variables, it is 0 (zero).

Constants The scale of the constant (number of significant digits after decimal point).

User procedures The scale of the return value from procedure declaration.

Standard functions The result scale (see).Length and Scale of Function Results

Truncation Rules for Intermediate Result

The following remarks concerning the truncation rules apply only to ClassicCOBOL. Truncation rules for the intermediate result in COBOL
arithmetic depend on whether the expression requires extended precision. To determine this, the extended precision threshold is used. The(EPT)
extended precision threshold can be set using rule preparation parameter -K< >, EPT default value is 15.value

An Expression does not require extended precision if the following conditions are met:all

All the operands of the expression and result field are SMALLINT, INTEGER, or decimals having no more than extended precision
threshold decimal places.
The expression does not contain the mathematical functions CEIL, FLOOR, ROUND, or TRUNC.
Local procedures or object methods returning decimals longer than extended precision threshold are not used.
There are no division (/), exponentiation (**), INSET, DIV and MOD operations in the expression.

The following table indicates when intermediate results might get truncated (if an expression requires extended precision then is equal to 63,N
otherwise is equal to 31):N

Intermediate Result Truncation Rules

Value of i + d Value of d Value of i + dmax Action taken

<=N Any value Any value i integer and d decimal places are carried

>N <=dmax Any value N-d integer and d decimal places are carried

 >dmax <=N i integer and N-i decimal places are carried

 >N N-dmax integer and dmax decimal places are carried

Length and Scale of Function Results

Rules Language supports four mathematical functions that mathematically modify an expression:

CEIL
ROUND
TRUNC
FLOOR

These functions use one or two parameters:

The value to be modified
The significant number of digits to which the function applies

This is a positive value referring to the digits to the right of the decimal point - zero referring to the digit to the immediate left of the
decimal point and a negative value referring to digits farther to the left of the decimal point.

The data type of the returned value for any of these functions is DEC. Refer to for detailed descriptions and examples of theFunctions
mathematical functions used in Rules Language.

Consider these two important cases. In the first case, the second argument of the math function is a variable or an expression. In the second
case, the second argument is a constant or constant expression. In the first case, the length and the scale of the result cannot be accurately
predicted during preparation time. In the second case, they can be predicted with reasonable accuracy.

Here , , and denote integer and decimal places for the result and the first operand of the math function, respectively. In the first case,i d i1 d1
where the second operand of a math function is a variable:

 i = N-d1

 d = d1

(See for the definition of .)Intermediate Result Truncation Rules N

In the second case, where the second operand of a math function is a constant with value (or a constant expression giving integer result C):C

 If C <= 0 then i = max(i1,|C|), d=0

 If C > 0 then i=i1, d = min(d1,|C|)

The values of and are used in the calculations of and for the calculations of length and scale of operands in compound expressions.i d dmax

An error is reported at compile time if < -31, and an overflow situation occurs if the second operand is less than -31.C

Overflow Conditions

Since all values of i and d are calculated at compile time, the following can occur:

If the actual result of computations has an integer part longer than intermediate results precision calculated according to rules described
in , an overflow error occurs.COBOL Arithmetic Intermediate Results
If the result of the operation is assigned to any field, then its value is truncated according the destination data type.
If the destination field has fewer decimal positions for the integer part than for the intermediate result, an overflow error occurs.
If the destination field has fewer decimal places for the fractional part than the intermediate result has, then the fractional part is truncated
according to the rules in and no error code is set.Intermediate Result Truncation Rules

Example: Overflow Conditions

The following example clarifies the concepts of overflow conditions (in this example, EPT=15).

DCL
D1500, D1500A DEC(15);
D1510, D1510A DEC(15,10);
I INTEGER;
ENDDCL
MAP 10**14 TO D1500
MAP D1500*D1500*D1500 TO D1500A
> Overflow (result of operation has too long integer part) <
MAP D1500 TO D1510
> Overflow (integer part of source is longer than that of a target) <
MAP -50 TO I
MAP ROUND(D1500,I) TO D1500A
> No overflow – 0 is a correct result <
MAP CEIL(D1500,I) TO D1500A
*> Overflow (result of math function, 10**50 , is too long) <*

Constant Expressions in COBOL Arithmetic

Constant expressions are computed during compile time.

An error message is generated if:

Division by zero occurs during these computations.
The integer part is truncated.

However, if the fractional part is truncated, only a warning message is generated.

When the integer part of the result has more than 31 digits:

A warning message is returned if the constant expression is a part of an arithmetic formula containing non-constant operands.
An error message is returned if there are only numeric constants in the expression, and the whole expression is calculated during compile
time.

1.

2.

Compatible Arithmetic

AppBuilder uses two sets of arithmetic functions: one for and one for Runtime Calculations Constant Expression Evaluation in Compatible
. See also .Arithmetic Division by Zero

Runtime Calculations

The original arithmetic uses the value to calculate precision of the intermediate results. is calculated according to the followingq_max q_max
rules:

If an expression is a source of a MAP statement, is equal to the scale of destination.q_max
If an expression is a part of the condition and the other operand of the condition is a constant or a variable, then is equal to itsq_max
scale.
Otherwise, is equal to 0.q_max

Intermediate result is calculated in two steps:

Length and of an intermediate result, and are calculated. scale dmax maxlen

In the following table:
I, are the length and the scale of the intermediate result,S
i1, are the length and the scale of the first operand,s1
i2, are the length and the scale of the second operand,s2
n is the second operand of exponentiation.

Compatible Arithmetic Intermediate Results

Operations I S Dmax Maxlen

+/- max(i1,i2)+1 max(s1,s2) max(s1,s2,q_max) 64

* i1+i2 s1+s2 max(s1,s2,q_max) 64

/ i1+s2 max(s1,q_max) max(s1,q_max) 64

** i1*|n| s1*|n| max(s1,q_max) 32 if n is even, 31 if n is odd

If is negative then a**n is calculated as 1 / a** (-n)n

Intermediate result is truncated.

If i+s > maxlen, truncation of the intermediate result is performed according to the following rules:
If s <= dmax then i is set to maxlen - s
Else if i + dmax < maxlen then s is set to maxlen - i
Else i is set to maxlen - dmax and s is set to dmax.

This is done at runtime, and these values are NOT known statically.

Constant Expression Evaluation in Compatible Arithmetic

Constant Expressions Using Compatible Arithmetic - PC
Constant Expression Using Compatible Arithmetic - Mainframe

Constant Expressions Using Compatible Arithmetic - PC

Constant folding on the PC platform occurs only if the following conditions are satisfied:

An expression is a source of a MAP statement, a parameter of a standard function, a FROM clause index, or a variable subscript. When
an expression is not a source of MAP statement, its target is integer variable.

1.

2.

1.
2.
3.

All operands are constants in the whole expression (with the exception of 0**expr and expr**0 – these expressions are always treated as
constants 0 and 1 respectively).
An expression does not contain CEIL, FLOOR and TRUNC.
Extended precision is not required for calculating an expression.

Division operator is handled by different rules. See for more details.Division by Zero

Use the following rules to determine whether or not an expression requires extended precision:

A constant requires extended precision if its length is greater than EPT (see and COBOL Arithmetic Truncation Rules for Intermediate
). An operation requires extended precision if any of the operands require extended precision.Result

To determine whether an expression requires extended precision, its value is calculated according to the rules described in the next
section. If the result is greater than 10**EPT, an expression require extended precision. If the length of the target of a MAP statement is
longer than EPT digits, the expression require extended precision.

The constant folding is performed using native C language type through C standard library functions. Because parameter is notdouble q_max
used, constant arithmetic computation results might differ from those of calculations. The results of computations mightcompatible compatible
differ from those of arithmetic in the 15th digit after the decimal point. The default value of extended precision threshold is 15.calculator

Constant Expression Using Compatible Arithmetic - Mainframe

In arithmetic, rules for constant folding on the mainframe are generally similar to those on the PC platform, with the followingcompatible
exceptions:

The operations ** and MOD are never folded.
Subscripts are never folded.
If the first argument of ROUND does not require extended precision, the second argument is treated as a separate expression and folded
(if it can be folded) in the same way as a source of MAP into INTEGER, regardless of first argument being or not being constant.

Thus in1+2

MAP ROUND(D1510, 1+2) TO D1610

is computed at compile time (if ETP >= 15), but 1 MOD 2 in

MAP ROUND(D1510, 1 MOD 2) TO D1610

is not computed at compile time.

Division by Zero

If, during a rule preparation in arithmetic, a division (/ or DIV) is encountered in any expression, then the attempt to calculate thecompatible
divisor is made regardless of rules described above. The divisor is calculated if it does not contain any variables and there are no extended
precision operands in expression.

Results upon division by zero that occur during rule execution in all arithmetic modes are described in:

Division by Zero Using Compatible Arithmetic - PC
Division by Zero Using Compatible Arithmetic - Mainframe

Division by Zero Using Compatible Arithmetic - PC

If division by zero occurs in , rule execution stops with a system error in all three arithmetic modes.native calculations

In runtime support calculations, behavior is triggered by D0_CHECK key of [AE Runtime] section of HPS.INI.

If D0_CHECK equals YES (all upper case; no blanks allowed), then rule execution stops with a system error.

Otherwise:

in and COBOL arithmetic, the result of the operation is overflow and HPSError is setcalculator
in arithmetic, the result of the operation is overflow and HPSError does changecompatible not

Division by Zero Using Compatible Arithmetic - Mainframe

Only COBOL arithmetic is implemented on the mainframe platform. In case of division by zero, rule execution stops with system error in both
native and runtime support calculations.

Error Handling

If an error occurs during a constant expression calculation, an error message is issued as a result of the rule preparation.

On the mainframe, both and produce system errors. The overflow value is either a DEC or PIC valueDivision-by-Zero Error - PC Overflow Error
filled with a symbol '*' (length is equal to the length of the variable), or a INTEGER or SMALLINT value equal to 0. Any operation with a DEC
overflow value results in the overflow value; however, this is not true for an INTEGER and SMALLINT overflow value. Division-by-zero and
overflow runtime errors on the PC workstation are described in and .Division-by-Zero Error Results Overflow Error Results

Division-by-Zero Error - PC

Division-by-Zero Error Results

Zero is a result of: On a PC you receive:

Runtime arithmetic
calculation

HpsError is set to the corresponding error code, and the rule continues executing. The result of computation is an
overflow value.

Native expression C runtime error

Use the D0_CHECK key of the [AE Runtime] section of the HPS.INI file to change the default result for the division-by-zero in a runtime arithmetic
calculation exception.

If the D0_CHECK key is set to YES (all capital letters), the rule execution stops with the system exception Division-by-zero whenever the divisor
in the MOD, DIV or / operation is equal to zero.

Overflow Error

Overflow Error Results

Overflow is a result of: On a PC you receive:

Runtime arithmetic
calculation

HpsError is set to the corresponding error code, and the rule continues executing. The result of computation is an
overflow value.

Native expression No error code is set. Rule continues executing. The result of operation is unpredictable.

Use the OVERFLOW_CHECK key in the [AE Runtime] section of the HPS.INI file to change the default result for the overflow in a runtime
arithmetic calculation exception.

When this key is set to YES (all capital letters), then the rule execution is stopped with the system exception.

There is no way to stop rule execution and report an error if native expression was generated.

Implementation of DIV and MOD

AppBuilder supports DIV and MOD operations with non-integer operands.

In and arithmetic, DIV is implemented as follows:compatible calculator

 To calculate is calculated and all digits after decimal point are truncated.A div B, A / B

In and arithmetic, MOD is implemented as follows:compatible calculator

 A mod B = A - B * (A div B)

In COBOL arithmetic, DIV is implemented as a division with scale of a result equal to 0 and MOD as in the runtime and compatible calculator
arithmetic. Results of computations are the same for all of these implementations.

Example: DIV and MOD implementation

The following is the examples of DIV and MOD operations:

MAP 11 DIV 2 TO X *> X = 5 <*
MAP 11 DIV 0.2 TO X *> X = 55 <*
MAP 1.1 DIV 0.2 TO X *> X = 5 <*
MAP 0.11 DIV 0.2 TO X *> X = 0 <*
MAP 11 MOD 2 TO X *> X = 1 <*
MAP 11 MOD 0.2 TO X *> X = 0 <*
MAP 1.1 MOD 0.2 TO X *> X = 0.1 <*
MAP 0.11 MOD 0.2 TO X *> X = 0.11 <*

Mapping to and from Numeric Data Items

Different numeric data items have a different range of values. Overflows can occur during mappings to numeric data items. If the MAP target is
not a native type variable, an overflow value is assigned to that data item. However, if the MAP target is a native type variable, the value assigned
cannot be predicted. Specifically, on the mainframe, execution is terminated with a system error. On a workstation, the value assigned to the
INTEGER or SMALLINT variable cannot be predicted.

Situations when error and warning messages are issued at compile time in processing MAP statements to and from these numeric data items are
described in the following sections:

INTEGER and SMALLINT
DEC and PIC
Expressions

INTEGER and SMALLINT

If a constant is assigned to an INTEGER or SMALLINT variable, no checking for overflows is performed.

If a variable is assigned to an INTEGER or SMALLINT variable, a warning is issued if its integer part is greater than 10 or 5 digits, respectively.

DEC and PIC

If a constant with decimal part present is assigned to the DEC or PIC variable that does not fit, the error about overflow or a warning about
truncation is issued accordingly.

If an integer constant is assigned to a DEC or PIC variable that does not fit, the error is issued only if the constant absolute value is greater than
or equals 2**32.

If a variable is assigned to a DEC or PIC variable that does not fit, a warning is issued.

Expressions

If an expression is assigned to numeric data item, no checking for overflows is performed.

Overflow Returned

In and COBOL arithmetic, math functions return overflow only if the decimal part of the result is longer than 63 digits.calculator

In runtime, arithmetic math functions return 0 for variables and overflow result for constants if an overflow situation occurs.compatible

Example: Overflow Return Function

Consider the following example:

DCL
 I INTEGER;
 D1000 DEC(10);
 D1001 DEC(10,1);
 D0201 DEC(2,1);
ENDDCL

MAP 1 TO I
MAP I/3+I/3+I/3+I/3 TO D1000 *> case A <*
MAP I/3+I/3+I/3+I/3 TO D1001 *> case B <*
MAP 1/3+1/3+1/3+1/3 TO D1000 *> case C <*

MAP 1 TO D0201
MAP D0201/3+ D0201/3+ D0201/3+ D0201/3 TO D1000 *> case D <*
MAP D0201/3+ D0201/3+ D0201/3+ D0201/3 TO D1001 *> case E <*
RETURN

Results (values MAPped in destinations) are described in the following table.

Overflow Return Results

 Compatible Calculator COBOL

A 0 (q_max = 0, thus no digits after decimal point are kept) 1 (all 63 digits are calculated) 0

B 1.2 (q_max = 1, one digit is kept) 1.3 (all 63 digits are still calculated, providing more accurate result) 1.2

C 1 (constant computations – four C doubles are added
together)

1 (same arithmetic functions used for constant and runtime
computations)

0

D 1 (q_max=0, but dmax=1 for division) 1 1

E 1.2 1.3 1.2

Rules Language Quick Reference and Syntax
This chapter provides a quick reference to the following Rules Language statements and syntax diagrams. For detailed information regarding
each of these statements, refer to the chapters where they are discussed.

Data Types Syntax
Data Items Syntax
Arithmetic Operators Syntax
Functions Syntax
Declaration Syntax
Common Procedure Syntax
Event Procedure Syntax
Control Statements Syntax
Assignment Statement Syntax
Condition Operators Syntax
Condition Statements Syntax
Transfer Statements Syntax
Macro Statements Syntax

The table below is a list of statements and their brief descriptions:

Rules Language Statements by categories (Continued)

Statements Description

DATA TYPES

BOOLEAN The BOOLEAN data type holds a value either TRUE or FALSE. Refer to the for moreBOOLEAN Data Type
information.

CHAR Use the CHAR data type for a fixed-length character data item. Refer to the for moreCharacter Data Types
information.

DATE Use the DATE data type for a date data item. The value in the data item is the number of days past the date
of origin. January 1, 0000 is the date of origin and has a date number of 1. The DATE variable has a length
of four-bytes except for OpenCOBOL. Refer to the for more information.Date and Time Data Types

DBCS The DBCS data type can contain only fixed-length, double-byte character set data items. Refer to the
 for more information.Character Data Types

DEC Use the DEC data type to specify a decimal data item. The first integer value after a DEC keyword is the
total length of the data item; the second integer value is the scale, indicating the number of places to the
right of the decimal point. Refer to the for more information.Numeric Data Types

IMAGE Use the IMAGE data type for a data item that holds a reference to a binary large-object file (BLOB). Refer to
the for more information.Large Object Data Types

INTEGER The INTEGER data type holds a four-byte integer data item that contains values between -2,147,483,648
and 2,147,483,647 inclusive. Refer to the for more information.Numeric Data Types

MIXED The MIXED data type can contain double-byte characters and single-byte characters, in any combination
thereof. Refer to the for more information.Character Data Types

OBJECT ARRAY Use the array object (OBJECT ARRAY form) to declare an array as a locally-declared data item. Refer to
the for more information.Array Object

OBJECT
OBJECT POINTER

The OBJECT data type and OBJECT POINTER data type represent a non-typed reference to an object. It is
supported only for generation to Java. OBJECT data type is equivalent to the OBJECT POINTER data type.
Refer to the for more information.Object Data Types

PIC Declaring a data item as an integer picture (PIC) creates a storage picture that structures numeric data
according to the PIC data format. For example, a PIC data item declared with the storage picture S999V99
can contain numeric data from -999.99 to 999.99. Refer to the for more information.Numeric Data Types

SMALLINT The SMALLINT data type holds a two-byte integer data item that contains values between -32,768 and
32,767 inclusive. Refer to the for more information.Numeric Data Types

TEXT Use the TEXT data type for a data item that holds a reference to a large-object, text file. Refer to the Large
 for more information.Object Data Types

TIME Use the TIME data type for a time data item. The value in the data item is the number of milliseconds past
midnight. The TIME data type has a length of four-bytes except for OpenCOBOL. Refer to the Date and

 for more information.Time Data Types

TIMESTAMP Use the TIMESTAMP data type for a time data item where you need greater precision than milliseconds.
The TIMESTAMP data type has a length of 12 bytes except for OpenCOBOL. It consists of three
independent sub-fields:
<DATE>:<TIME>:<FRACTION>
Refer to the for more information.Date and Time Data Types

VARCHAR Use the VARCHAR data type for a variable-length character data item. Refer to the Character Data Types
for more information.

DATA ITEMS

Alias An alias is a name assigned to a data item of OBJECT data type to be used in the Rules Language in place
of a system ID to refer to an object.

Character Value A character value can be a symbol associated with a character value, a field of a character data type, or a
character literal. A character literal is a string of up to 50 characters enclosed in single or double quotation
marks.

Numeric Value A numeric value can be a symbol associated with a numeric value, a field of a numeric data type, or a
numeric literal. A numeric literal is either an integer or a decimal number.

Symbol Symbol's value is a constant. You can store character and numeric literals in the repository as symbol
entities and group them into Sets.

Variable Data Item A rule can use any view or field in its data universe as a variable data item. You can either define a variable
in your repository to be used globally or declare it within a rule to be used locally within that rule.

View A View is an object in the Information Model that defines a data structure you use within your rules.

ARITHMETIC OPERATORS

+ (Addition) Adds two expressions together.

- (Subtraction) Subtracts its second expression from its first.

* (Multiplication) Multiplies two expressions.

/ (Division) Divides its first expression by its second.

** (Exponentiation) Raises its first expression to the power of its second.

DIV (Integer division) Returns the number of times the second operand can fit into the first.

MOD (Modulus) Provides the remainder from an integer division operation.

+:= (Increment) Adds the right operand to the variable, which is its left operand.

-:= (Decrement) Subtracts its right operand from the variable, which is its left operand.

FUNCTIONS

++ (Concatenation) The ++ function returns the concatenation of the two input strings.

APPEND In Java, the APPEND function appends the source_view to the target_view. Views must be identical in
structure.

CEIL The CEIL function returns the next number greater than the first expression to the significant number of
digits indicated by the second expression.

CHAR The CHAR function converts a value in a DATE or TIME field to a value in a CHAR field.

CHAR The CHAR function supports conversion from numbers to character strings.

CHAR In the DBCS-enabled version of AppBuilder, the CHAR function treats the character value as a CHAR data
item. Refer to for more information.Double-Byte Character Set Functions

CLEARNULL in Java The CLEARNULL function is available for Java only. This function takes a field or a view as an argument
and clears the NULL flag of the field or every field in a view if it is applied to a view, without changing the
value of the field.

DATE The DATE function returns the date (or current system date if no argument) in a DATE field,

DAY The DAY function returns the day of the month for that date in a SMALLINT field.

DAY_OF_WEEK The DAY_OF_WEEK function returns the day of the week for that date in a SMALLINT field.

DAY_OF_YEAR The DAY_OF_YEAR function returns the Julian day of the year for that date in a SMALLINT field.

DBCS In the DBCS-enabled version of AppBuilder, DBCS function treats the character value as a DBCS data
item. Refer to for more information.Double-Byte Character Set Functions

DECIMAL The DECIMAL function converts character strings to numeric (decimal) values. Refer to the Numeric
 for more informationConversion Functions

DECR The DECR function subtracts its second parameter from its first parameter and returns this modified first
parameter.

DELETE In Java, the DELETE function deletes occurrences of a view starting from the position given in the second
argument.

FLOOR The FLOOR function returns the next number less than the first expression to the significant number of
digits indicated by the second expression.

FRACTION The FRACTION function returns the number of picoseconds for that timestamp in an INTEGER field.
On the host, this function returns the number of picoseconds.
On workstations, this function always returns 0 because it is not feasible to obtain a unit of time smaller than
a millisecond.

GET_ROLLBACK_ONLY in Java The GET_ROLLBACK_ONLY function is available for Java only. This function returns a BOOLEAN value,
indicating whether or not the only possible outcome of the transaction associated with the current thread is
to roll back the transaction (TRUE) or not (FALSE).

HIGH_VALUES The HIGH_VALUES function represents one or more characters that have the highest ordinal position in the
collating sequence used.

HOURS The HOURS function returns the number of hours since midnight for that time in a SMALLINT field.

HPSError The HPSError function analyzes errors during program execution. Returns 0 if no error, or an integer value
that represents the error code of the first error that occurs. Refer to the for moreHPSError Function
information.

HPSErrorMessage The HPSErrorMessage function takes an error code as an argument and returns the text string containing a
short description of the error condition. Refer to the for more information.HPSErrorMessage Function

HPSResetError The HPSResetError function resets the error code to 0 after one or more error conditions have occurred.
Refer to the for more information.HPSResetError Function

INCR The INCR function adds its second parameter to its first parameter and returns the modified first parameter.

INSERT In Java, the INSERT function inserts all occurrences of the source view (or the view itself if it is the plain
view) at the specified position in the target view. Views must be identical in structure.

INT The INI function converts character strings to numeric (integer) values. Refer to the Numeric Conversion
 for more informationFunctions

INT The INT function converts the time or date in the specified TIME or DATE field, and returns a value in an
INTEGER field.

ISNULL in Java The ISNULL function is available for Java only. This function takes a field as an argument and returns a
BOOLEAN value indicating whether the field is NULL or not.

LOC The LOC function takes a view as an argument and returns its location in a CHAR (8) field.

LOW_VALUES The LOW_VALUES function represents one or more characters that have the lowest ordinal position in the
collating sequence used.

MILSECS The MILSECS function returns the number of milliseconds past the second for that time in a SMALLINT
field.

MINUTES The MINUTES function returns the number of minutes past the hour for that time in a SMALLINT field.

MINUTES_OF_DAY The MINUTES_OF_DAY function returns the number of minutes since midnight for that time in a SMALLINT
field.

MIXED In the DBCS-enabled version of AppBuilder, the MIXED function treats the character value as a MIXED
data item. Refer to for more information.Double-Byte Character Set Functions

MONTH The MONTH function returns the month of the year for that date in a SMALLINT field.

NEW The NEW clause is used in the Java application development to create new instances of objects. Refer to
the for more information.Creating a New Object Instance in Java

NEW_TO_OLD_DATE The NEW_TO_OLD_DATE function converts the date in the specified DATE field, and returns a value in an
INTEGER field.

NEW_TO_OLD_TIME The NEW_TO_OLD_TIME function converts the time in the specified TIME field, and returns a value in an
INTEGER field.

OCCURS In Java, the OCCURS function returns the number of occurrences of a given . For non-occurringview
views, it returns 0.

OLD_TO_NEW_DATE The OLD_TO_NEW_DATE function converts the value in the specified INTEGER field, and returns a value
in a DATE field.

OLD_TO_NEW_TIME The OLD_TO_NEW_TIME function converts the value in the specified INTEGER field, and returns a value
in a TIME field.

REPLACE In Java, the REPLACE function replaces occurrences of the with occurrences from the target_view
 , starting from the specified position.source_view

RESIZE In Java, the RESIZE function shrinks or expands the given occurring view to a new size.

ROUND The ROUND function returns the number closest to the first expression to the significant number of digits
indicated by the second expression.

RTRIM The RTRIM function returns the input string with any trailing blanks removed.

SECONDS The SECONDS function returns the number of seconds past the minute for that time in a SMALLINT field.

SECONDS_OF_DAY The SECONDS_OF_DAY function returns the number of seconds since midnight for that time in an
INTEGER field.

SET_ROLLBACK_ONLY in Java The SET_ROLLBACK_ONLY function is available for Java only. This function modifies the transaction
associated with the current thread so that the only possible outcome of the transaction is to roll back the
transaction.

SETDISPLAY The SETDISPLAY function supports the use of sets. The first argument is the name of a Lookup Table set,
the second argument is the value to look up in the set, and the last argument (needed only for an Multiple
Language Support application) is the language entity to use for getting the representation of the encoding
(the second argument). This function returns a value in a CHAR (80) field.

SETENCODING The SETENCODING function supports the use of sets. The first argument is the name of a Lookup Table
set, the second argument is the representation to look up in the set, and the last argument (needed only for
an Multiple Language Support application) is the language entity used for getting the display (the second
argument). This function returns a value of the same type and length as the set in the first argument.

SIZEOF The SIZEOF function takes a view as an argument and returns its data length in bytes in a field of type
INTEGER.

STRLEN The STRLEN function returns a positive integer that specifies the length of the input string, not counting any
trailing blanks.

STRPOS The STRPOS function searches for a second string in the first string and returns the position (zero or a
positive value) from which the second string starts.

SUBSTR The SUBSTR function returns a substring of the input string that begins at the position the first expression
indicates for the length the second expression indicates.

TIME The TIME function returns the time (or current system time if no argument) in a TIME field.

TIMESTAMP The TIMESTAMP function returns a timestamp created from the current date and time in a TIMESTAMP
field if no argument is supplied, or the value in a TIMESTAMP field, if arguments are supplied.

TRACE The TRACE function can be used to output the Rules Language data items to an application trace file.

TRUNC The TRUNC function returns a number that is the first expression with any digits to the right of the indicated
significant digit set to zero.

UPPER and LOWER The UPPER and LOWER functions return the input string with all alphabetic characters converted to
uppercase or lowercase.

VERIFY The VERIFY function looks for the first occurrence of a character in the first string that does not appear in
the second string, and returns the position (zero or a positive integer) in characters.

YEAR The YEAR function returns the year for that date in a SMALLINT or INTEGER field.

DECLARATIONS

DCL ... ENDDCL The DCL statement declares a variable data item or view locally. Refer to the for moreDeclarations
information.

PROCEDURES

HANDLER In Java, the HANDLER clause enables event handlers for the specified object. Refer to the Event Handler
 for more information.Statement in Java

PROC ... ENDPROC The PROC statement defines a procedure. Refer to the for more informationEvent Handling Procedure

CONTROL STATEMENTS

> ... < One or multiple line comment statement. Refer to the for more information.Comment Statement

// One line comment statement. Refer to the for more information.Comment Statement

<object_name>.<method_name> Invokes a method for an object. Refer to the for more information.ObjectSpeak Statement

COMMIT TRANSACTION The COMMIT TRANSACTION statement commits changes to local and remote databases since the
previous START TRANSACTION statement. Refer to the for more information.COMMIT TRANSACTION

POST EVENT The POST EVENT statement posts a message to another application, or to a different rule in the same
application. Refer to the for more information.Post Event Statement

PRAGMA ALIAS PROPERTY The PRAGMA ALIAS PROPERTY statement defines an alias for a property. Refer to the PRAGMA ALIAS
 for more information.PROPERTY in Java

PRAGMA AUTOHANDLERS In Java, PRAGMA AUTOHANDLERS determines whether or not event handlers for window objects are
assigned automatically. Refer to the for more information.PRAGMA AUTOHANDLERS in Java

PRAGMA CENTURY In OpenCOBOL, PRAGMA CENTURY allows you to specify the default century used in the conversion
functions DATE(char) and CHAR(date). Refer to the for morePRAGMA CENTURY for OpenCOBOL
information.

PRAGMA CLASSIMPORT In Java, PRAGMA CLASSIMPORT makes the static fields and methods of Java classes available for the
rule. Refer to the for more information.PRAGMA CLASSIMPORT in Java

PRAGMA COMMONHANDLER In Java, PRAGMA COMMONHANDLER specifies the handler on any object's event using the same system
ID (HPSID) within the rule scope. Refer to the for more information.PRAGMA COMMONHANDLER in Java

PRAGMA KEYWORD The PRAGMA KEYWORD statement switches selected Rules Language keywords on or off. Refer to the
 for more information.PRAGMA KEYWORD

PRAGMA SQLCURSOR In Java, PRAGMA SQLCURSOR specifies cursor field types without FETCHing all the cursor fields into the
host variables. Refer to the for more information.PRAGMA SQLCURSOR in Java

ROLLBACK TRANSACTION The ROLLBACK TRANSACTION statement rolls back changes to local and remote databases since the
previous START TRANSACTION statement. Refer to the for moreROLLBACK TRANSACTION
information.

SQL ASIS ... ENDSQL The SQL ASIS statement embeds a SQL statement in a code to access a database. Refer to the SQL ASIS
 for more information.Support

START TRANSACTION The START TRANSACTION statement starts a database transaction explicitly. Refer to the START
 for more information.TRANSACTION

ASSIGNMENT STATEMENTS

CLEAR The CLEAR statement sets the value of the specified variable to its initial value. Refer to the CLEAR
 for more information.Statement

MAP
SET

The MAP or SET statement assigns a value to a variable data item. Refer to the forAssignment Statements
more information.

OVERLAY An OVERLAY statement copies the value of the first item into the second item. Refer to the OVERLAY
 for more information.Statement

CONDITION OPERATORS

= Is equal to. Refer to the for more information.Condition Operators

<> Is not equal to. Refer to the for more information.Condition Operators

< Is less than. Refer to the for more information.Condition Operators

<= Is less than or equal to. Refer to the for more information.Condition Operators

> Is greater than. Refer to the for more information.Condition Operators

>= Is greater than or equal to. Refer to the for more information.Condition Operators

INSET Is included in the set. Refer to for more information.INSET Operator

ISCLEAR Is operand value equal to its initial value. Refer to for more information.ISCLEAR Operator

CONDITION STATEMENTS

CASEOF ... CASE ... [CASE
OTHER ...] ENDCASE

The CASEOF statement routes control among any number of groups of statements, depending on the value
of a field. If none of the CASE clauses equal the value in the field and there is no CASE OTHER clause, no
statements are executed. Refer to the for more information.CASEOF Statement

DO ... [FROM ...] [TO ...] [BY ...]
[INDEX ...] [WHILE ...] ENDDO

The DO statement provides control for repetitive loops. If a DO statement contains a WHILE clause, any
statements between DO and ENDDO are executed repetitively as long as the condition in the WHILE
clause is true and the TO bound is not reached. When one of the conditions mentioned becomes false,
control passes from the WHILE clause to the statement following the ENDDO. Refer to the DO Statement
for more information.

IF ... [ELSE ...] ENDIF The IF statement routes control between two groups of statements, depending on the truth or falsity of a
condition. If the condition is false and there is no ELSE clause, no statements are executed. Refer to the IF

 for more information.Statement

TRANSFER STATEMENTS

CONVERSE The CONVERSE statement (without WINDOW or REPORT) has the effect of blocking a rule until an event
is received. Refer to the for more information.CONVERSE for Global Eventing

CONVERSE REPORT A rule can control the printing of a report by conversing a report entity. Refer to the CONVERSE REPORT
 for more information.Statement

CONVERSE WINDOW The CONVERSE WINDOW statement causes the named window entity's panel to display on the screen,
allowing a user to manipulate the window's interface and field data. In the rules code, execution remains on
the CONVERSE WINDOW statement until an event is returned to the rule. Refer to the CONVERSE

 for more information.WINDOW Statement

PERFORM The PERFORM statement allows you to invoke a procedure multiple times within a rule, rather than
duplicating the statements of the procedure at multiple places in the rule. Refer to the PERFORM Statement
for more information.

PROC RETURN A PROC RETURN statement causes a procedure to return control to the point immediately after the point
from which the procedure was invoked. Refer to the for more information.PROC RETURN Statement

RETURN The RETURN statement sends processing control back to the calling rule before all lines in the called rule
have been executed. Refer to the for more information.RETURN Statement

USE COMPONENT The USE COMPONENT statement passes processing control to a component. Refer to the USE
 for more information.COMPONENT Statement

USE RULE The USE RULE statement invokes another rule without any special instructions. If the called rule converses
a window, all other windows in its application are removed before its window appears. Refer to the USE

 for more information.RULE Statement

USE RULE ... DETACH The USE RULE ... DETACH statement invokes another rule and instructs the called rule to share control
with the calling rule. Any window the called rule converses is still nested, but is modeless. Refer to the USE

 for more information.RULE ... DETACH Statement

USE RULE ... INIT The USE RULE ... INIT statement initiates the execution of the called rule (and any rules and components it
calls) and causes the called rule to run independently from the calling rule. Refer to the USE RULE ... INIT

 for more information.Statement

USE RULE ... NEST The USE RULE ... NEST statement invokes another rule, and if the called rule converses a window, it
instructs the called rule to overlay its window over other windows of the application that are currently visible.
Refer to the for more information.USE RULE ... NEST Statement

MACROS

CG_CGEXIT The CG_CGEXIT statement breaks the process of translation with the return code Refer to theReturn code.
 for more information.Exiting from Translation

CG_CHANGEQUOTE Use the CG_CHANGEQUOTE statement to change the quote characters for macros. The default quote
characters are <: to start, and :> to finish the quote. Refer to the Changing the Quote Characters in Macros
for more information.

CG_DECR The CG_DECR macro statement decrement an integer and return the result. Refer to the CG_INCR and
 for more information.CG_DECR

CG_DEFINE Use the CG_DEFINE statement to define a macro. Refer to the for more information.Defining Macros

CG_ELSEIF
CG_ELSEIFNOT

You can insert multiple CG_ELSEIF and CG_ELSEIFNOT statements to evaluate more conditions in one
CG_IF statement.
After the CG_IF statement evaluates to false, the CG_ELSEIF() statement comparesmacro_name, value
th with the , and if they are equal, all after CG_ELSEIF are processed. e macro_name value statements
In the CG_ELSEIFNOT() statement, th is compared with the ,macro_name, value e macro_name value
and if they are not equal, all after CG_ELSEIFNOT are processed. statements
Refer to the for more information.CG_ELSEIF and CG_ELSEIFNOT

CG_EVAL The CG_EVAL macro statement is used to perform more complex mathematical operations. It takes any
 and replaces it with the result. Refer to the for more information.expression CG_EVAL

CG_IF With the CG_IF statement, th is compared with the . If the and the e macro name value macro_name value
are equal, all after CG_ELSE are excluded from translation; if the and the statements macro_name value
are not equal, only after CG_ELSE are processed. Refer to the forstatements Using Conditional Translation
more information.

CG_IFDEF Use the CG_IFDEF statement to evaluate if a macro is defined or not. Refer to the Evaluating if a Macro
 for more information.Exists

CG_IFDEFINED In the CG_IFDEFINED() statement, the preprocessor analyzes to determine if macro_name macro_name
has been defined. If it has been defined, all after CG_ELSE are excluded from translation; if itstatements
has not been defined, only after CG_ELSE are processed. Refer to the statements CG_IFDEFINED and

 for more information.CG_IFNOTDEFINED

CG_IFELSE Use the CG_IFELSE statement to compare values and performs substitution based on the result of the
comparison. Refer to the for more information.Comparing Values

CG_IFNOT With the CG_IFNOT statement, th is compared with the . If the and the e macro name value macro_name
 are NOT equal, all after CG_ELSE are excluded from translation. Refer to the value statements Using

 for more information.Conditional Translation

CG_IFNOTDEFINED In the CG_IFNOTDEFINED() statement, if the has not been defined, all macro_name macro_name
 after CG_ELSE are excluded from translation; if it has been defined, only afterstatements statements

CG_ELSE are processed. Refer to the for more information.CG_IFDEFINED and CG_IFNOTDEFINED

CG_INCLUDE The CG_INCLUDE statement causes the compiler to process the file specified in the parameter.file_name
Refer to the for more information.Including Files

CG_INCR The CG_INCR macro statement increment an integer and return the result. Refer to the CG_INCR and
 for more information.CG_DECR

CG_INDEX CG_INDEX returns the position of the in the .substring string

CG_LEN CG_LEN returns the length of a string.

CG_SHIFT This macro uses recursion to process parameters one by one, simulating the effect of looping. CG_SHIFT
takes any number of parameters and returns the same list (each parameter quoted) after removing the first
parameter. Refer to the for more information.Using Recursion to Implement Loops

CG_SUBSTR CG_SUBSTR extracts some part of a starting at the position.string from

CG_UNDEFINE Use the CG_UNDEFINE statement to undefine a macro. Refer to the for moreUndefining a Macro
information.

CG_CASEOF The CG_CASEOF macro statement switches translation between any number of groups of statements,
depending on the result of comparing with the for each group. Refer to macro_name values CG_CASEOF

 for more information.Statement

CG_IF with Boolean Condition The CG_IF with Boolean Condition macro switches the translation depending of the truth or falsity of a
condition. Refer to for more information.CG_IF Statement with Boolean Condition

Data Types Syntax

A Rules Language data item must be defined as a specific data type. Refer to the for more information about data types. TheData Types
following data type syntax drawings are available under this section:

BOOLEAN Data Type Syntax
Numeric Data Types Syntax
Date and Time Data Types Syntax
Large Object Data Types Syntax
Object Data Type Syntax
Object Array Syntax
Character Data Types Syntax

BOOLEAN Data Type Syntax

Refer to the for more information.BOOLEAN Data Type

Numeric Data Types Syntax

Refer to the for more information.Numeric Data Types

where:

integer_literal is an integer value specifying the total length of the data item and the scale.

Date and Time Data Types Syntax

Refer to the for more information.Date and Time Data Types

Large Object Data Types Syntax

Refer to the for more information.Large Object Data Types

Object Data Type Syntax

Refer to the for more information.Object Data Types

where:

class_identifier is a string that identifies the implementation of the class. Therefore, it might be the full Java class name for Java classes.
The identification string is case-sensitive.
class_name is a class name to be used in a rule. case-sensitive.Not
subsystem is the group to which this object belongs.

The following subsystems are supported:

GUI_KERNEL: the set of AppBuilder-supplied window controls.
JAVABEANS: used for any Java class.
type can be numeric, character, date and time, boolean, or object with certain limitations---see for more details.Array Object

Object Array Syntax

Refer to the for more information.Array Object

where:

character_data_type---see .Character Data Types
date_and_time_data_type---see .Date and Time Data Types
numeric_data_type---see .Numeric Data Types
object---see . You can only have an array of non-typed objects, that is OBJECT ARRAY OF OBJECT.OBJECT
boolean_data_type---see .BOOLEAN Data Type

Character Data Types Syntax

Refer to the for more information.Character Data Types

Data Items Syntax

A data item (or data element) is an individual unit of data that is processed by a rule. Refer to the for more information about dataData Items
items. The following data items syntax drawings are available under this section:

Variable Data Item Syntax
View Data Item Syntax
Character Value Syntax
Numeric Value Syntax
Symbol Syntax
Alias Syntax

Variable Data Item Syntax

Refer to the for more information.Variable Data Item

where index_list is:

where index is:

where object_speak_reference is:

where can be one of the following:object_name

The system identifier (HPSID) of the object
The alias of the object---see .Alias
An object---see .Object Data Types

An array---see .Array Object

where:

expression---see .Expression Syntax
numeric_expression---see .Numeric Expressions
view ---see .View

View Data Item Syntax

Refer to the for more information.View

where index_list is:

where index is:

Character Value Syntax

Refer to the for more information.Character Value

where:

character_field is a variable data item of any character type.
symbol---see .Symbol

Numeric Value Syntax

Refer to the for more information.Numeric Value

where:

symbol---see .Symbol
integer_field is a variable data item of INTEGER data type.
smallint_field is a variable data item of SMALLINT data type.
decimal_field is a variable data item of DEC data type.
picture_field is a variable data item of PIC data type.

Symbol Syntax

Refer to the for more information.Symbol

Alias Syntax

Refer to the for more information.Alias

where

alias is any valid Rules Language identifier.

system_identifier is the system identifier of an object declared in the panel file.

Arithmetic Operators Syntax

The Rules Language supports the basic arithmetic operations. Refer to the for more information about arithmetic operators.Arithmetic Operators

Arithmetic Operators Syntax

Functions Syntax

A function accepts one or more arguments, performs an action on them, and returns a value based on the action. Refer to the for moreFunctions
information. The following functions syntax drawings are available under this section:

Numeric Conversion Functions Syntax
Mathematical Functions Syntax
Date and Time Functions Syntax

Character String Functions Syntax
Support Functions Syntax
Syntax for Creating a New Object Instance in Java
Syntax for Dynamically-Set View Functions in Java

Numeric Conversion Functions Syntax

Refer to the for more information.Numeric Conversion Functions

Mathematical Functions Syntax

Refer to the for more information.Mathematical Functions

where:

numeric_expression---see .Numeric Expressions
variable_data_item is a variable data item of any numeric type.

Date and Time Functions Syntax

Use a DATE, TIME and TIMESTAMP function to obtain the current date, time, and timestamp, to format your data, or to convert a field from a
date, time or timestamp data type to another data type. Refer to the for more information.Date, Time and Timestamp Functions

where:

character_expression---see .Character Expressions
date_field ---see .Date and Time Data Types
time_field ---see .Date and Time Data Types
integer_field ---see .Numeric Data Types
format_string ---see .Format String
timestamp_field---see .Date and Time Data Types

Character String Functions Syntax

Character string functions allow you to modify a character string. Refer to the for more information.Character String Functions

where:

character_expression---see .Character Expressions
num_expression---see .Numeric Expressions

Support Functions Syntax

Refer to the for more information.Support Functions

where:

character_expression ---see .Character Expressions
expression ---see .Expression Syntax
view ---see .View

Syntax for Creating a New Object Instance in Java

Refer to the for more information.Creating a New Object Instance in Java

where:

parameters_list is the list of object constructor parameters included in round brackets; if constructor has no parameters then empty
brackets must be omitted.

Syntax for Dynamically-Set View Functions in Java

OCCURS Syntax

Refer to the for more information.OCCURS

where:

view is any view.

APPEND Syntax

Refer to the for more information.APPEND

where:

target_view must be an occurring view.
source_view is any view.
number of occurs to process parameter specifies how many items are taken from the .source_view

RESIZE Syntax

Refer to the for more information.RESIZE

where:

target_view is an occurring view.
new_size specifies the new size of the .target_view
from_position specifies the starting position to apply the within the .new_size target_view

DELETE Syntax

Refer to the for more information.DELETE

where:

target_view is an occurring view.
from_position specifies the starting position to delete.
number specifies the number of occurrences to delete.

INSERT Syntax

Refer to the for more information.INSERT

where:

target_view is an occurring view.
source_view is any view.
from_position specifies the position to insert.
number_of_occurs_to_process specifies how many items are taken from .source_view
number of occurrences to delete.

REPLACE Syntax

Refer to the for more information.REPLACE

where:

target_view is an occurring view.
source_view is any view.
from_position specifies the starting position to replace.
number_of_occurs_to_process specifies how many items are taken from .source_view

Declaration Syntax

The name and data type of a variable or a procedure need to be declared before it can be used. Refer to the for more information.Declarations

Local Variable Declaration Syntax

Refer to the for more information.Local Variable Declaration

where local_variable is:

where:

data_type---see .Data Types
variable_data_item---see .Variable Data Item

Local Procedure Declaration Syntax

Refer to the for more information.Local Procedure Declaration

where:

proc_name is the name of a procedure to be declared.
parameter_list is:

data_type---see .Data Types

Event Procedure Declaration Syntax

Refer to the for more information.Event Procedure Declaration

where:

proc_name is the name of a procedure to be declared.
event_name is the name of the declared object event.
listener_name is the name of the interface that implements event triggering (Java only).
object_name can of any of the following:
The system identifier (HPSID) of the object.
The alias of the object---see .Alias
A pointer to the object---see .Object Data Types
class_identifier is a string that identified the class. It might be CLSID or OLE objects or fully qualified class name for Java classes. The
identification string is considered case-sensitive.
object_type is the type of the object whose events the procedure receives---see .Object Types
subsystem is the group that the object belongs to. The following are supported:
GUI_KERNEL, the set of window controls supplied with AppBuilder.
JAVABEANS, for any Java class.

Common Procedure Syntax

Refer to the for more information.Common Procedure

where proc_statements are:

where common_procedure is:

where can be:parameters

where can be:output_type

where:

data_type---see .Data Types
DCL_local_variable---see .Local Variable Declaration
variable_data_item---see . Note that OBJECT array cannot be a parameter.Variable Data Item
statement is Any Rules Language statement, except procedure declaration.

Event Procedure Syntax

Refer to the for more information.Event Handling Procedure

where event_procedure is:

where:

object_name can be any of the following:
The HPSID of the object
The alias of the object---see .Alias
A pointer to the object---see .Alias
data_type---see .Data Types
variable_data_item---see .Variable Data Item
parameters---see .Common Procedure
proc_statements---see .Common Procedure
object_type is the type of object whose event(s) the procedure receives.
subsystem is the group to which the object pointed to belongs.

Event Handler Syntax in Java

Refer to the for more information.Event Handler Statement in Java

where:

object_name is the object variable.
event_handlers_list is a list of event handlers that are delimited with commas.

Control Statements Syntax

Refer to the for more information about the control statements. The following control statements syntax drawings are availableControl Statements
in this section:

Comment Statement Syntax
ObjectSpeak Statement Syntax
Object Method Call Syntax
File (Database) Access Statement Syntax
Post Event Statement Syntax
Compiler Pragmatic Statement Syntax

Comment Statement Syntax

Refer to the for more information.Comment Statement

where:

any_text is any possible character sequence, including line breaks.
one_line_of_text is any character sequence limited to one line (without any line breaks).

ObjectSpeak Statement Syntax

Refer to the for more information.ObjectSpeak Statement

where ObjectSpeak_reference is:

where object_name can be:

The system identifier (HPSID) of the object
The alias of the object---see for information about alias of an object.Alias
An object---see for information about an object.Object Data Types
An array---see for information about an array.Array Object

where:

expression---see .Expression Syntax

Object Method Call Syntax

Refer to the for more information.Object Method Call

where:

actual_parameters_list is a list of actual parameters delimited with commas and enclosed in parentheses. If the list is empty, parentheses
can be omitted. If a method does not have parameters then empty parentheses (()) can be written. For more information, see:
Object Method Call in C
Object Method Call in Java

File (Database) Access Statement Syntax

Refer to the for more information.File (Database) Access Statements

Post Event Statement Syntax

Refer to the for more information.Post Event Statement

Compiler Pragmatic Statement Syntax

Refer to the for more information.Compiler Pragmatic Statements

PRAGMA KEYWORD Syntax

Refer to the for more information.PRAGMA KEYWORD

where:

keywords_list is the parameters list of keywords to switch on or off. Separate individual keywords using commas (spaces are ignored)
and place the entire list in parentheses. The PRAGMA KEYWORD clause is case-sensitive, so keywords can be lower or uppercase.not

PRAGMA CLASSIMPORT Syntax in Java

Refer to the for more information.PRAGMA CLASSIMPORT in Java

where:

class_alias_list is a list of pairs that consist of Java class name and alias to import. Separate the class name and alias using a comma
(spaces are ignored), and place the entire list in parentheses. The PRAGMA CLASSIMPORT clause is case-sensitive, so note the exact
capitalization of the Java class name.

PRAGMA AUTOHANDLERS Syntax in Java

Refer to the for more information.PRAGMA AUTOHANDLERS in Java

PRAGMA ALIAS PROPERTY Syntax in Java

Refer to the for more information.PRAGMA ALIAS PROPERTY in Java

where:

property_name is the case-sensitive name of a property and the alias for which it is defined.
class_id is a string that identifies the implementation of the class. It might be CLSID for OLE objects or the full Java class name for Java
classes. The identification string is considered to be case-sensitive.
class_name is the class name used in a rule's code. It is not case-sensitive.
alias is the valid Rules identifier – alias for a method. This alias can be used in Rules code instead of the method's name.

PRAGMA COMMONHANDLER Syntax in Java

Refer to the for more information.PRAGMA COMMONHANDLER in Java

PRAGMA SQLCURSOR Syntax in Java

Refer to the for more information.PRAGMA SQLCURSOR in Java

where

cursor_name is any valid identifier.
data_type is any primitive data type (any data type except views or objects)---see .Data Types

PRAGMA CENTURY Syntax for OpenCOBOL

Refer to the for more information.PRAGMA CENTURY for OpenCOBOL

where

string_literal is any character literal containing one or two digits.

Assignment Statement Syntax

Refer to the for more information.Assignment Statements

Aggregate Syntax

where:

expression---see .Numeric Expressions
variable_data_item---see .Variable Data Item
view---see .View

CLEAR Statement Syntax

Refer to the for more information.CLEAR Statement

where:

variable_data_item---see .Variable Data Item
view---see .View

OVERLAY Statement Syntax

Refer to the for more information.OVERLAY Statement

where:

variable_data_item---see .Variable Data Item
view---see .View
character_literal is a Character literal---see .Character Value

Condition Operators Syntax

A condition is an expression that evaluates to either true or false. Refer to the for more information.Condition Operators

Conditions Syntax

where:

expression---see .Expression Syntax

Condition Statements Syntax

Condition statements direct processing control within a rule to one group of statements or another depending on the value of a condition. Refer to
the for more information about the condition statements. The following condition statements syntax drawings are availableCondition Statements
in this section:

IF Statement Syntax
CASEOF Statement Syntax
DO Statement Syntax

IF Statement Syntax

Refer to the for more information.IF Statement

where:

condition---see .Condition Operators
statement is any Rules Language statement, except a declarative statement.

CASEOF Statement Syntax

Refer to the for more information.CASEOF Statement

where selector has the following form:

The last form of selector is available only in Java.
where:

symbol--- see .Symbol
statement is any Rules Language statement, except a declarative statement.
field_name is the name of the field of a suitable type, that is, a type with constants that can appear as a selector. Allowable types are:
Numeric
Character

DO Statement Syntax

Refer to the for more information.DO Statement

where:

condition---see .Condition Operators
numeric_expression---see .Numeric Expressions
statement is any Rules Language statement, except a declarative statement.

Transfer Statements Syntax

Transfer statements switch control of an application from one rule to another to perform another task, from a rule to a window to have the window
appear on the screen, from a rule to a report to print the report, or from a rule to an internal procedure. Refer to the for moreTransfer Statements
information about the transfer statements. The following transfer statements syntax drawings are available in this section:

USE Statement Syntax

Refer to the for more information.USE Statements

where:

character_expression---see .Character Expressions
expression---see .Numeric Expressions
numeric_value---see .Numeric Value
view---see .View

CONVERSE Statement Syntax

Refer to the for more information.CONVERSE Statements

where:

numeric_value---see .Numeric Value
printer_name is a character value containing the printer name.---see .Character Value
report_name is the name of the report that belongs to the current rule.

section_name is the name of the section that belongs to the report (report_name).
START is optional if the report has no sections attached.

RETURN Statement Syntax

Refer to the for more information.RETURN Statement

PERFORM Statement Syntax

Refer to the for more information.PERFORM Statement

where parameter_list can be:

where:

expression---see .Expressions and Conditions
view---see .View

PROC RETURN Statement Syntax

Refer to the for more information.PROC RETURN Statement

where:

expression is a valid expression---see .Expression Syntax
view is a valid view---see .View

Macro Statements Syntax

Refer to the for more information about the macro statements. The following control statements syntax drawings are available in thisMacros
section:

Defining Macros Syntax
Undefining Macros Syntax
Changing Quotes Syntax
Syntax for Evaluating if a Macro Exists
Syntax for Comparing Values with Macros
Syntax for Conditional Translation with Macros
Syntax for Including Files with Macros
Syntax for Exiting from Translation with Macros
Syntax for String Functions with Macros
Syntax for Arithmetic Macros

Defining Macros Syntax

Refer to the for more information.Defining Macros

where:

macro_name is any sequence of letters, digits, and the underscore character (_) where the first character is not a digit. Macro names are
case-sensitive, for example, "INIT" represents a different macro than "init." See for exceptions. Macro names cannotCase-sensitivity
contain DBCS characters. If DBCS characters are used, an error is generated during the Rule preparation.
string is any sequence of characters allowed in the Rules Language. The replacement string is not enclosed in quotation marks. (If
quotation marks are included, they are part of the replacement string and are included when the replacement string is substituted for the
macro name.)

Undefining Macros Syntax

Refer to the for more information.Undefining a Macro

Changing Quotes Syntax

Refer to the for more information.Changing the Quote Characters in Macros

where:

open is the string to start the quotes.
close is the string to end the quotes.

Syntax for Evaluating if a Macro Exists

Refer to the for more information.Evaluating if a Macro Exists

where:

string is any sequence of characters allowed in the Rules Language.

Syntax for Comparing Values with Macros

Refer to the for more information.Comparing Values

where:

value1 is the first value used in the comparison, and is typically a macro name.
value2 is the second value used in the comparison.
string is any sequence of characters allowed in the Rules Language.

Syntax for Conditional Translation with Macros

Refer to the for more information.Using Conditional Translation

where:

macro_name is any macro name.
value is any string that could be assigned to macro_name.
statements are any Rules Language statements.

Syntax for Including Files with Macros

Refer to the for more information.Including Files

where:

File_name is the string specifying a file name.

Syntax for Exiting from Translation with Macros

Refer to the for more information.Exiting from Translation

where:

Return code is an integer number.

Syntax for String Functions with Macros

CG_LEN Syntax

Refer to the for more information.CG_LEN

CG_INDEX Syntax

Refer to the for more information.CG_INDEX

CG_SUBSTR Syntax

Refer to the for more information.CG_SUBSTR

Syntax for Arithmetic Macros

CG_INCR and CG_DECR Syntax

Refer to the for more information.CG_INCR and CG_DECR

CG_EVAL Syntax

Refer to the for more information.CG_EVAL

Where:

expression can contain various operators, as shown in the following table in decreasing order of precedence:

Operators Used in Expressions

Operator Definition

- Unary minus

** Exponentiation

* / % Multiplication, division and modulo

+ - Addition and subtraction

<< >> Shift left or right

== != > >= < <= Relational operators

! Logical negation

~ Bitwise negation

& Bitwise and

^ Bitwise exclusive-or

/ Bitwise or

&& Logical and

// Logical or

	Rules Language Reference Guide
	Introduction to the Rules Language
	Data Types
	Data Items
	Expressions and Conditions
	Functions
	Numeric Conversion Functions
	Mathematical Functions
	Date, Time and Timestamp Functions
	Character String Functions
	Double-Byte Character Set Functions
	Error-Handling Functions
	Support Functions

	Declarations
	Procedures
	Control Statements
	Assignment Statements
	Condition Statements
	Transfer Statements
	Macros
	Platform Support and Target Language Specifics
	Specific Considerations for C
	Specific Considerations for Java
	Specific Considerations for CSharp
	Specific Considerations for ClassicCOBOL
	Specific Considerations for OpenCOBOL
	Specific Considerations for ClassicCOBOL and OpenCOBOL
	Restrictions on Features
	Supported Functions by Release and Target Language

	Code Generation Parameters and Settings
	Reserved Words
	Decimal Arithmetic Support
	Rules Language Quick Reference and Syntax

