

Magic Software
AppBuilder

Version 3.2

ObjectSpeak Reference Guide

Corporate Headquarters:

Magic Software Enterprises
5 Haplada Street,
Or Yehuda 60218, Israel
Tel +972 3 5389213
Fax +972 3 5389333

© 1992-2013 AppBuilder Solutions
All rights reserved.
Printed in the United States of America.
AppBuilder is a trademark of AppBuilder Solutions. All
other product and company names mentioned herein are
for identification purposes only and are the property of,
and may be trademarks of, their respective owners.

Portions of this product may be covered by U.S. Patent
Numbers 5,295,222 and 5,495,610 and various other
non-U.S. patents.
The software supplied with this document is the property
of AppBuilder Solutions and is furnished under a license
agreement. Neither the software nor this document may
be copied or transferred by any means, electronic or
mechanical, except as provided in the licensing
agreement.
AppBuilder Solutions has made every effort to ensure
that the information contained in this document is
accurate; however, there are no representations or
warranties regarding this information, including
warranties of merchantability or fitness for a particular
purpose. AppBuilder Solutions assumes no responsibility
for errors or omissions that may occur in this document.
The information in this document is subject to change
without prior notice and does not represent a
commitment by AppBuilder Solutions or its
representatives.

1. ObjectSpeak Reference Guide . 2
1.1 Introduction to ObjectSpeak . 2
1.2 User-Interface Objects . 6

1.2.1 Comprehensive List of Objects . 6
1.2.2 Abstract Class Objects . 7
1.2.3 Basic Control Objects . 17
1.2.4 Dynamic-Only Control Objects . 52
1.2.5 Supporting Objects . 63

1.3 Java Batch Objects . 77
1.4 Events . 79

1.4.1 Data Validation . 79
1.4.2 ObjectSpeak Events . 83

1.5 User-Interface Properties . 104
1.6 Java Support Matrix . 114
1.7 Supported Methods for Java Classes . 122
1.8 Supported Methods in CSharp . 124
1.9 Sample Code . 162

ObjectSpeak Reference Guide

Introduction to ObjectSpeak
AppBuilder provides a way to interact with properties of objects and methods at execution time using extensions to the Rules Language and the
application runtime system collectively called ObjectSpeak. ObjectSpeak uses an object-based Rules Language syntax to manage entities that
are displayed within the runtime windows as objects. Rules coding for applications is simplified using ObjectSpeak because ObjectSpeak does
not require component calls or changes to the hierarchy.

Managing Objects with ObjectSpeak

ObjectSpeak functions use more compact Rules Language syntax and minimize overall impact on the size and complexity of the application
hierarchy. With ObjectSpeak, Rules Language takes a modern, object-based approach to window objects, such as edit fields, push buttons, and
check boxes. For information about the Rules Language, refer to the .Rules Language Reference Guide
While designing a window in Window Painter, you can set the properties for the objects in a window. For more information on Window Painter,
refer to the . Understanding object properties helps you to manipulate these properties at execution timeDevelopment Tools Reference Guide
using ObjectSpeak.
To gain the basic understanding of ObjectSpeak, see the following sections:

Prerequisites
General Syntax

After you have understood the prerequisites and reviewed the syntax, you can review detailed information about the events that are triggered by
the objects and how to respond to them in the following sections:

User-Interface Objects
Java Batch Objects
Events
User-Interface Properties

Portions of ObjectSpeak functionality are also available using standard system components provided by AppBuilder to perform
standard functions. For more information, refer to the .System Components Reference Guide

Prerequisites

Readers of this guide should be familiar with developing applications using AppBuilder and installing the AppBuilder product. If you require
information on installation procedures, see . You also require basic application development experience, familiarityInstallation Guide for Windows
with the Microsoft Windows NT/2000 operating system, and a working knowledge of distributed applications.
This guide is a companion to the . You should have that information available because it documents extensionsRules Language Reference Guide
for different languages (Java, C#) to the Rules Language for supported ObjectSpeak entities.

Associated manuals

For more information about the concepts and overall process of developing applications, refer to the documents listed in the following table.

Documentation Set

Documentation Title Topics

Developing Applications Guide Detailed information on using AppBuilder to create applications.

Deploying Applications Guide Detailed information on configuring and deploying applications.

Development Tools Reference Guide Detailed descriptions of the tools used in AppBuilder to create applications.

Repository Administration Guide for Workgroup and Personal
Repositories

Overview and specific details on configuring and managing repository-based
development.

Rules Language Reference Guide Detailed instructions for developing applications using Rules Language.

Terminology

ObjectSpeak uses some terminology that, though it differs from terms used in Window Painter, is more in keeping with current standard
terminology. The following table explains the correspondence between these terms.

AppBuilder ObjectSpeak AppBuilder Window Painter

Enabled not Protected

Editable not Read-only

Label Static Text

ShortHelp Status Line Help

Table Multicolumn List Box (MCLB), Spreadsheet

General Syntax

Using the general syntax of ObjectSpeak involves:

Understanding Dot Notation
Accessing Properties
Using Pre-Defined Objects versus Dynamic Objects
Calling Methods
Responding to Events

Understanding Dot Notation

The general syntax of an ObjectSpeak expression is shown in the example:

myPushButton.Visible

The name of the object is followed by a period, which is followed by the name of the property. In this example, the name of the object, a push
button, is myPushButton. The property is Visible. By looking up the property Visible in , we find that it is a Boolean,User-Interface Properties
having a value of either True (for on or visible) or False (for off or hidden).

Accessing Properties

ObjectSpeak allows you to manipulate the properties of user interface objects during execution. For example, you may want to disable or enable a
menu item dynamically in response to the current state of the program or protect an edit field by making it non-editable.
ObjectSpeak uses a "dot" notation to indicate that a property or method of an object is being accessed. The standard syntax for accessing the
properties and methods of an object is:
Use the name of the object (), followed by a period, followed by the name of the property ().QueryButton Text

Using Get and Set Methods

For each property, ObjectSpeak uses two common methods: and . Get retrieves the value of the object's property and assigns a variable.Get Set
This can be done simply by using the dot notation:

map myPushButton.Enabled to saveValue

If the property has a boolean type, then is used instead of Get. Get, Set, and IS are all prefixes, that is, they are followed by a property name.IS
Set assigns a value for that property to the object, as shown in the following sample:

map False to myPushButton.Visible

Alternatively, you can use:

myPushButton.setVisible(False)

Examples: Modifying New and Existing Properties

The following ObjectSpeak sample changes the property of the push button called to :Text QueryButton Query

map 'Query' to QueryButton.Text

This example assigns a new value to a property.
The following example demonstrates how to determine the current value of a property:

 QueryButton.Text = 'Query'if
 use rule QUERY_RULE
endif

In this example, the value of the property of the object is not being changed; it is simply being referenced to see if it is equal toText QueryButton
the string .Query

Using Pre-Defined Objects versus Dynamic Objects

Some window objects are pre-defined and can be referred to in the Rules Language code using their system identifier (HPSID). For example, an
edit field defined in the window as , can be used as follows, without a declaration:myEdit

SET myEdit.text := 'Hello World'

Objects can also be declared and created dynamically, and require a declaration:

dcl
 myEdit object type EditField;
enddcl

map EditField to myEditnew
set myEdit.text := 'Hello Again'

When declaring these dynamic objects, avoid using the pre-defined object types?such as EditField, PushButton, and Checkbox?as the name of
the object. Code generation generates ambiguous reference errors when it encounters these object names. If you want to use these names, refer
to the for an explanation of how to use aliases to redefine object names.Rules Language Reference Guide

For HTML, adding an object to the window dynamically is supported.not

Calling Methods

Methods are functions or procedures that can be called on an object. Methods tell the object to perform a specific task.
For each of the properties common to window objects, set the value of that property by using the prefix before the name of the property. For aSet
list of common properties, refer to .User-Interface Properties

Parameters in Methods

The general syntax for an object method is as follows:

Method parameters appear in parentheses following the method name. If there are no parameters, empty parentheses are shown.
Within the parentheses, the parameter name is given first, followed by a colon, and then the type.
Multiple parameters are separated by commas.
If a method has a return value, the closing parenthesis of the parameters is followed by a colon, which is followed by the return value
type.
In most cases, to dynamically create an object, use . For such objects, the method for creating the object is not shown.new ObjectName
Some objects (such as Color) require parameters to create a new instance. For these objects, the method for creating the instance is
shown. The method name is the same as the object name, and the required parameters are indicated.
Support for NIL representing null values: you can use NIL as a parameter of an ObjectSpeak method call for an OBJECT type. NIL is

1.
2.
3.

generated as null in the resulting Java code.

Examples: Show and Set Methods

Using the Show Method

In this example, the Java client contains an object named that displays a message. The object has a method named MessageBox MessageBox
 that causes the message box to display.Show

dcl
 MyMessageBox object type MessageBox;
enddcl

map MessageBox to MyMessageBoxnew
map 'Invalid Data' to MyMessageBox.Title
map 'The amount in the Interest field is too large'
 to MyMessageBox.Message
MyMessageBox.Show

This example:

Creates a object and maps it to the local variable .MessageBox MyMessageBox
Assigns the title and message strings to the and properties.Title Message
Calls the method to display the message box.Show

Note

In an actual AppBuilder application, this computer code is located in the body of a procedure.

Using the Set Method

A Set method is used to assign values to properties. For example, consider the following code samples that accomplish the same result:

This line assigns (maps) a value directly to the property of the push button.Text

map 'Query' to QueryButton.Text

This line calls the set method of the push button, passing the new text as a parameter. In this example, is the set method for thesetText setText()
 property.Text

QueryButton.SetText('Query')

Set methods take exactly one parameter, whose type is the same as that of the property. By convention, the name of a property set method is
simply the property name prefixed by . For example, a string property named has a set method named which takes a stringSet Text setText,
parameter. Likewise, a Boolean property named has a set method named which takes one Boolean parameter, as theAutoSelect setAutoSelect()
following code illustrates:

NameField.SetAutoSelect(True)

Although both methods (set property and map statement) can be used to change the value of a property, the set method provides a slightly more
compact notation.

Responding to Events

In AppBuilder, rules that display windows are completely event-driven. This means by clicking or selecting an item, events are initialized. These
events are sent to the rule, where they are optionally handled by special procedures called . Event procedures are definedevent procedures
within the rule itself using a special syntax and contain the logic that is needed to respond to the event. Events and event procedures play a
central role in event-driven programming. In fact, writing event-driven programs is largely a process of determining which events you need to

respond to and writing event procedures that provide the appropriate responses.
The following are some of the actions that generate events:

Opening the window
Closing the window
Clicking a push button, radio button, or check box
Selecting a menu item
Shifting focus to a user interface object, such as an edit field
Shifting focus away from a user interface object
Double-clicking on an object
Entering erroneous data into an error field
Trying to close the window when one or more fields contain erroneous data

It is not necessary to provide an event handler for every event that is generated. If the program is required to respond to the event, an event
procedure must be defined and the code that responds to the event must be placed within the procedure.

Example: Closing a Window Using an Event Procedure

If a window contains a push button named that is used to close the window when clicked, the required event procedure is:CloseButton

proc Click object CloseButtonfor
(e object type ClickEvent)
 MAIN_WINDOW.Terminate
endproc

This event procedure responds to the event by calling the method on the window, causing the window to close.Click Terminate

User-Interface Objects

User-interface objects are used to build windows for client applications on different platforms (like Java, .NET, etc.). This section discusses all of
the available objects and the properties, methods, and events for ObjectSpeak objects. For each object described in this section, an overview is
provided followed by lists of the properties, methods, and events for that object. Detailed information about the properties that are common to
many of these objects is summarized in .User-Interface Properties

The objects are organized into these categories:

Abstract Class Objects
Basic Control Objects
Dynamic-Only Control Objects
Supporting Objects

The first category includes the high-level user interface objects, including Rule and Window. The second category includes the basic building
blocks of any window user interface, from check box to edit field. The third category includes the functional objects that can only be generated
dynamically, such as the pop-up menu. The fourth category consists of support objects, such as colors and fonts, that support the other user
interface building blocks.

For information on how to create these objects using the Window Painter, refer to the Window Painter tool topic in the
 . Development Tools Reference Guide

Comprehensive List of Objects

The following table lists the user interface objects available in ObjectSpeak.

ObjectSpeak objects

Accelerator Ellipse Label PasswordField SetItem Window

CheckBox FileEditor ListBox Point System

Color Font Locale PopupMenu Table

Column Format Menu PushButton TabControl

ComboBox Formats (Derived) MenuBar RadioButton TabPage

Constants GlobalEvent MenuItem Rectangle Timer

Dimension GroupBox MessageBox Rule TreeView

EditField GuiObject MultiLineEdit Set TreeNode

These objects are also categorized as:

Abstract Class Objects
Basic Control Objects
Dynamic-Only Control Objects
Supporting Objects

Abstract Class Objects

The following objects are the Abstract Class (high-level) user interface objects available in ObjectSpeak:

Format
GuiObject
Rule
System
Window

Format

The object specifies the information needed to format text for display in various types of fields. A object is used for edit fields,Format Format
combo boxes, list boxes, and table columns, where it is specified.

When a GUI object, such as an edit field, is created during the design phase in Window Painter, it automatically creates the object andFormat
generates the code to call on the GUI object. The object used by a user interface object can be obtained by viewing itssetFormat() Format
Format property.

DisplayMask specifies the mask that is used when the field does not have focus. Focus indicates that the object is active. For backwards
compatibility, the property is also included; it is equivalent to . specifies the mask that is used to format theDisplayPicture DisplayMask EditMask
text when the field has focus.

For detailed information on display and edit masks, refer to the .Developing Applications Guide

Properties and Methods

The following table lists the properties and methods for this object.

Format object properties and methods

Property:Type (Get Method) Set Method

DisplayMask:String setDisplayMask(String)

DisplayPicture:String setDisplayPicture(String)

EditMask:String setEditMask(String)

Type:Integer

Additional Get Method Additional Set Method

getDisplayString(DataObject):String

getEditString(DataObject):String

Example: Modifying the Display Mask

The following code sample shows how to use ObjectSpeak in the rules code to modify the display mask used by an edit field named
 :BirthDateField

map 'dd/mm/yyyy' to BirthDateField.Format.DisplayMask

The following example copies the format used by one field to another field:

map BirthDateField.Format to HireDateField.Format

GuiObject

A object is a generic type used to display any interface object. Many events provide a reference to the object that triggered the event.GuiObject
This reference is specified in the property of the event, as illustrated in . The type of Source is .Source:GuiObject Example: GuiObject GuiObject

Being a generic type, provides properties and methods common to many interface objects but does not contain all the properties andGuiObject
methods available for the objects. Some of the properties and methods defined in are not implemented on the actual objectGuiObject
represented by . For example, when represents a menu item, calling the property has no effect because youGuiObject GuiObject Size:Dimension
cannot specify the size of a menu item.

GuiObject cannot be used to access object properties other than those listed in . Thus, while a GuiObjectGuiObject object properties and methods
may refer to an object that is a push button, you cannot access properties of the push button other than those listed.

Because is a generic type that represents any GUI object, it can be used to disable an edit field or any other user interface object whenGuiObject
it is clicked.

Properties and Methods

The following table lists the properties and methods for :GuiObject

GuiObject object properties and methods

Property:Type (Get Method) Set Method

Background:Color setBackground()Color

Enabled:Boolean setEnabled(Boolean)

Focus:Boolean setFocus()

Font:Font setFont()Font

Foreground:Color setForeground()Color

HpsID:String setHpsID(String)

Location:Point setLocation()Point

ShortHelp:String setShortHelp(String)

Size:Dimension setSize()Dimension

Type:Integer (Read only)

Visible:Boolean setVisible(Boolean)

Additional Action Methods

GuiObject supports methods related to focus. The method is used to determine if the object currently has focus. (It is recommendedhasFocus()
that you use the Focus property instead of hasFocus() method). The method is used to set focus to the object.setFocus()

Thin Client Support

The following properties are supported in thin client applications:not

Font:Font
Location:Point
Size:Dimension
Focus:Boolean
ShortHelp:String

Example: GuiObject

In the following example, an application has a Query button and an edit field in the window with hpsid, MyEdit must be disabled temporarily when
it is pressed. Use the following event procedure:

proc QueryButtonClick Click object QueryButtonfor
(e object type ClickEvent)
 // find the EditField MyEdit, and disable it(the findGuiObject
// function returns a GuiObject)
thisRule.findGuiObject().setEnabled()"MyEdit" false
endproc

Rule

The object plays a central role in the AppBuilder client (Java, .NET, etc.) because it provides an object interface to AppBuilder RulesRule
Language rules. The object has no properties, but it does define a number of methods to initiate actions, obtain information, and implementRule
events.

This section includes:

Rule Methods
postTo Methods
Handling Cookies for Thin Client Only
Events

Rule Methods

The following table lists the methods for the object.Rule

Rule object properties and methods

Property:Type (Get Method)

InputView:View

OutputView:View

LongName:String

ShortName:String

ImplName:String

For Thick and Thin Clients only:

Instance:String

CallingRule:Rule

ActiveWindow:Window

Window:Window

Rule object additional methods

Additional methods

queryUserAuthentication():Boolean

setUserAuthentication(userID:String, password:String)

terminate()

trace(message:String<,view|field>)

For Thick and Thin Clients only

findGuiObject(SystemID:String):GuiObject

findGuiObject(SystemID:String,type:Integer):GuiObject

postToChild(InstanceName:String, EventName:String):Boolean

postToChild(InstanceName:String, EventName:String, ViewName:View):Boolean

postToChild(InstanceName:String, EventName:String, ViewName:View, Parameter:String):Boolean

postToParent(EventName:String):Boolean

postToParent(EventName:String, ViewName:View):Boolean

postToParent(EventName:String, ViewName:View, Parameter:String):Boolean

postTo(aRule:rule, EventName:String)

postTo(aRule:rule, EventName:String, aView:View)

postTo(aRule:rule, EventName:String, aView:View, Parameter:String)

For Thick Clients Only:

setHelpFile(HelpFileName:String):Boolean

showHelpTopic(HelpID:String):Boolean

For Thin Client Only:

addCookie(CookieName:String,CookieValue:String,AgeSeconds:Integer)

getCookie(CookieName:String):String

getCookie(CookieView:View)

setCookie(CookieView:View,AgeSeconds:Integer)

InputView:View and OutputView:View

The and properties return references to the input and output views. These properties are in the form of View objects.InputView OutputView

For example:

dcl
 L_INPUT_V like THIS_RULE_INPUT_VIEW;
enddcl
map thisRULE.InputView to L_INPUT_V

LongName:String

The property gets the long name of the rule.LongName

ShortName:String

The property gets the short name of the rule.ShortName

ImpName:String

The property gets the implementation name of the rule.ImpName

ActiveWindow:Window

The property returns a reference to the first window found attached to the current rule or its parents when traversing back up theActiveWindow
rule hierarchy. When current rule is within a detached sub-process, the traversal terminates at the root of the detached sub-process, otherwise it
terminates at the application's root rule. Any such window found is known as the active or target window. If no window is found, null is returned.
The reference to the window is returned in the form of a Window object. If the rule displays a window, then and propertiesWindow ActiveWindow
return the same value.

dcl
 l_activeWindow object type Window;
 enddcl
set l_activeWindow := thisRule.ActiveWindow
 not isClear(l_activeWindow)if
 trace(, l_activeWindow.Text)" Active window : "
 else
 trace()" No active window"
 endif

Window:Window

The property returns a reference to the window, if any, displayed by the rule. The reference is returned in the form of a object. IfWindow Window
the rule does not display a window, this method returns a null reference. In order to test for this returned null reference, use the function.isClear

CallingRule:Rule

The property returns the current rule's parent rule. Using this method allows to navigate back through the calling tree to help withCallingRule
many things; tracing the calling context is a good example to aid problem determination. It is not implemented in C#.

queryUserAuthentication():Boolean

The method forces user credentials to be retrieved by whatever mechanism specified by the AUTH_TYPE settingqueryAuthentication():Boolean
in the appbuilder.ini file. Any previously retrieved credentials are discarded. The method returns true if new credentials were successfully
retrieved.

setUserAuthentication(userID:String, password:String)

The method enables you to set the user credentials to authenticate the remote server rules. The same method is invokedsetUserAuthentication()
if QUERY_AUTHENTICATION_ON_STARTUP is enabled through the setting in the APPBUILDER.INI file. The AppBuilder communication exits
can override this information when a remote rule is invoked.

terminate()

The method terminates the rule.terminate()

trace(message:String<,view|field>)

The method traces the message. This method accepts either a View or a Field as an optional second parameter. When thetrace(message:String)
second parameter is specified, the name and the value of the specified object is appended to the trace message. If a View is specified as the
second parameter, the name and the value of all fields are added as separate lines in the trace output.

findGuiObject(SystemID:String):GuiObject

The method searches for an object with the given system identifier (HPSID) on the active window. The active window is thefindGuiObject()
non-detached window most recently opened by a rule or its parents. The reference to the object is returned in the form of a , so it canGuiObject
be directly manipulated using the methods defined in . If there is no active window, this method returns a null reference. In order to testGuiObject
for this returned "null reference, use the function.isClear

For example:

dcl
 aEditField object type EditField;
enddcl
map thisrule.findGuiObject('OBJECT_HPSID') to aEditField

 isClear(aEditField)if
 > error scenario <
endif

findGuiObject(SystemID:String,type:Integer):GuiObject

Returns GuiObject, if the object with SystemID matches the type specified or returns null.
Types constants are defined in the Constants class as follows.

Constants.WINDOW Constants.LISTBOX

Constants.BITMAP Constants.MENU

Constants.CHECKBOX Constants.MENUITEM

Constants.COLUMN Constants.MULTILINEEDIT

Constants.COMBOBOX Constants.PASSWORDFIELD

Constants.EDITFIELD Constants.POPUPMENU

Constants.ELLIPSE Constants.PUSHBUTTON

Constants.FILEEDITOR Constants.RADIOBUTTON

Constants.GROUPBOX Constants.RECTANGLE

Constants.LABEL Constants.TABLE

postTo Methods

The methods enable you to send a view to a given window.postTo

postToChild(InstanceName:String, EventName:String):Boolean

This method posts the specified event to the child with the specified instance name.postToChild()

postToChild(InstanceName:String, EventName:String, ViewName:View):Boolean

This method posts the specified event and the view to the child with the specified instance name.postToChild()

postToChild(InstanceName:String, EventName:String, ViewName:View, Parameter:String):Boolean

This method posts the specified event, the view, and the parameter to the child with the specified instance name.postToChild()

postToParent(EventName:String):Boolean

This method sends the specified event to the parent window.postToParent()

postToParent(EventName:String, ViewName:View):Boolean

This method sends the specified event and the view to the parent window.postToParent()

postToParent(EventName:String, ViewName:View, Parameter:String):Boolean

This method sends the specified event, the view, and the parameter to the parent window.postToParent()

postTo(aRule:rule, EventName:String)

This method sends to itself the specified event. The first parameter of a Rule must be this rule or the long name of the rule posting event.postTo()

postTo(aRule:rule, EventName:String, aView:View)

This method sends to itself the specified event and the view. The first parameter of a Rule must be this rule or the long name of the rulepostTo()
posting event.

postTo(aRule:rule, EventName:String, aView:View, Parameter:String)

This method sends to itself the specified event, the view and the parameter string. The first parameter of a Rule must be this rule or thepostTo()
long name of the rule posting event.

setHelpFile(HelpFileName:String):Boolean

The method specifies the name of help file that contains the help information for this rule's window. This help file also is used bysetHelpFile()
windows displayed by all descendent rules of this rule, unless those rules specify their own help files.

setHelpFile() is supported in thin client applications.not

showHelpTopic(HelpID:String):Boolean

The method displays the help topic specified by the help ID from the window's help file. As noted above, if this window has notshowHelpTopic()
specified a help file, it uses the help file of its parent rule. For windows, the help ID must be the long name of the window. For user interface
objects placed on the window, the ID must be the window long name, followed by a dot, followed by the system identifier (HPSID) of the object.

showHelpTopic () is supported in thin client applications, neither in .NET applications. not

Handling Cookies for Thin Client Only

The Rule object supports these additional methods for thin client only:

addCookie(CookieName:String,CookieValue:String,AgeSeconds:Integer)
getCookie(CookieName:String):String
setCookie(CookieView:View,AgeSeconds:Integer)
getCookie(CookieView:View)

addCookie(CookieName:String,CookieValue:String,AgeSeconds:Integer)

The method allows any valid cookie name as a name (as opposed toaddCookie(CookieName:String,CookieValue:String,AgeSeconds:Integer)
the old setCookie, which allows only the system FIELD names as names of the cookie). With this method, you can have a cookie like
"Company.Dept.Developer" as a name with dots, etc., as part of the name. The value is any valid string value and the age is the expiry time of the
cookie in seconds. If the expiry time is bigger than 0 the cookie is available for all browser sessions until it expires. If the expiry time is 0 the
cookie is local to the browser session in which it was created and does not expire until that session is closed.

getCookie(CookieName:String):String

The method returns the data associated with the given cookie name.getCookie(CookieName:String)

setCookie(CookieView:View,AgeSeconds:Integer)

The can be used to create client-side HTTP cookie with the names of fields in the view andsetCookie(CookieView:View,AgeSeconds:Integer)
values of the fields making up the name-value pair elements of the cookie. The age sets up the expiry time in seconds. As the HTTP cookie does
not support hierarchical data structures, this method uses only FIELDs directly under the given View; all nested views are ignored. If the expiry
time is bigger than 0 the cookie is available for all browser sessions until it expires. If the expiry time is 0 the cookie is local to the browser session
in which it was created and does not expire until that session is closed.

getCookie(CookieView:View)

The retrieves cookie data sent to the web client and is saved on the web client environment for the specified time.getCookie(CookieView:View)
Subsequent requests from this client environment receive the cookie data and the AppBuilder rule invokes to retrieve thegetCookie(aView:View)
data. The cookie data with names matching the FIELD names of this view are read into the view. For example:

AB_WEBCLIENT_RULE.setCookie(AB_WEBCLIENT_VIEW, 3600)

where is the name of the rule, is the view containing the set of fields to be used as cookieAB_WEBCLIENT_RULE AB_WEBCLIENT_VIEW
names and values, and is the expiry time of the cookies in seconds.3600

AB_WEBCLIENT_RULE.getCookie(AB_WEBCLIENT_VIEW)

where is the name of the rule and is the view containing the set of fields to be filled with data ifAB_WEBCLIENT_RULE AB_WEBCLIENT_VIEW
the field names match the cookie names.

Events

The following events can be triggered using the object:Rule

Activate
ChildRuleEnd
CommError
Converse
Initialize (for Rule)
ParentRuleEnd
Post
RuleEnd
SQLError
Terminate (for Rule)

Activate , , , , and events exist but currently are never triggered.ChildRuleEnd ParentRuleEnd RuleEnd SQLError
The event is triggered when a child rule of the current rule has terminated. The event is triggered when another rule, forChildRuleEnd RuleEnd
which the current rule has registered an event procedure, terminates.
The rule that ends must be a detached rule that was started using the command:

use rule < rule_name > detach < rule_object_name >

where is the name of the local variable (defined in the section) which references the rule.< rule_object_name > dcl
The event on the rule is the same as the event on the window; only one event needs to be registered, either the rule's or theConverse Converse
window's. The and events are distinct from those for the Window object. The event is triggered whenInitialize (for Rule) Terminate (for Rule) Post
the rule receives a view that was posted by another rule using one of the two methods described in .Post Rule Methods

System

The System object provides an interface for some system services. Two methods are used to translate long names of AppBuilder entities, such as
rules or views, into corresponding Java class names or Java object names according to the AppBuilder naming conventions. It is not supported
for .NET clients.
System object is not supported in C#.

Constants and Methods

Methods:

longNameToClassName(type:Integer, longName:String) : String
longNameToObjectName(type:Integer, longName:String) : String

Type values:

The following table shows the various system type value

System type values

RULE_TYPE COMPONENT_TYPE

VIEW_TYPE WINDOW_TYPE

VIEWARRAY_TYPE OBJECT_TYPE

SET_TYPE HPSID_TYPE

FIELD_TYPE

longNameToClassName(type:Integer, longName:String) : String

The method translates the long name of an AppBuilder entity, whose type is specified by the first parameter using one oflongNameToClassName
the System object constants, into a corresponding Java class name according to AppBuilder naming conventions.
For example:

SET RuleClassName := .longNameToClassName(.RULE_TYPE,)System System "MY_RULE"
RuleCaller.ExecuteRule(RuleClassName)

The parameter can have only one of the following values: RULE_TYPE, VIEW_TYPE, VIEWARRAY_TYPE, SET_TYPE andtype
COMPONENT_TYPE; other entities do not generate a class.

longNameToObjectName(type:Integer, longName:String) : String

The method translates the long name of an AppBuilder entity, whose type is specified by the first parameter using onelongNameToObjectName
of the System object constants, into a corresponding Java object name according to the AppBuilder naming conventions.
For example:

SET RuleClassName := .longNameToClassName(.RULE_TYPE,)System System "MY_RULE"
SET ViewObjectName := .longNameToObjectName(.VIEW_TYPE,)System System "MY_VIEW"

RuleClassName ++ forms a reference to a field of generated rule class, which corresponds to the instance of view MY_VIEWViewObjectName

owned by MY_RULE.
The type parameter can be anything except COMPONENT_TYPE. This is because components' classes are never instantiated, and there is no
corresponding property in the rule class. Use HPSID_TYPE for windows' objects that have HPSID, but OBJECT_TYPE for other objects and
aliases.

Window

The object plays a central role in the client (Java, .NET, etc.) because it provides an object interface to windows. The object hasWindow Window
numerous properties, defines several methods to initiate actions or obtain information, and implements several events.

The window panel is set to the resolution of the window at the time the panel is designed. This could differ from the resolution at
execution time, thereby causing unexpected display properties.

This section includes the following topics:

Properties and Methods
Events

Properties and Methods

The following table describes the properties and methods for the object.Window

Window object properties and methods

Property:Type (Get Method) Set Method

Altered:Boolean setAltered(Boolean)

Background:Color setBackground()Color

DefaultButton:PushButton setDefaultButton(PushButton)

Foreground:Color setForeground()Color

FocusedGuiObject:GuiObject (read only)

HpsID:String (read only)

Location:Point setLocation()Point

MenuBar:MenuBar setMenuBar(aMenuBar:MenuBar)

PopupMenu:PopupMenu setPopupMenu()PopupMenu

Resizable:Boolean setResizable(Boolean)

Size:Dimension setSize()Dimension

Text:String1 setText(String)

Type:Integer (Read only)

Visible:Boolean setVisible(Boolean)

Additional Get Method Additional Set Method

clearSelection()

getHelpTopic():String

 addChild (Object)*

 clearAltered()

 clearWindowChanges()

 printFrame()

 ShowMessageBox(messageType:Integer, message:String):Integer

 ShowMessageBox(message:String, title:String,
buttonType:Integer, messageType:Integer):Integer*

 terminate()

 updateDisplay()*

The Text property can be used to get/set the Title of the window.

clearSelection()

This method clears selected items of all list boxes and Tables (MCLB) in the window.

DefaultButton:PushButton

This property specifies the default pushbutton for the window.

getHelpTopic():String

This method returns HelpTopic name, if a Helpset is specified.

Resizable:Boolean

The property specifies whether the window can be resized by the user during execution.Resizable

This property is supported for thin (HTML) client.not

In Java, if a window is resizable, the minimize and maximize buttons appear at the right of the title bar. If the window is not resizable, these
buttons are not available and the window cannot be minimized or maximized.
In C#, if a window is resizable then a resizable border will be drawn, otherwise a three-dimensional border will be drawn.

Additional Action Methods

The method adds a programmatically-created object to the window (either GUI Objects or Java Beans).addChild()

Not supported for thin client (HTML). In thin client, GUI objects cannot be dynamically created and added using
addChild. Refer to the System Components Reference Guide for information about using HPS_SET_HTML_FILE and
HPS_SET_HTML_FRAGMENT.

The method terminates the current window, allowing the owning rule to return.terminate()

Not supported for thin client (HTML).

The method causes the visible window to immediately repaint itself. This method is useful for replacing the "converse < updateDisplay()
 > nowait" statement from the earlier converse-driven versions of the product. If the window has not yet been displayed, call the window

 method instead to display the window. The method is called implicitly when the propertysetVisible(True) updateDisplay() Visible:Boolean
is set to .True
The method can be in either:showMessageBox()

ShowMessageBox(message: ,title: ,buttonType: , messageType:)String String Integer Integer

or

ShowMessageBox(messageType: ,message:)Integer String

where is the message to show, is the title for the message box, is one of the following:message title buttonType

Constants.DEFAULT_BUTTONS
Constants.OK_BUTTON
Constants.OK_CANCEL
Constants.YES_NO

Constants.YES_NO_CANCEL
and is one of the following:messageType
Constants.ERROR
Constants.INFORMATION
Constants.WARNING
Constants.QUESTION
Constants.PLAIN
In C#, constant values will be replaced with appropriate enum values, ButtonType will be replaced with MessageBoxButtons, and
messageType will be replaced with MessageBoxIcon.

Not supported for thin client (HTML).

Events

The following events can be triggered by the object:Window

Close
Converse
Initialize (for Window)
Terminate (for Window)
WindowError
WindowValidation

The event is triggered when the user attempts to close the window using the system exit (the in the upper right corner of the window) orClose X
uses the system hot key (usually). The system does nothing by default. If the system is to shut down, you must explicitly terminate theAlt+F4
window. Refer to the catalog of events (the Close Window with System Menu event, in particular) in the . ThisDeveloping Applications Guide
event has no methods or properties.
The event is triggered after the window is created but before it is shown. It is an ideal place to initialize the program's data,Initialize (for Window)
as well as to make any needed adjustments to the visual objects on the window. The event is called while the window isTerminate (for Window)
closing. These events are distinct from those for the Rule object.
The and events are called when the user attempts to close the window with a push button or menu item for whichWindowError WindowValidation
validation is enabled. Window validation is used to prevent the window from closing when editable fields contain invalid information, when
mandatory fields are empty, and for any other condition which the application logic concludes is unacceptable.

Thin Client Support

In thin client development, the following events are supported:not

Close
WindowError
WindowValidation

In thin client applications, WindowError and WindowValidation can be done through JavaScript using the extension.js, which can be customized to
include any WindowError/Validation handling procedures.
For thin client applications only, a MessageBox Event is issued when a showMessageBox is called on the window with the MessageType set to

 . All other types than QUESTION will show a messagebox with a warning icon.QUESTION

Basic Control Objects

The following table lists the basic control objects for a user interface that can be defined in the Construction Workbench Window Painter as static
objects or during execution using ObjectSpeak in rules source code as dynamic objects.

Control objects

CheckBox FileEditor MenuBar RadioButton

Column GroupBox MenuItem Rectangle

ComboBox Label MultiLineEdit TabControl

EditField ListBox PasswordField Table

Ellipse Menu PushButton TabPage

CheckBox

The object displays the standard check box object allowing end users to specify a yes/no or on/off condition for a setting. This objectCheckBox

can be created dynamically during execution and added to the window in Rules Language code as described in the following section. For a code
sample, refer to .Sample Code
The following figure shows a sample dialog with check boxes.

Sample dialog with check boxes

Constructor and Parameters

The following code is a sample declaration and construction:

dcl
aCheckBox object type CheckBox;
enddcl

map NEW CheckBox() to aCheckBox

There are no parameters for this object.

Properties and Methods

Inherits and exposes all its properties and methods (not listed below).GuiObject

The following table lists own properties and methods for the object:CheckBox

Checkbox object properties and methods

Property:Type (Get Method) Set Method

Altered:Boolean setAltered(Boolean)

AutoSelect:Boolean

DataLink:DataObject setDataLink(DataObject)

ImmediateReturn:Boolean setImmediateReturn(Boolean)

Mnemonic:Char setMnemonic(Char)

MnemonicKeycode:Integer setMnemonicKeycode(Integer)

PopupMenu:PopupMenu setPopupMenu()PopupMenu

Selected:Boolean setSelected(Boolean)

TabStop:Boolean setTabStop(Boolean)

Text:String setText(String)

DataLink:DataObject

The check box can be linked to a character field of length one (1) that contains an X when the check box is selected, or to a Boolean field that
contains TRUE if the check box is selected.

The DataObject for a check box is Boolean or string.

Set the property as shown in the following example:

aCheckBox.setDataLink(field_of_View_of_View)

Additional Action Methods

The object has methods related to focus. The method is used to determine if the object currently has focus. The CheckBox hasFocus() setFocus()
method is used to request that focus be set to the object.

Events

The following events can be triggered by the object:CheckBox

Click
DoubleClick
FocusGained
FocusLost

Click

The object triggers the event when any of the following occur:CheckBox Click

The user presses the primary mouse button when the mouse is on the object.
The spacebar is pressed when the object has the focus.
The user presses the object's mnemonic key (Alt+mnemonic key).
The property is changed.Selected:Boolean
A value is mapped into the field data-linked to the object.

The object triggers the event when the following occur:CheckBox FocusGained

The user tabs into the object or clicks on the object.

The object triggers the event when the following occur:CheckBox FocusLost

The user tabs out of the object or clicks on another object in the window or on the window itself.

Column

The object plays a fundamental role in implementing tables in the client. In general, a object owns one or more objects.Column Table Column
The Table object has a number of properties that affect the table as a whole, while the Column object contains a number of properties that
determine the appearance and behavior of individual columns. The properties of a column affect all cells within that column.

The Column object is not a stand-alone object you place a Column object into a window without a object.cannot Table

You can access properties or methods on the table or on individual columns of the table. As with all other visual objects, the names of tables and
columns are the same as their system identifier (HPSID).
The table is data-linked to an occurring view and each column in the table (other than the optional numbering column) is associated with a field in
the hierarchy beneath the occurring view. The complete data link consists of a data link from the table to the occurring view. For each column,
data is linked using a specification of the path from the occurring view to the particular field in the view to which the column is linked. These data
links are specified using Set methods with the following properties:

< >.FieldPath path from occurring view to fieldcolumnname
< >.ViewLink link to the occurring viewtablename

The first is set with the object. The second is set with object.Table Column

Properties and Methods

Inherits and exposes all its properties and methods (not listed below).GuiObject

The following table lists the properties and methods for the object:Column

Column object properties and methods

Property:Type (Get Method) Supported Set Method

Altered:Boolean setAltered(Boolean)

Editable:Boolean setEditable(Boolean)

EditLimit:Integer setEditLimit(Integer)

Error:Boolean (read only)

Empty:Boolean (read only)

FieldPath:String setFieldPath(String)

Format:Format setFormat()Format

HeaderLineCount:Integer (read only)

ImmediateReturn:Boolean setImmediateReturn(Boolean)

Justification:Integer setJustification(Integer)

Mandatory:Boolean setMandatory(Boolean)

PopupMenu:PopupMenu setPopupMenu()PopupMenu

SetLink:Set setSetLink(Set)

Width:Integer setWidth(Integer)

Additional Get Method Additonal Set Method

getHeader():String

getHeader(n:Integer)

getScaledWidth(n:Integer)

 addHeader(String)
setHeader(n:Integer, value:String)

removeHeader(n:Integer)

 setFieldPath(String Array)

 setScaledWidth(n:Integer)

getHeader():String

This method returns the header as a string.

getHeader(n:Integer)

This method returns the th line of header string for a multi-line header.n

getScaledWidth():Integer

This method returns the width of the column with respect of current coordinate system.

setFieldPath:String Array

This is the path from an occurring view to a field when linked to an occurring view. This specifies the path in the hierarchy from the view to a
specific field.
For example, if the table is linked to the occurring view and the column is linked to the field of MYTABLE_OCC MYTABLE_COLUMN1

 the field path will be the dynamic array with the value ' '.MYTABLE_OCC, MYTABLE_COLUMN1

dcl
 Col1_FieldPath object array of varchar(20);
enddcl
Col1_FieldPath.append('MYTABLE_COLUMN1')
COL1.setFieldPath(Col1_FieldPath)

FieldPath:String

This property uses String instead of String Array for FieldPath; the path is separated by dots(.).
In the following example, TABLE_OCC is an occurring view linked to a table, TABLE_VIEW1 is a child view of TABLE_OCC, and COL_FIELD1 is
a Field of TABLE_VIEW1 and is linked to the column COL1.

COL1.setFieldPathString()*"TABLE_VIEW1.COL_FIELD1"

ViewLink:Array

This is the link for the list when linked to an occurring view. For a Column, this specifies the occurring view that contains the data to be displayed.

Width:Integer

This property the width of a table column.
The minimum width that can be set for a column in an MCLB is determined by Java, defaulting to 15 in Sun's Java 5.

setScaledWidth(n:Integer)

This method sets the width of the column with respect of current coordinate system.

Additional Action Methods

Each column can have one or more rows of header text. Each row is added by calling the method, with the first call to that methodaddHeader()
specifying the first line of header text, the second call specifying the second line, and so on.

When the Column is enabled, the method creates a drop-down combo box editor for the column with the values from the set.setSetLink(Set)
When the Column is disabled, it shows a protected edit field that displays the domain value from the set.

ComboBox

The object is used to display the standard combo box object that combines an edit area and a drop-down list. The list containsComboBox
choices that can be selected and that subsequently appear in the edit area.

Sample combo box

If a combo box is painted as DropDown, it is an editable combo box. If a combo box is painted as DropDownList, it is a non-editable combo box.

A Simple combo box is a combobox where the domain the list of values is permanently displayed (dropped-down), and there is no button attached
to the combobox to display the list of values. Simple comboboxes are not supported in Java, neither in C#.

In a DropDown combo box, the contents of the edit area can be directly modified. In a DropDownList combo box, the contents of the edit area can
be modified only by selecting items in the list. During execution, the combo box can be changed from editable to non-editable using the Editable
property. To make the combo box non-editable at execution time, set the Editable property to .False

In an editable combo box, if text has been entered but not committed to the data link, it can be rolled back by pressing Escape (). Pressing Esc
 while focus is on an edit area whose contents have been modified commits the changes to the data link. Moving focus away from theEnter

combo box also commits the changes.

Combo boxes can be linked to character fields, numeric fields (integer or decimal), date fields or time fields. Combo boxes can be more complex
than other window objects because a combo box has two data-links: one for the edit area and one for the list. Furthermore, the list can be linked
to either of two data structures: an occurring view or a set. For a combo box linked to an occurring view, the data link for the list consists of two
parts: the link to the occurring view and the path in the hierarchy from the occurring view to the field itself.

Constructor and Parameters

The following is a sample declaration and construction:

dcl
 aComboBox object type ComboBox;
enddcl
map NEW ComboBox() to aComboBox

There are no parameters for this object.

Editable objects generated in the rule source code do not have a format object defined. A format object needs to be defined and
passed to the combo box if formatting is required.

Properties and Methods

Inherits and exposes all its properties and methods (not listed below).GuiObject

The following table lists the properties and methods for the object:ComboBox

ComboBox object properties and methods

Property:Type (Get Method) Set Method

Altered:Boolean setAltered(Boolean)

AutoSelect:Boolean setAutoSelect(Boolean)

DataLink:DataObject setDataLink(DataObject)

DomainType:Integer

Editable:Boolean setEditable(Boolean)

EditLimit:Integer setEditLimit(Boolean)

Error:Boolean (read only)

Empty:Boolean (read only)

FieldPath:String setFieldPath(String)

Format:Format setFormat()Format

ImmediateReturn:Boolean setImmediateReturn(Boolean)

Justification:Integer setJustification(Integer)

Mandatory:Boolean setMandatory(Boolean)

PopupMenu:PopupMenu setPopupMenu()PopupMenu

SetLink:Set setSetLink(Set)

SelectedIndex:Integer setSelectedIndex(Integer)

TabStop:Boolean setTabStop(Boolean)

Text:String setText(String)

ViewLink:Array setViewLink(Array)

EditLimit, Empty, and Error are only valid for an editable combo box.

DataLink:DataObject

This is the link for the edit area of the combo box. This property specifies the data field in the application hierarchy to which the edit field is linked.

The DataObject for a combo box is: Date, Decimal, Integer, ShortInteger, String, or Time.

setFieldPath:String Array

This is the path from an occurring view to a field when linked to an occurring view. It specifies the path in the hierarchy from the view to a specific
field.

FieldPath:String

This is the path from an occurring view to a field when linked to an occurring view. It specifies the path in the hierarchy from the view to a specific
field.

SetLink:Set

This is the link for the list when linked to a set. For static combo boxes, it specifies the set from which the values displayed in the combo box are
taken.

ViewLink:Array

This is the link for the list when linked to an occurring view. For dynamic combo boxes, it specifies the occurring view from which the items in the
drop down list are taken.

Additional Action Methods

The object has methods related to focus. The hasFocus() method is used to determine if the object currently has focus. TheComboBox
setFocus() method is used to request that focus be set to the object.

Events

The following events can be triggered by the object:ComboBox

Click
DoubleClick
FieldError
FieldValidation
FocusGained
FocusLost

These events are not supported for thin client combo boxes.

The object triggers the event when any of the following occur:ComboBox Click

The user presses the mouse button while the mouse is on the object.
The spacebar is pressed while the object has the focus.
The user presses the object's mnemonic key (Alt+mnemonic key).
The property is changed.Selected:Boolean
A value is mapped into the field data-linked to the object.

The object triggers the event when the following occurs:ComboBox FocusGained

The user tabs into the object or clicks on the object.

The object triggers the event when the following occurs:ComboBox FocusLost

The user tabs out of the object or clicks on another object in the window or on the window itself.

Editable combo boxes provide for data validation using the and events. When an attempt is made to commit data, eitherFieldError FieldValidation
by moving focus or pressing , and the data contains errors, the event is triggered. If there are no errors, the eventEnter FieldError FieldValidation
is triggered, allowing the application to verify that the data is acceptable.

EditField

The object displays a rectangular area into which a single line of text can be entered.EditField
When text is entered but not committed to the data link, click . Pressing when you focus on an edit field whose contentsEsc to roll it back Enter
have been modified commits the changes to the data link. Moving focus away from an edit field also commits the changes.
The following figure shows a sample dialog with three edit fields. Each field has static text added in front of it.

Edit field dialog

The object is very similar but displays asterisks (*) instead of the value. For an edit field with multiple lines, refer to the PasswordField
 object.MultiLineEdit

Constructor and Parameters

The following is a sample declaration and construction:

dcl
 aEditField object type EditField;
enddcl
map NEW EditField() to aEditField

There are no parameters for this object.

Editable objects generated in the rule source code do not have a format object defined. A format object needs to be defined and
passed to the list box if formatting is required.

Properties and Methods

Inherits and exposes all its properties and methods (not listed below).GuiObject

The following table lists the properties and methods for this object.

EditField object properties and methods

Property:Type (Get Method) Set Method

Altered:Boolean setAltered(Boolean)

AutoSelect:Boolean setAutoSelect(Boolean)

AutoTab:Boolean setAutoTab

Border:Boolean setBorder(Boolean)

DataLink:DataObject setDataLink(DataObject)

Editable:Boolean setEditable(Boolean)

EditLimit:Integer setEditLimit(Integer)

Error:Boolean (read only)

Empty:Boolean (read only)

Format:Format setFormat()Format

ImmediateReturn:Boolean setImmediateReturn(Boolean)

Justification:Integer setJustification(Integer)

Mandatory:Boolean setMandatory(Boolean)

PopupMenu:PopupMenu setPopupMenu()PopupMenu

SetLink:Set setSetLink(Set)

TabStop:Boolean setTabStop(Boolean)

Text:String setText(String)

Focus:Boolean

This method has no parameters.

AutoTab:Boolean

In an edit field, this indicates whether an automatic tab event is generated at the input of the last character of the maximum allowed limit,
depending on the edit limit value or the length of the data object linked to the field. The default property is which indicates the focus remainsFalse
in the edit field at the input of the last allowable character and the user has to manually generate a shift of focus. This property is used only by
Java runtime.

DataLink:DataObject

An edit field can be linked to a character field, a numeric field (integer or decimal), a date field, or a time field. It is not necessary for an edit field to
have a data link. If it has a data link, the text in the edit field can be accessed either through the Text property or using rules code to access the
data-linked field. If it does not have a data link, the only way to set or query the text in the edit field is with the Text property. The DataObject for
an edit field is Date, Decimal, Integer, ShortInteger, String, or Time.

Additional Action Methods

The method is used to draw the border around the edit field that makes it appear either as a three-dimensional box or asetBorder()
two-dimensional box depending on the 3D property, or to have no border. For example:

EditField.setBorder(flag:)Boolean

When the flag is , it has a three-dimensional or two-dimensional border around the edit field. When the flag is , no border is drawnTrue False
around the edit field.
This object has methods related to focus. The method determines if the object currently has focus. The method requestshasFocus() setFocus()
that focus be set to the object.
When the EditField is disabled, the method displays the domain value from the set.setSetLink(Set)

Events

The object can trigger the following events:EditField

Click
DoubleClick
FieldError
FieldValidation
FocusGained
FocusLost

This object triggers the event when any of the following occur:Click

The user presses the primary mouse button when the mouse is on the object.

This object triggers the event when the following event occurs:FocusGained

The user tabs into the object or clicks on the object.

This object triggers the event when the following event occurs:FocusLost

The user tabs out of the object or clicks on another object in the window or the window itself.

EditField object provides for data validation using the and events. When an attempt is made to commit the data eitherFieldError FieldValidation
by moving focus or pressing , and the data contains errors, the event is triggered.Enter FieldError
If there are no errors, the event is triggered, allowing the application to verify that the data is acceptable.FieldValidation

Thin Client Support

Click, DoubleClick, FocusGained, FocusLost events are not supported for thin client EditField.

The FieldError and FieldValidation events are supported through client-side JavaScripts.

Ellipse

An object is used to display an ellipse or circle.Ellipse

Thin Client Support

This is supported for thin clients (HTML).not

Constructor and Parameters

The following is a sample declaration and construction:

dcl
 anEllipse object type Ellipse;
enddcl
map NEW Ellipse() to anEllipse

There are no parameters for this object.

Properties and Methods

Inherits and exposes all its properties and methods (not listed below).GuiObject

The following section contains the properties and methods for this object:

Ellipse object properties and methods

The class contains no properties or methods except the properties or methods of the parent class.Ellipse

Events

Click
DoubleClick

This object triggers the event when any of the following occur:Click

The user presses the primary mouse button when the mouse is on the object.

FileEditor

The object allows end users to view, but not modify, the contents of a text file. The File editor be made Editable.FileEditor cannot

Properties and Methods

Inherits and and exposes all their properties and methods (not listed below).GuiObject MultiLineEdit

The following table lists the properties and methods for this object.

FileEditor object properties and methods

Property: Type (Get Method) Set Method

DataLink:String setDataLink(String)

WordWrap:Boolean setWordWrap(Boolean)

This is supported for thin client (HTML).not

DataLink:String

For , the data link specifies a valid file name to load into the view. The file name can be specified as a full path to the file:FileEditor

c:\appbuilder\hps.ini

or just the name of the file, if the file is in the class path.

WordWrap:Boolean

This property specifies whether or not the text is wrapped when it reaches the right edge of the edit area. The default value is .TRUE

Events

The object triggers the following events:FileEditor

Click
DoubleClick
FieldError
FieldValidation
FocusLost
FocusGained

GroupBox

A object is used to display a rectangle with an optional title in the upper left, that is used to group together other objects, for example,GroupBox
radio buttons or check boxes.

GroupBox objects with two radio buttons

Constructor and Parameters

The following is a sample declaration and construction:

dcl
 aGroupBox object type GroupBox;
enddcl
map NEW GroupBox() to aGroupBox

There are no parameters for this object.

Properties and Methods

Inherits and exposes all its properties and methods (not listed below).GuiObject

The following table lists the properties and methods for this object.

GroupBox properties and methods

Property:Type (Get Method) Set Method

Text:String setText(String)

Events

This object generates no events.

Label

The object is used to display both non-editable text and graphics in the window. Although the user cannot edit the static text, the text can beLabel
modified with rules code. A object cannot be disabled and it cannot receive focus.Label

Constructor and Parameters

The following is a sample declaration and construction:

dcl
 aLabel object type Label;
enddcl
map NEW Label() to aLabel

There are no parameters for this object.

Properties and Methods

Inherits and exposes all its properties and methods (not listed below).GuiObject

The following table lists the properties and methods for this object:

Label object properties and methods

Property:Type (Get Method) Set Method

HorizontalTextPosition:Integer setHorizontalTextPosition(Integer)

Image:String setImage(String)

Justification:Integer setJustification(Integer)

Mnemonic:Char setMnemonic(Char)

MnemonicKeycode:Integer setMnemonicKeycode(Integer)

PopupMenu:PopupMenu setPopupMenu()PopupMenu

Text:String setText(String)

VerticalJustification:Integer setVerticalJustification(Integer)

VerticalTextPosition:Integer

Property:Type (Get Method) Set Method

getJustification():Integer

getVerticalTextPosition():Integer

 setAutoSize(Boolean)

 setVerticalTextPosition(Integer)

For a , the horizontal justification of the text within the label area is specified by the Justification property, while the vertical justification isLabel
determined by the VerticalJustification property.

VerticalJustification:Integer

For objects, the VerticalJustification property specifies vertical justification. Valid values are defined in the Constants class as:Label

TOP
CENTER
BOTTOM

The default vertical justification is CENTER.

Events

The object triggers the following events:Label

Click
DoubleClick

Not supported for thin client.

This object triggers the event when any of the following occur:Click

The user presses the primary mouse button when the mouse is on the object.
The user presses the object's mnemonic key (that is, Alt+mnemonic key).

ListBox

The object is used to display standard list box functionality. It provides a list of items displayed in a rectangular area. If the vertical size ofListBox
the area is not sufficient to show all the choices, then a vertical scroll bar automatically appears. The following figure shows a sample list box.

Sample list box

List boxes can be linked to character fields, numeric fields (integer or decimal), date fields, or time fields. The data link is specified by a
combination of two properties. The FieldPath property specifies the location of the specific field that contains the items relative to the view. The
ViewLink property specifies occurring view that holds the items to be displayed in the list box.

Constructor and Parameters

The following is a sample declaration and construction:

dcl
 aListBox object type ListBox;
enddcl
map NEW ListBox() to aListBox

There are no parameters for this object.

Editable objects generated in the rule source code do not have a format object defined. A format object needs to be defined and
passed to the list box if formatting is required.

Properties and Methods

Inherits and exposes all its properties and methods (not listed below).GuiObject

The following table lists the properties and methods for this object:

ListBox object properties and methods

Property:Type (Get Method) Set Method

Altered:Boolean setAltered(Boolean)

AutoSelect:Boolean setAutoSelect(Boolean)

Editable:Boolean setEditable(Boolean)

Empty:Boolean (read only)

Error:Boolean (read only)

FieldPath:String setFieldPath(String)

Format:Format setFormat()Format

ImmediateReturn:Boolean setImmediateReturn(Boolean)

Justification:Integer setJustification(Integer)

Mandatory:Boolean setMandatory(Boolean)

NextSelectedIndex:Integer (read only)

PopupMenu:PopupMenu setPopupMenu()PopupMenu

SelectedIndex:Integer setSelectedIndex(Integer)

SelectionMode:Integer setSelectionMode(Integer)

TabStop:Boolean setTabStop(Boolean)

ViewLink:Array setViewLink(Array)

Additional Get Method Additional Set Method

 clearSelection()

getFieldPath:String

getNextSelectedIndex:Integer

getNextSelectedIndex(fromIndex:Integer):Integer

 resetSelectedIndex(index:Integer):Boolean

 resetSelectionInterval(StartIndex:Integer, StopIndex:Integer):Boolean

 setFieldPath(Value:String)

1.

2.

 setSelectionInterval(StartIndex:Integer, StopIndex:Integer)

setFieldPath:String Array

This is the path from occurring view to field when linked to an occurring view. It specifies the path in the hierarchy from the view to a specific field.

ViewLink:Array

This is the link for the list when linked to an occurring view. For a list box, it specifies the occurring view that contains the data to be displayed.

Additional Action Methods

This object has methods related to focus. The method determines if the object currently has focus. The method requestshasFocus() setFocus()
that focus be set to the object.
To select a single row, use the method to specify the row you want to select. To select a contiguous range of rows, use the setSelectedIndex()

 method. Two methods are used to query the currently selected item. The method returns the index of thesetSelectionInterval() selectedIndex()
currently selected item. The method returns the selected item following the one specified by the Index parameter.nextSelectedIndex()

Events

The object triggers the following events:ListBox

Click
DoubleClick
FieldError
FocusGained
FocusLost

Not supported for thin client.

The object triggers the event when the selection is changed either by a mouse click or with the up and down arrow keys. It alsoListBox Click
triggers the event.DoubleClick

This object triggers the event when the following occurs:FocusGained

The user tabs into the object or clicks on the object.

This object triggers the event when the following occurs:FocusLost

The user tabs out of the object or clicks on another object in the window or on the window itself.

Menu

The object displays choices on a menu bar and within a drop-down or popup menu containing additional selections. The following figureMenu
shows a sample menu dialog.

Sample menu

Constructor and Parameters

To create a Menu with pull-down items:

Create a MenuBar and add it to the Window using the setMenuBar method.

Create a Menu and add it to the MenuBar using the method.add

2. Create each MenuItem and add each one to the Menu using the method.add

For example:

dcl
 aMenuBar object type MenuBar;
 aMenu object type Menu;
 aChild object type MenuItem;
enddcl

proc InitProc Initialize object TEST_WINDOWfor
(e object type InitializeEvent)
 map MenuBar to aMenuBarnew
 map Menu to aMenunew
 set aMenu.text := 'File'
 aMenu.setMnemonic('F')
 map MenuItem to aChildnew
 set aChild.text := 'Open'
 aChild.setMnemonic('O')
 TEST_WINDOW.setMenuBar(aMenuBar)
 aMenuBar.add(aMenu)
 aMenu.add(aChild)
endproc

There are no parameters for this object.

Properties and Methods

Inherits and exposes all its properties and methods (not listed below).GuiObject

The following table lists the properties and methods for this object.

Menu object properties and methods

Property:Type (Get Method) Set Method

Accelerator:Accelerator setAccelerator()Accelerator

Checked:Boolean setChecked(Boolean)

CheckMandatoryFields:Boolean setCheckMandatoryFields(Boolean)

Count:Integer (read only)

IgnoreValidation:Boolean setIgnoreValidation(Boolean)

Mnemonic:Char setMnemonic(Char)

MnemonicKeycode:Integer setMnemonicKeycode(Integer)

Selected:Boolean setSelected(Boolean)

Text:String setText(String)

Style:Integer (Read only)

Validation:Boolean setValidation(Boolean)

 Additional Action Method

 add(Item:MenuItem)

 addSeparator()

 add()Menu

 getItem(integer):guiObject

 getItemCount()Integer

Additional Action Methods

The object has two additional methods. The method appends MenuItems to the menu. The method appendsMenu add() addSeparator()
separators.

Events

The object triggers the following events:Menu

Click

MenuBar

The object displays a menubar as part of the object. In Java, is not a GuiObject but a container for Menus andMenuBar Menu MenuBar
MenuItems. In C#, MenuBar and MenuItem are the same, therefore MenuBar is GuiObject as well.

Constructor and Parameters

The following is a sample declaration and construction:

dcl
 aMenuBar object type MenuBar;
enddcl
map NEW MenuBar() to aMenuBar

There are no parameters for this object.

Methods

The following methods are supported for this object:

bar.Add(Menu)
map bar.getMenu(index) to aMenu
map bar.getMenuCount() to anInt

Events

This object does not trigger any events.

MenuItem

The object is used to display a menu choice as part of either the object or the object. Menu items can be associatedMenuItem Menu PopupMenu
with a key combination that triggers the action associated with the menu item when pressed. The key combination is called an and isaccelerator
specified using the Accelerator property.

Constructor and Parameters

The following is a sample declaration and construction:

dcl
 aMenuItem object type MenuItem;
enddcl
map NEW MenuItem() to aMenuItem

There are no parameters for this object.

Properties and Methods

Inherits and exposes all its properties and methods (not listed below).GuiObject

The following table lists the properties and methods for this object.

MenuItem object properties and methods

Property:Type (Get Method) Set Method

Accelerator:Accelerator setAccelerator()Accelerator

Checked:Boolean setChecked(Boolean)

CheckMandatoryFields:Boolean setCheckMandatoryFields(Boolean)

Count:Integer (read only)

IgnoreValidation:Boolean setIgnoreValidation(Boolean)

Mnemonic:Char setMnemonic(Char)

MnemonicKeycode:Integer setMnemonicKeycode(Integer)

Selected:Boolean setSelected(Boolean)

Text:String setText(String)

Style:Integer (Read only)

Validation:Boolean setValidation(Boolean)

 Additional Action Method

 add(Item:MenuItem)

 addSeparator()

 getItem(integer):guiObject

 getItemCount()Integer

Additional Action Methods

The object has two additional methods. The method appends MenuItems to the menu item. The method appendsMenuItem add() addSeparator()
separators.

Accelerator:Accelerator

This property specifies a key combination that triggers a menu item's event without navigating the menu hierarchy, also referred to as Click hot
 . Valid values may be specified in the class or the class.keys Constants Accelerator

Checked:Boolean

This property specifies whether a menu item is displayed with a check mark. This property is equivalent to the property. It isSelected:Boolean
provided for backwards compatibility with previous versions of the product.
For backward compatibility, when a checked MenuItem is clicked it will not toggle the checkmark but fires a clickevent (in Java, checked
MenuItems will toggle when clicked). You must write code to uncheck the MenuItem.
A new appbuilder.ini setting is added to support the java functionality under the section [CCOMPATIBILITY],
TOGGLE_CHECK_MENU_ONCLICK. The value for the ini key should be TRUE to support java functionality.

Style:Integer

This is a read-only property.
Returns one of the following values:

Constants.PLAIN_MENUITEM
Constants.CHECKBOX_MENUITEM

Events

The following event is triggered by this object:

Click

MenuItem triggers the event when the user selects the menu item or when the user presses the accelerator key combination associated withClick
that menu item.

MultiLineEdit

The object displays the standard multi-line edit field object, a rectangular area into which multiple lines of text can be entered. If theMultiLineEdit
text is too long to display within the rectangular area, horizontal scrolling is automatically enabled. For a single-line edit field, refer to the EditField
object.
When text is entered but not committed to the data link, it can be rolled back by pressing the Escape (). Pressing while focus is on anEsc Enter
edit field with modified contents causes the changes to be committed to the data link. Moving focus away from the field also causes the changes
to be committed.

 has two methods. The method is used to determine if the object currently has focus. The method is used toMultiLineEdit hasFocus() setFocus()
request that focus be set to the object.

Properties and Methods

Inherits and exposes all its properties and methods (not listed below).GuiObject

The following table lists the properties and methods for this object.

MultiLineEdit object properties and methods

Property:Type (Get Method) Set Method

Altered:Boolean setAltered(Boolean)

AutoSelect:Boolean setAutoSelect(Boolean)

DataLink:DataObject setDataLink(DataObject)

Editable:Boolean setEditable(Boolean)

EditLimit:Integer setEditLimit(Integer)

Empty:Boolean (read only)

Error:Boolean (read only)

ImmediateReturn:Boolean setImmediateReturn(Boolean)

InsertBreak:Boolean setInsertBreak(Boolean)

InsertTab:Boolean setInsertTab(Boolean)

Mandatory:Boolean setMandatory(Boolean)

PopupMenu:PopupMenu setPopupMenu()PopupMenu

TabStop:Boolean setTabStop(Boolean)

Text:String setText(String)

WordWrap:Boolean setWordWrap(Boolean)

Additional Get Method

 setTabStop:Boolean

DataLink:DataObject

This is the link for the edit area of the multi-line edit. This property specifies the data field in the application hierarchy to which the edit field is
linked.
The DataObject for a multi-line edit is .String

InsertBreak:Boolean

This property specifies whether pressing in a multi-line edit field inserts a line break into the text or triggers the default push button.Enter

InsertTab:Boolean

This property specifies whether pressing the key in a multi-line edit field inserts a tab character into the text or transfers focus to anotherTab
control. If is , focus can still be transferred with .InsertTab True Ctrl+Tab

WordWrap:Boolean

For multi-line edit fields, this property specifies whether the text is wrapped when it reaches the right edge of the edit area. The default value is
 .True

If the WordWrap property is set to , text automatically wraps when it reaches the right edge of the edit area. If InsertBreak is set to ,True True
pressing causes a line break character to be entered into the text. If you want the user to be able to activate the default push button whenEnter
focus is on the multi-line edit, set InsertBreak to .False
If is , pressing causes the tab character or several space characters to be inserted in the text. If is , pressing InsertTab True Tab InsertTab False

 transfers focus to the next object. If is , can be used to transfer focus.Tab InsertTab True Ctrl+Tab

Additional Action Methods

This object has methods related to focus. The method is used to determine if the object currently has focus. The method ishasFocus() setFocus()
used to request that focus be set to the object.

Events

The object triggers the following events:MultiLineEdit

Click
DoubleClick
FieldError
FieldValidation
FocusGained
FocusLost

Not supported for thin client applications.

This object triggers the event when any of the following occur:Click

The user presses the mouse button while the mouse is on the object.
The user presses the object's mnemonic key (Alt+mnemonic key).
The property is changed.Selected:Boolean
A value is mapped into the field data-linked to the object.

This object triggers the event when the following occurs:FocusGained

The user tabs into the object or clicks on the object.

This object triggers the event when the following occurs:FocusLost

The user tabs out of the object or clicks on another object in the window or on the window itself.

MultiLineEdit provides for data validation using the and events. When an attempt is made to commit the data either byFieldError FieldValidation
moving focus or pressing , and the data contains errors, the event is triggered. If there are no errors, the event isEnter FieldError FieldValidation
triggered, allowing the application to verify that the data is acceptable.

PasswordField

The object is very similar to the object. The difference is that a password field displays only asterisks regardless of thePasswordField EditField
data in the field. A Password field is implemented as a separate object in the Java client to take advantage of the extra securityPasswordField
provided by Java for password fields.
For additional information, see the section on .EditField

Constructor and Parameters

The following is a sample declaration and construction:

dcl
 aPasswordField object type PasswordField;
enddcl
map NEW PasswordField() to aEditField

There are no parameters for this object.

Properties and Methods

Inherits and and exposes all their properties and methods.GuiObject EditField

Events

The object triggers the same events as the object.PasswordField EditField

PushButton

The object is used to display standard push-button functionality. The following figure shows a sample push-button dialog.PushButton

Sample push buttons

Constructor and Parameters

The following is a sample declaration and construction:

dcl
 aPushButton object type PushButton;
enddcl
map NEW PushButton() to aPushButton

There are no parameters for this object.

Properties and Methods

Inherits and exposes all its properties and methods (not listed below).GuiObject

The following table lists the properties and methods for this object.

PushButton object properties and methods

Property:Type (Get Method) Set Method

CheckMandatoryFields:Boolean setCheckMandatoryFields(Boolean)

HorizontalTextPosition:Integer setHorizontalTextPosition(Integer)

IgnoreValidation:Boolean setIgnoreValidation(Boolean)

Image:String setImage(String)

Mnemonic:Char setMnemonic(Char)

MnemonicKeycode:Integer setMnemonicKeycode(Integer)

Pressed:Boolean (read only)

PopupMenu:PopupMenu setPopupMenu()PopupMenu

TabStop:Boolean setTabStop(Boolean)

Text:String setText(String)

Validation:Boolean setValidation(Boolean)

VerticalTextPosition:Integer setVerticalTextPosition(Integer)

 Additional Set Method

 setVerticalTextToImagePosition:Integer

getTabStop is not supported in C#.

VerticalTextPosition:Integer

This specifies the vertical position of the text.

HorizontalTextPosition:Integer

This specifies the horizontal position of the text.

The VerticalTextPosition and HorizontalTextPosition methods and properties rely on a bitmap. There is no way to associate a
bitmap with a label object. Hence these methods will not work.

Events

The object triggers the following events:PushButton

Click
FocusGained
FocusLost

This object triggers the event when any of the following occur:Click

The user presses the mouse button while the mouse is on the object.
The spacebar is pressed while the object has the focus.
The user presses the object's mnemonic key (Alt+mnemonic key).

This object triggers the event when the following occurs:FocusGained

The user tabs into the object or clicks on the object.

This object triggers the event when the following occurs:FocusLost

The user tabs out of the object or clicks on another object in the window or on the window itself.

FocusLost and FocusGained events are not supported for thin client applications.

RadioButton

The object is used to display the standard radio button functionality. You can also use the object for turning a particularRadioButton CheckBox
setting either on or off.

Sample radio buttons

Constructor and Parameters

The following is a sample declaration and construction:

dcl
 aRadioButton object type RadioButton;
enddcl
map NEW RadioButton() to aRadioButton

There are no parameters for this object.

You cannot select a radio button on an HTML servlet if the radio button does not have a link to a field.

Properties and Methods

Inherits and exposes all its properties and methods (not listed below).GuiObject

The following table lists the properties and methods for this object.

RadioButton object properties and methods

Property:Type (Get Method) Set Method

Altered:Boolean setAltered(Boolean)

DataLink:DataObject setDataLink(DataObject)

ImmediateReturn:Boolean setImmediateReturn(Boolean)

Mnemonic:Char setMnemonic(Char)

MnemonicKeycode:Integer setMnemonicKeycode(Integer)

PopupMenu:PopupMenu setPopupMenu()PopupMenu

Selected:Boolean setSelected(Boolean)

TabStop:Boolean setTabStop(Boolean)

Text:String setText(String)

DataLink:DataObject

Radio buttons are linked to character (string) fields. When a radio button is selected, the system identifier (HPSID) for the button is placed in the
data-linked character field.
The DataObject for a radio button is String.

Additional Action Methods

This object has methods related to focus. The hasFocus() method is used to determine if the object currently has focus. The setFocus() method is
used to request that focus be set to the object.

Events

The object triggers the following events:RadioButton

Click
DoubleClick
FieldError
FocusGained
FocusLost

This object triggers the event when any of the following occur:Click

The user presses the primary mouse button when the mouse is on the object.
The spacebar is pressed when the object has the focus.
The user presses the object's mnemonic key (that is, Alt+mnemonic key).
The property is set to True.Selected:Boolean
A value is mapped into the field data-linked to the object.

This object triggers the event when any of the following occur:FocusGained

The user tabs into the object or clicks on the object.

This object triggers the event when any of the following occur:FocusLost

The user tabs out of the object or clicks on another object in the window or the window itself.

These events are not supported for thin client.

RadioButton provides for data validation using the event. When an attempt is made to commit the data either by moving focus orFieldError
pressing , and the data contains errors, the event is triggered.Enter FieldError

Rectangle

A object is used to display a rectangle or square.Rectangle

Support

This is supported for thin (HTML) clients.not

Constructor and Parameters

There are no parameters for this object. The following is a sample declaration and construction:

dcl
 aRectangle object type Rectangle;
enddcl
map NEW Rectangle() to aRectangle

Properties and Methods

Inherits and exposes all its properties and methods (not listed below).GuiObject

The following table lists the properties and methods for this object.

Rectangle object properties and methods

The class contains no properties or methods except the properties or methods of the parent class.Rectangle

Events

Click
DoubleClick

This object triggers the event when any of the following occur:Click

The user presses the primary mouse button when the mouse is on the object.

TabControl

The TabControl object allows user to group controls into multiple pages and to switch between these tab pages.
A tab control can be created statically by using Window Painter, or can be created dynamically at runtime. To create dynamically a tab control, it
is created a TabControl object, then individual tab pages are added using the method.addPage()

Properties and Methods

Inherits and exposes all its properties and methods (not listed below).GuiObject

The following table lists the properties and methods for this object.

TabControl object properties and methods

Property Set Method

Count:Integer (read only)

MultipleRows:Boolean setMultipleRows(flag:Boolean)

Orientation:Integer setOrientation(value:Integer)

SelectedIndex:Integer

SelectedTab:TabPage

TabStop:Boolean setTabStop(Boolean)

Additional Get Method Additional Set Method

 addPage(page:TabPage)

getPage(index:Integer):TabPage

 insertPage(index:Integer, page:TabPage)

 removePage(page:TabPage)

 removeAt(index:Integer)

 setEnabledPage(index:Integer, value:Boolean)

addPage(page:TabPage)

Adds a tab page to the tabcontrol.

getPage(index:Integer):TabPage

Gets the TabPage at the given index.

insertPage(index:Integer, page:TabPage)

Adds a tab page to the tabcontrol at the given index.

removePage(page:TabPage)

Removes a tab page from the tabcontrol.

removeAt(index:Integer)

Removes a tab page from the tabcontrol at the given index.

1.
2.

setEnabledPage(index:Integer, flag:Boolean)

Enables or disables a tab page at the given index.

setMultipleRows(flag:Boolean)

If the flag is true, tab pages will be shown in multiple rows, otherwise it will be shown in a scrollable single row of tabpages.

setOrientation(value:Integer)

Sets the orientation of the tab pages to TOP or BOTTOM.

Events

The object triggers the following events:TabControl

TABPAGEDeselected
TABPAGESelected

Table

The object is used to display a standard table with multiple rows and columns. In the Window Painter (and in previous versions of thisTable
product), it is referred to as a multicolumn list box (MCLB) or spreadsheet. The object supports the concept of virtual rows. That is, it can beTable
associated with a data source that contains more rows than can be displayed at one time. Thus, the row numbers reflect the row numbers in the
database rather than the actual row numbers on the displayed table.

Sample table with three columns

When using ObjectSpeak to manipulate tables, tables are implemented using both and objects. In general, a objectTable Column Table
possesses one or more objects. The Table class has a number of properties that affect the table as a whole. The Column class containsColumn
a number of properties that determine the appearance and behavior of individual columns.
You can set properties or methods on the table or on individual columns of the table. As with all other visual objects, the names of tables and
columns are the same as their system identifier (HPSID).
Use these steps to dynamically construct a table:

*Create a object.Table

Create one or more objects.Column
Add them to the Table using the Table's addColumn() method.

This method appends the specified Column object to the right of the table. For tables created in the Window Painter, the Column objects are
automatically created and added to the table by the generated Java code.
By default, the background color of Numbering column and Header is the scrollbar's color. The default background and foreground colors of the
Header can be overridden using the setHeaderForeground(Color) and setHeaderBackground(Color) methods.
For information about scrolling, refer to .Smooth Scrolling in a Table Object

Properties and Methods

Inherits and exposes all its properties and methods (not listed below).GuiObject

The following table lists the properties and methods for this object.

Table object properties and methods

Property:Type (Get Method) Set Method

Altered:Boolean setAltered(Boolean)

AutoSelect:Boolean setAutoSelect(Boolean)

BackBuffer:Integer setBackBuffer(Integer)

BackGrndColor:Color

Border:Integer

BorderStyle:Integer setBorderStyle(Integer)

CurrentColumn:Integer

CurrentRow:Integer

DatabaseSize:Integer (read only, set only through (Integer, Integer))

Editable:Boolean setEditable(Boolean)

ElevatorPosition:Integer (read only)

Empty:Boolean (read only)

Error:Boolean (read only)

FirstVisibleRow:Integer setFirstVisibleRow(Integer)

ForeGrndColor:Color

HeaderBackground:Color setHeaderBackground()Color

HeaderFont:Font setHeaderFont(Font)

HeaderForeground:Color setHeaderForeground()Color

HeaderHeight:Integer setHeaderHeight(Integer)

ImmediateReturn:Boolean setImmediateReturn(Boolean)

Justification:Integer setJustification(Integer)

LastVisibleRow:Integer setLastVisibleRow(Integer)

Lines:Integer setLines(integer)

Mandatory:Boolean setMandatory(Boolean)

NextSelectedIndex:Integer (read only)

NumberingColumn:Boolean setNumberingColumn(Boolean)

PopupMenu:PopupMenu setPopupMenu()PopupMenu

RowHeight:Integer setRowHeight(Integer)

RowSelect:Boolean setRowSelect(Boolean)

ScrollableOccurs:Integer (read only)

ScrollLock:Boolean setScrollLock(Boolean)

ScrollBars:Integer setScrollBars(Integer)

SelectedIndex:Integer setSelectedIndex(Integer)

SelectedRowCount:Integer

SelectionMode:Integer setSelectionMode(Integer)

TabStop:Boolean setTabStop(Boolean)

ViewLink:Array setViewLink(Array)

 setVirtualListBoxSize (read-only)

VisibleOccurs:Integer (read only)

Additional Get Method Additional Set Method

 addColumn(ColObj:Column)

 clearSelection()

convertToPhysical(Integer):Integer

 disableTopAndBottomEvents(Boolean)

getColumn(index:Integer):Column

getColumnCount():Integer

getFirstVisibleOccurence():Integer

getLastVisibleOccurence():Integer

getListLink():Array

getNextSelectedPhysicalIndex():Integer

getNextSelectedIndex(fromIndex:Integer):Integer

getNextSelectedIndex():Integer

getOccurs():Integer

getScaledHeaderHeight():Integer

getScaledRowHeight():Integer

getSelectedPhysicalIndex():Integer

getSelectedVirtualIndex():Integer

getVisibleRows():Integer

isAutoSelect:Boolean

isRowSelect:Boolean

nextSelectedIndex(fromIndex:Integer):Integer

 resetSelectedIndex():Integer

 resetSelectionInterval(StartIndex:Integer, StopIndex:Integer)

 setListLink(Array)

 setMoreData(Boolean)

 setMoreRows(n:Integer, flag:Boolean)

 setScaledHeaderHeight(Integer)

 setScaledRowHeight(Integer)

 setSelectionInterval(StartIndex:Integer, StopIndex:Integer)

 setVirtualListBoxSize(TopVirtualRow:Integer, VirtualTableSize:Integer)

 setStyleClass(cssClassName:String)

 setCellStyleClass(row:Integer, col:Integer, cssClassName:String)

 setRowStyleClass(row:Integer, cssClassName:String)

 setColumnStyleClass(col:Integer, cssClassName:String)

The table itself is data-linked to an occurring view and each column in the table (other than the optional numbering column) is associated with a
field in the hierarchy beneath the occurring view. The complete data link consists of a data link from the table to the occurring view and for each
column, a specification of the path from the occurring view to the particular field in the view to which the column is linked. These data-links are
specified using the set methods with the following properties:

< >.ViewLink ? link to an occurring viewtablename
< >.FieldPath ? path from an occurring view to a fieldcolumnname

The first is set with the object. The second is set with object.Table Column

FirstVisibleRow:Integer

This property specifies the first visible row in the table.

getColumn(index:Integer):Column

This method returns the column at the given index or null if not found (index in 1 based index).

getColumnCount():Integer

This method returns the number of columns in the table.

HeaderBackground:Color

This property specifies the color of the background of the header row of the table.

HeaderForeground:Color

This property specifies the color of the foreground of the header row of the table.

HeaderHeight:Integer

This property specifies the height, in pixels, of the header row of the table.

LastVisibleRow:Integer

This property specifies the last visible row in the table.

Lines:Integer

This property specifies the horizontal and vertical lines in the table.
The values for this property can be one of the following:

Constants.NO_LINES
Constants.HORIZONTAL_LINES
Constants.VERTICAL_LINES
Constants.HORIZONTAL_AND_VERTICAL_LINES

NumberingColumn:Boolean

This property specifies whether a column should be automatically added in the left-most position of a table to display the (virtual) row number. The
default maximum width of the numbering column is five times the average character width.
If is , then a column which contains (virtual) row numbers is added at the extreme left of the table. The absence orNumberingColumn True
presence of the numbering column does not effect the index number of the remaining column, the left-most non-numbering column always has a
column index of 1.

RowSelect:Boolean

This property specifies whether an entire table row is selected when a cell in that row is selected. If RowSelect is , then clicking anywhere onTrue
a row causes the entire row to be selected; otherwise, only the cell that is clicked is selected.

SelectedRowCount:Integer

This is a read-only property. It returns an integer indicating the number of selected rows in a table (multicolumn list box), or 0 if none. For

example,

dcl
numSelectedRows integer;
enddcl
set numSelectedRows := {MCLB_HPSID}.SelectedRowCount

This is not supported in thin client applications.

setVirtualListBoxSize (read-only)

This method specifies the dimensions of a virtual list box. The method can be called in R/O mode too.

setStyleClass(cssClassName:String),
 setCellStyleClass(row:Integer, col:Integer, cssClassName:String),

 setRowStyleClass(row:Integer, cssClassName:String),
setColumnStyleClass(col:Integer, cssClassName:String)

Thise methods specify a css class for a table, a table cell, a table row and a table column. The method can be called in HTML mode only.

ViewLink:Array

This is the link for the Table when linked to an occurring view. For a Table, this property specifies the occurring view that contains the data to be
displayed.

Additional Action Methods

Use the method when constructing a Table to append the specified Column object to the right of the table.addColumn()
When the method is called with a value of , HPS_LB_BOTTOM and HPS_LB_TOP events are not initiated.disableTopAndBottomEvents True
The method is used to simplify incremental smooth scrolling. In this case the actual database size is not known, so smooth scrollingsetMoreRows
is activated by incrementing the virtual size of the table by rows on every event. If this method is called with setMoreRows(1,n DataRequired
True), on every event, the virtual size of the table is incremented by 1 row more than the current virtual bottom limit. This enablesDataRequired
smooth scrolling. When a fetch returns less than the occurring size of rows, the scroll down event can be disabled by calling
setMoreRows(remaming rows, False). If dynamic views are not used, the incremental scrolling is re-enabled when scrolling , past the virtualup
top limit. For information on scrolling, refer to .Smooth Scrolling in a Table Object
The methods are used to query the currently-selected rows or cells. The getSelectedIndex() method returns the index of theSelectedIndex
currently selected row. To select a single row, use setSelectedIndex() to specify the row you want to select. To select a contiguous range of rows,
use the setSelectionInterval() method. Currently these methods refer to the display row number, where the topmost displayed row has an index of
1. Use the clearSelection() method to clear the selection.
For a description of the getElevatorPosition(), setFirstVisibleRows(), setLastVisibleRows(), and setVirtualListBoxSize() methods, see Smooth

.Scrolling in a Table Object

Events

The object triggers the following events:Table

CellClick
CellDoubleClick
CellFocusGained
CellFocusLost
Click
DataRequired
DoubleClick
EnterKeyPressed
FieldError
FieldValidation
HeaderClick
RowFocusGained
RowFocusLost

The object triggers a number of events. When the table needs more data, the event is triggered. When a cell gains focus, theTable DataRequired
 event is triggered; when it loses focus, the event is triggered.CellFocusGained CellFocusLost

The object also triggers the and events when the user clicks or double-clicks on the table. The parameters of the eventTable Click DoubleClick
provide information about the row and column where the click or double-click occurred.
When the contents of a cell are changed and focus is shifted away from the cell or is pressed while the focus is in the changed cell,Enter
field-level validation occurs. If the user has entered syntactically erroneous data in the field, the event is triggered. Otherwise, the FieldError

 event is triggered, allowing the application to validate the contents of the field.FieldValidation

Thin client only supports the DoubleClick event.

Smooth Scrolling in a Table Object

Several methods play a role in smooth scrolling in a object. Smooth scrolling refers to fetching data when needed from a data source andTable
placing it in the occurring view to which the table and columns are linked. When a table needs data that is not already in the occurring view, it
triggers the event. The event procedure calls getElevatorPosition() to determine what virtual row should be placed inDataRequired DataRequired
the top of the occurring view. Once the data has been fetched and placed in the occurring view, then setVirtualListBoxSize() is called to specify
which virtual row was actually placed in the top of the occurring view and the total number of virtual rows in the data source. The
setFirstVisibleRow() method specifies that a virtual row, other than the one at the top of the occurring view, is the top displayed row.
There are many different ways of smooth scrolling, for instance:

Count(*) * ? The database size is known at the beginning, or the database count is done before the fetch to determine the actualmethod
database size. The advantage of this is that the table's scrollbar shows the actual database size; the disadvantage is that the database
count is expansive.
Incremental method ? The database size is not known, so set the virtual size of the table to either the current size plus the increment
after each fetch (if the database has more data than displayed in the table) or the database size when no more data to be fetched. The
disadvantage is that the table's scrollbar never shows the actual database size.
Dynamic views ? Another method is to combine dynamic views with one of the other two methods. The advantage is that the table
grows every time fetch and append is done, and scrolling backward (up) does not generate a data-required event.

For more details and examples, see:

Incremental Smooth Scrolling with setMoreRows
Incremental Smooth Scrolling with Dynamic Views

Incremental Smooth Scrolling with setMoreRows

Incremental scrolling can be simplified by using the setMoreRows(n,flag) method. For a detailed description, refer to the setMoreRows method
topic in . The following sample code demonstrates incremental smooth scrolling using this method.Additional Action Methods

List Display Rule
Fetch Rule

List Display Rule

*>--
Rule : AB_SMOOTH_SCROLL_INC_DIS - list display rule
Version : AppBuilder 3.1

This Rule demonstrates smooth scrolling using <mclb>.setMoreRows(x, flag) and <mclb>.setBackBuffer(n)
 INCREMENTAL scrolling.for

For INCREMENTAL scrolling, the database size is not known (count(*) not allowed), so the fetch rule
uses a variable to identify more data are available after the fetch;if
initially call setMoreRows(increment,) to enable smooth scrolling and on the last fetch calltrue
setMoreRows(remaining rows,) to disable scroll DOWN events.false

setBackBuffer(n)
 where n: number of rows to fetch backward

setMoreRows(x, flag)
 where x: is integer and denotes increment or number of rows in the last fetch,
 flag: when , the virtual size is incremented x times on every DataRequiredEvent and when true false
virtual size is set to virtual top + x - 1 to disable further scrolling down

Steps using setMoreRows(rows,type)for
 incremental scrollingfor

1. call the method
 <mclb>.setBackBuffer(x)
2. Fetch next block and map
 more data available then call the methodif
 <mclb>.setMoreRows(1,)true
 call the methodelse
 <mclb>.setMoreRows(x,)false
3. On Every DataRequiredEvent

 a. Get Next block and append
 b. On the last fetch call the method setMoreRows(n,) where n is the remaining rowsfalse

--<*

dcl

BackBufferAmt smallint;
enddcl
//--
// Fetch the database the next block of data andfor
// map it to the occurring view of MCLB.
// The fetch rule returns -1 more data available than the fetchfor
// size or the remaining number of rows it is the last block.if
// 1. Get data from database from index in fromindex.
// 2. Map to MCLB occurring view.
// 3. If the AB_MORE_DATA > 0
// stop scroll down with setMoreRows(AB_MORE_DATA,)false
//--
proc GetNextBlock(fromIndex smallint)
//Fetch next block from the index from index
map fromIndex
to AB_ELEV_POS of AB_MERULE_NOCOUNT_SQL_FET_I
use rule AB_MERULE_NOCOUNT_SQL_FET
//Map fetch out view to occurring view of MCLB
map AB_MERULE_D of AB_MERULE_NOCOUNT_SQL_FET_O
to AB_SMOOTH_SCROLL_INC_OCC of AB_SMOOTH_SCROLL_INC_W

 AB_MORE_DATA of AB_MERULE_NOCOUNT_SQL_FET_O > 0if
//Touched database bottom
//No more rows DOWNwards
MERULE_MCLB.setMoreRows(AB_MORE_DATA of
AB_MERULE_NOCOUNT_SQL_FET_O,

)false
endif
endproc
//--
// This procedure gets called when a window is initialized
// the first time before shown.
// Here:
// 1. Call setMoreRows(inc,) to start smooth scrolling.true
// 2. Set BackBuffer amount.
// 3. Call getNextBlock to get first block.
//--
proc InitEventProc initialize object AB_SMOOTH_SCROLL_INCfor
(e object pointer to InitializeEvent)
// Starts incremental scrolling incr=1
MERULE_MCLB.setMoreRows(1,)true
// Compute back buffer - the number of record back from first
// visible record to include in the view. This is so theif
// user goes back a little he does not have to fetch data
// outside of his view.
map (MERULE_MCLB.ScrollableOccurs - MERULE_MCLB.VisibleOccurs) / 2
to BackBufferAmt
MERULE_MCLB.setBackBuffer(BackBufferAmt)
// Fetch next block of data and map
GetNextBlock(1)
endproc
//---
// This procedure is called every time user scrolls pass
// the current virtual limit.
// Here we
// 1. If e.TypeString = 'OutOfRange' Fetch,
// and map next block of data.
//---
proc DataEventProc DataRequired object MERULE_MCLBfor
(e object pointer to DataRequiredEvent)

(e.TypeString = 'OutOfRange')if
GetNextBlock(e.TopVirtualRow)
endif
endproc

//---
// Click Event Procedure the Pushbutton EXIT.for
// Terminate the window here.
//---
proc ExitProc Click object EXITfor
(e object pointer to ClickEvent)

AB_SMOOTH_SCROLL_INC.terminate
endproc

Fetch Rule

*>
Rule :AB_MERULE_INC_SQL_FET - Fetch Rule
This rule uses personal repository table MERULE.
Create a user named HPSFWY and give full permission
to your personal repository database.
Fetch by name.
--<*

dcl
L_COUNT smallint;
L_ROWCOUNT smallint;
L_OCCURSIZE smallint;
L_SEARCH_FIELD like AB_SEARCH_NAME;
enddcl

> Map input data to local variables <
map AB_SEARCH_NAME of AB_MERULE_SEARCH_KEY of AB_MERULE_INC_SQL_FET_I
to L_SEARCH_FIELD
map occurs(AB_MERULE_D)
to L_OCCURSIZE

> Select all records meeting search criteria into cursor <
sql asis
declare MERULE1 cursor for
select A.SHORTNAME,
A.NAME,
A.REMOTEMAINTENANCED,
A.REMOTEMAINTAINEDBY,
A.PROJECT
from HPSFWY.MERULE A
where A.NAME > :L_SEARCH_FIELD
and A.LATEST = 'X'
and A.DELETION = ' '
order by A.NAME
endsql
sql asis
open MERULE1
endsql

// cursor fails failureif return
 SQLCODE of SQLCA <> 0if

map FAILURE in RETURN_CODES
to AB_RET_CODE of AB_MERULE_INC_SQL_FET_O
return
endif

> Fill the occurring view <
 from 1 to L_OCCURSIZE index L_COUNTdo

sql asis
fetch MERULE1
into :AB_MERULE_DATA.AB_MERULE_SHORTNAME,
:AB_MERULE_DATA.AB_MERULE_NAME,
:AB_MERULE_DATA.AB_MERULE_REM_MAINT_DT,
:AB_MERULE_DATA.AB_MERULE_REM_MAINT_BY,
:AB_MERULE_DATA.AB_MERULE_PROJECT
endsql

 SQLCODE of SQLCA = 0while
map AB_MERULE_DATA
to AB_MERULE_D of AB_MERULE_INC_SQL_FET_O(L_COUNT)
enddo

 L_COUNT < L_OCCURSIZEif

 //map the remaining rows
map L_COUNT -1 to AB_MORE_DATA of AB_MERULE_INC_SQL_FET_O
 map SUCCESS in RETURN_CODES
 to AB_RET_CODE of AB_MERULE_INC_SQL_FET_O

 sql asis
 close MERULE1
 endsql
 return
else
 // more rows available map -1if
map -1 to AB_MORE_DATA of AB_MERULE_INC_SQL_FET_O
endif

 SQLCODE of SQLCA = 0if
map SUCCESS in RETURN_CODES
to AB_RET_CODE of AB_MERULE_INC_SQL_FET_O
endif

sql asis

close MERULE1
endsql

For an example of smooth scrolling using system components, refer to the section on smooth scrolling in the System
. Components Reference Guide

TabPage

Tabpage is the container for the GuiObjects that can be added into a tab control. A tab page cannot be displayed directly into a window, it should
be the part of a tab control GuiObjects can be added into the tab page using the method.add()

Property:Type Set Method

DisabledImage:String setDisabledImage(String)

Image:String setImage(String)

Title:String setTitle(String)

Additional Get Method Additonal Set Method

 addImage(String)

 setHpsId(String)

DisabledImage:String

Sets or gets the image for the tab page when it is disabled.

Image(String name)

Sets or gets the image for the tab page.

Title(String)

Sets or gets the title of the tab.

addChild(GuiObject)

Adds a GuiObject into the tab page.

Dynamic-Only Control Objects

Dynamic-Only Control Objects

The controls for a user interface, that can be defined only during execution time using ObjectSpeak syntax in Rules source code (dynamic-only
objects) are:

MessageBox
PopupMenu
Timer
TreeView
TreeNode

MessageBox

The object is used to display a message box on the screen. To use a message box, an instance of must first beMessageBox MessageBox
created using the new operator, as illustrated below. Then properties are set to specify the message, title, buttons, and icon. Finally, the
showMessageBox() method is called to display the message box. When the user closes the message box, the method returns. If there isShow
more than one button, the return value of showMessageBox() indicates which button was pressed.

Sample message box

 * *

Constructor and Parameters

The following is a sample declaration and construction:

dcl
 SaveMessageBox object type MessageBox;
 MessageBoxReturn ;Integer
enddcl
map NEW MessageBox() to SaveMessageBox

There are no parameters for this object.

Properties and Methods

The following table lists the properties and methods for this object.

MessageBox object properties and methods

Property:Type (Get Method) Set Method

Argument1:String setArgument1(String)

Argument2:String setArgument2(String)

Argument3:String setArgument3(String)

ButtonType:Integer setButtonType(Integer)

Locale:Locale setLocale(Locale)

Message:String setMessage(String)

MessageType:Integer setMessageType(Integer)

Parent:Window setParent()Window

Title:String setTitle(String)

 Additional Action Method

 show() :Integer

Argument1:String

This is the first string that can be substituted into the optional argument of a message in a message box.

Argument2:String

This is the second string that can be substituted into the optional argument of a message in a message box.

Argument3:String

This is the third string that can be substituted into the optional argument of a message in a message box.

ButtonType:Integer

This property specifies the button or buttons that are displayed in a message box. Valid values are defined in the class as:Constants

DEFAULT_BUTTONS

OK_BUTTON
OK_CANCEL
YES_NO
YES_NO_CANCEL

For example, if the message box should have Yes, No, and Cancel buttons, set ButtonType to YES_NO_CANCEL, as shown in the code in the
.Example: Message Box

The ButtonType property is not supported for thin client applications.

Message:String

This property specifies the message to be displayed in a message box. Up to three substrings can be inserted into the message. The substrings
are specified by the Argument1, Argument2, and Argument3 properties. Argument1 is substituted at the location of %1 in the message, and
similarly for the other arguments; this is illustrated in the .Example: Message Box

MessageType:Integer

This property specifies the type of icon that is displayed in a message box. Valid values, as defined in the Constants class, are as follows:

ERROR
INFORMATION
PLAIN
QUESTION
WARNING

Java thin clients support only INFORMATION and QUESTION message box types. These are the only types available when
using message box functionality in JavaScript.

Parent:Window

This property specifies the parent window.
The Parent property is not supported for thin client applications.

Title:String

This property specifies the title (or caption) for a message box or window.
The Title property is not supported for thin client applications.

Additional Action Methods

If the message box has more than one button, then the application should use the return value of the show() method to decide what to do. The
showMessageBox() method returns one of the following values (defined in):Constants

OK
YES
NO
CANCEL

An INFORMATION message box has an OK button.
A QUESTION message box has an OK and a Cancel buttons.

Thin Client Support

Title, ButtonType, and Parent properties are not supported for thin client.

Events

The object does not trigger any events.MessageBox

Example: Message Box

This example shows a declaration section that contains local variables needed for the code and the code to create, configure, and display the
message box. It then shows the logic for responding to the user's choice. Include the code within either an event procedure or a standard
procedure.

dcl
 SaveMessageBox object type MessageBox;
 MessageBoxReturn ;Integer
enddcl
> create a message box <
map MessageBox to SaveMessageBoxnew

> set message box properties <
SaveMessageBox.SetMessageType(Constants.QUESTION)
SaveMessageBox.SetButtonType(Constants.YES_NO_CANCEL)
SaveMessageBox.SetTitle('Save File')
SaveMessageBox.SetMessage('Save the file named %1?')
SaveMessageBox.SetArgument1('SAMPLE.XML')

> display message box <
map SaveMessageBox.Show to MessageBoxReturn

> respond to user's choice <
CASEOF MessageBoxReturn
 CASE (Constants.YES)
 > save the file and exit the application <
 CASE (Constants.NO)
 *> not save the file, and exit the application <*do
 CASE (Constants.CANCEL)
 *> not save the file, and to the application <*do return
ENDCASE

PopupMenu

The object is used to display a menu that appears when the secondary mouse button is clicked. This object does not generate anyPopupMenu
events but the menu items that are added to it trigger events when they are clicked.Click

Sample popup menu

The PopupMenu is not supported for thin client applications.

Properties and Methods

The following table lists the properties and methods for this object:

PopupMenu object properties and methods

Action Methods

add(Item:MenuItem)

addSeparator()

PopupMenu:PopupMenu

This method sets the popup menu that is displayed for objects on a window and the window itself, typically by clicking the right mouse button or
secondary mouse button.
If a given user interface object does not have a popup menu, but the window does, right clicking on the object causes the window's popup menu
to be displayed.
If you want only one popup menu for the window and all its objects, just define a popup for the window.
A PopupMenu can be added to nearly any of the user interface objects by using their PopupMenu property (or the setPopupMenu() method). A
PopupMenu can also be added to the window itself.

Additional Action Methods

The add() method appends menu items to the popup menu. The addSeparator() method appends separators.

Example: Creating Popup Menus

The following code creates a popup menu that implements the standard Cut, Copy, and Paste operations. It declares local variables for the popup
menu, as well as the menu items that appear on the menu. It then defines a procedure which builds the popup menu.
Note that as each menu item is created, an event procedure (or handler) for it is defined. The window Initialize Event procedure calls this
procedure and then adds the popup menu to an edit field. Finally, the event procedure that actually handles click events generated from the
popup menu is defined. The event procedure is defined in such a way that it handles events triggered from all the menu items in the application
(since it specifies that it is for type MenuItem rather than for a particular menu item).

> declare local variables <
dcl
 StandardPopupMenu object type PopupMenu;
 CutMenuItem,
 CopyMenuItem,
 PasteMenuItem object type MenuItem;
*> forward declare event procedure popup menu <*for
 MenuClick proc Click type MenuItem (e object type ClickEvent);for
enddcl

> procedure to build standard popup menu <
proc BuildPopupMenu
 > create popup menu <
 map PopupMenu to standardPopupMenunew
 > create Cut menu item <
 map MenuItem to CutMenuItemnew
 CutMenuItem.setHpsID()"CutItem"
 CutMenuItem.setText()"Cut"
 CutMenuItem.setMnemonic('t')
 Handler CutMenuItem(MenuClick)

 > create Copy menu item <
 map MenuItem to CopyMenuItemnew
 CopyMenuItem.setHpsID()"CopyItem"
 CopyMenuItem.setText()"Copy"
 CopyMenuItem.setMnemonic('C')
 Handler CopyMenuItem(MenuClick)

 > create Paste menu item <
 map MenuItem to PasteMenuItemnew
 PasteMenuItem.setHpsID()"PasteItem"
 PasteMenuItem.setText()"Paste"
 PasteMenuItem.setMnemonic('P')
 Handler PasteMenuItem(MenuClick)

 > add menu items to popup menu <
 standardPopupMenu.add(CutMenuItem)
 standardPopupMenu.add(CopyMenuItem)
 standardPopupMenu.add(PasteMenuItem)
endproc

> window initialization event procedure <
proc MainWindowInitialize Initialize object MAIN_WINDOWfor
(e object type InitializeEvent)
 > create the popup menu <
 BuildPopupMenu

 > assign the popup menu to some edit fields <
 NameField.SetPopupMenu(StandardPopupMenu)
 DateField.SetPopupMenu(StandardPopupMenu)
 TimeField.SetPopupMenu(StandardPopupMenu)
endproc

*> click event handler MenuItem objects <*for
proc MenuClick Click type MenuItemfor
(e object type ClickEvent)
 CASEOF e.HpsID
 CASE 'CutItem'
 > cut the selected text <
 CASE 'CopyItem'
 > copy the selected text <
 CASE 'PasteItem'
 > paste text from clipboard <
 ENDCASE
endproc

Timer

The object is used to notify the application?once or repeatedly?that a specified time has elapsed. The notification is in the form of a TimerTimer
event. s are non-visual objects at runtime; that is, they do not appear on the window. s are typically created dynamically at runtime,Timer Timer
as shown in the sample code below.
Timers must be created with the new keyword and mapped to a local variable of type Timer, as illustrated in the code below. The name of the
window must be passed to the Timer constructor method that follows the new keyword.

The Timer object is not supported for the thin client.

Properties and Methods

The following table lists the properties and methods for this object.

Timer object properties and methods

Property:Type (Get Method) Set Method

Enabled:Boolean

Visible:Boolean setVisible(Boolean)

Delay:Integer setDelay(Integer)

HpsID:String setHpsID(String)

Repeats:Boolean setRepeats(Boolean)

Running:Boolean (see below table)Note

 Additional Action Methods

 start()

 stop()

Running is a read-only property and the set method is supported.not

Delay:Integer

This property specifies the time, in milliseconds, between successive Timer events generated by the Timer control.

Enabled

This is a read-only property and returns when Timer is enabled. Timer is enabled (or generates a Timer event) only when the window of theTRUE
Timer is enabled.

Repeats:Boolean

This property specifies whether a timer triggers repeatedly or just once. By default, a timer triggers repeatedly.

Running:Boolean

This property specifies whether a timer is enabled and, therefore, running. This is a read-only property.

Additional Action Methods

The start() method starts the timer, and the stop() method stops it. If the timer triggers only a single event, there is no need to call stop().

Events

The object triggers the following event:Timer

Timer

The object generates only the event. To cause the timer to trigger just once, set the Repeats property to . The time intervalTimer Timer False

between successive timer events is specified with the Delay property; units are in milliseconds. This also represents the time between when the
start() method is called and when the first event is triggered. The time interval is approximate.

Example: Creating Event Procedures for Timers

dcl
UpdateTimer object type Timer;
enddcl
*> event procedure Timer events <*for
proc TimerProc Timer object UpdateTimerfor
(e object type TimerEvent)
> update whatever needs to updated! <
> add code here <
> stop the timer when appropriate <
> UpdateTimer.Stop <
endproc
> respond to Update button click by starting timer <
proc UpdateButtonClick Click object UpdateButtonfor
(e object type ClickEvent)
> create a timer <
map Timer(MAIN_WINDOW) to UpdateTimernew
> set time interval to 1 second (1000 millisec) <
UpdateTimer.SetDelay(1000)
*> specify that timer should repeat until the Stop
method is called <*
UpdateTimer.SetRepeats(True)
> start the timer <
UpdateTimer.Start
*> dynamically add event procedure to handle
timer events <*
Handler UpdateTimer(TimerProc)
endproc

TreeView

The object displays a hierarchical collection of labeled items, each represented by a . To use a tree view, an instance of TreeView TreeNode
 must first be created using the new operator and (optionally) filled with objects, as illustrated below.TreeView TreeNode

The class is not supported by Java or thin client applications.TreeView

Sample TreeView

Example: Creating TreeView

The following code creates a tree view and fills it with nodes.

dcl
> treeview objects <
TRVW object type TreeView;
TRND object type TreeNode;
TRND2 object type TreeNode;
enddcl
> create TreeView <
map TreeView('TRVW_EXAMPLE') to TRVWnew
> create TreeNode and add it to TreeView <
// Create a root node and attach it to the treeview
map TreeNode('ROOTNODE1') to TRNDnew
TRND.SetText('Root1')
TRVW.Add(TRND)
// Create a root sibling node and attach it to the treeview
map TreeNode('ROOTNODE2') to TRND2new
TRND2.SetText('Root2')
TRVW.Add(TRND2)

Properties and Methods

Inherits and exposes all its properties and methods (not listed below).GuiObject

The following table lists own properties and methods for the object:TreeView

TreeView object properties and methods

Property:Type Get Method Set Method

LabelEdit:Boolean getLabelEdit:Boolean setLabelEdit(Boolean)

ImageIndex:Integer getImageIndex:Integer setImageIndex(Integer)

PopupMenu:PopupMenu getPopupMenu:PopupMenu setPopupMenu()PopupMenu

SelectedImageIndex:Integer getSelectedImageIndex:Integer setSelectedImageIndex(Integer)

SelectedNode:TreeNode getSelectedNode:TreeNode setSelectedNode()TreeNode

Text:String getText:String setText(String)

LabelEdit:Boolean

The property gets or sets a value indicating whether the label text of the tree nodes can be edited.

ImageIndex:Integer

The property gets or sets the image-list index value of the default image that is displayed by the tree nodes.

SelectedImageIndex:Integer

The property gets or sets the image list index value of the image that is displayed when a tree node is selected.

SelectedNode:TreeNode

The property gets or sets the tree node that is currently selected in the tree view control.

Additional Action methods

Additional Action Method

Add()TreeNode

AddBmpToImageList(String)

Clear()

Collapse()

CollapseAll()

Count():Integer

Expand()

ExpandAll()

Find(String):TreeNode

Insert(Integer,)TreeNode

Remove(String)

Add(TreeNode)

The method adds tree node to the object.

Clear()

The method clears the list of tree nodes of the object.

Collapse()

The method collapses selected tree node of the object.

CollapseAll()

The method recursively collapses all tree nodes of the object.

Count():Integer

The method returns count of tree nodes of the object.

Expand()

The method expands selected tree node of the object.

ExpandAll()

The method recursively expands all tree nodes of the object.

Find(String):TreeNode

The method finds tree node of the object by its HpsID.

Insert(Integer, TreeNode)

The method inserts tree node to the given position in the list of tree nodes of the object.

Remove(String)

The method finds tree node of the object by its HpsID and removes it.

Events

The object triggers the following events:TreeView

NodeClick
NodeDoubleClick
BeforeLabelEdit
AfterLabelEdit
BeforeNodeCollapse
AfterNodeCollapse
BeforeNodeExpand

AfterNodeExpand
BeforeNodeSelect
AfterNodeSelect

TreeNode

The represents a node of a . To use a tree node, an instance of must first be created using the new operator andTreeNode TreeView TreeNode
added to object, as illustrated in the (also see).TreeView TreeView code example TreeView look example

Both and classes are containers of tree nodes. Thus, tree nodes can be added to object in the same manner asTreeNode TreeView TreeNode
they are added to object (see).TreeView TreeView code example

The class is not supported by Java or thin client applications.TreeNode

Properties and Methods

The following table lists own properties and methods for the object:TreeNode

TreeNode object properties and methods

Property:Type Get Method Set Method

Background:Color setBackground()Color

Font:Font setFont()Font

Foreground:Color setForeground()Color

HpsID:String setHpsID(String)

ImageIndex:Integer getImageIndex:Integer setImageIndex(Integer)

PopupMenu:PopupMenu getPopupMenu:PopupMenu setPopupMenu()PopupMenu

SelectedImageIndex:Integer getSelectedImageIndex:Integer setSelectedImageIndex(Integer)

Text:String getText:String setText(String)

ImageIndex:Integer

The property gets or sets the image list index value of the image displayed when the tree node is in the unselected state.

SelectedImageIndex:Integer

The property gets or sets the image list index value of the image that is displayed when the tree node is in the selected state.

Additional Action methods

Add()TreeNode

Clear()

Collapse()

CollapseAll()

Count():Integer

Expand()

ExpandAll()

Find(String):TreeNode

Insert(Integer,)TreeNode

Remove(String)

Add(TreeNode)

The method adds tree node to the object.

Clear()

The method clears the list of tree nodes of the object.

Collapse()

The method collapses selected tree node of the object.

CollapseAll()

The method recursively collapses all tree nodes of the object.

Count():Integer

The method returns count of tree nodes of the object.

Expand()

The method expands selected tree node of the object.

ExpandAll()

The method recursively expands all tree nodes of the object.

Find(String):TreeNode

The method finds tree node of the object by its HpsID.

Insert(Integer, TreeNode)

The method insers tree node to the given position in the list of tree nodes of the object.

Remove(String)

The method finds tree node of the object by its HpsID and removes it.

Events

The object does not trigger any event.TreeNode

Supporting Objects

Other objects that support the user interface objects in ObjectSpeak are:

Accelerator
Color
Constants
Dimension
Font
Formats (Derived)
GlobalEvent
Locale
Point
SetItem
Set

Accelerator

The object is used to allow key combinations that can be assigned to menu items, so that when the key combination is pressed, theAccelerator
menu item is triggered.

Accelerator object is supported in thin client.not

There are no predefined objects: an object must be created explicitly in order to use it. To create it, specify a characterAccelerator Accelerator
(such as N) and one or more modifiers (SHIFT, CTRL, ALT). Alternatively, specify a virtual key (such as VK_F4, which represents the F4 key) and
one or more modifiers. If multiple modifiers are used, they must be numerically added together.

Constants and Methods

The following table lists the constants and methods for this object:

Accelerator constants and methods

Modifier Description

SHIFT Shift key

CTRL Ctrl key

ALT Alt key

Virtual Key Description

VK_F1 F1 key

VK_F2 F2 key

VK_F3 F3 key

VK_F4 F4 key

VK_F5 F5 key

VK_F6 F6 key

VK_F7 F7 key

VK_F8 F8 key

VK_F9 F9 key

VK_F10 F10 key

VK_F11 F11 key

VK_F12 F12 key

accelerator(Char :Character; Modifiers:Integer) Constructor method, refer to the example for usage.

accelerator(VirtualKeyCode:Integer; Modifiers:Integer) Constructor method, refer to the example for usage.

KeyCode:Integer (read only)

KeyChar:Integer (read only)

Modifiers:Integer (read only)

Example: Assigning an Accelerator

When using these constants, you must indicate that they are defined in either the class or the class.Accelerator Constants
To assign an accelerator of Ctrl+N to a menu item that creates new files:

NewMenuItem.SetAccelerator(
 Accelerator('N', Accelerator.CTRL))new

To specify an accelerator of Ctrl+Alt+F1, you could do the following:

NewMenuItem.SetAccelerator(
 Accelerator(Accelerator.VK_F1,new

Accelerator.CTRL + Accelerator.ALT))

Notice that the CTRL and ALT modifiers are added together in order to specify that both Ctrl and Alt must be pressed with the F1 key. The above
example also illustrates that the accelerator constants are defined in the Constants class as well as the Accelerator class.

Color

The object is used to specify the foreground and background colors of objects.Color

Constructor and Parameters

You can create new objects with specified RGB (red, green, and blue) components, as shown in the following code sample:Color

NameField.SetForeground(Color(128,128,255))new
color(Red: ; Green: ; Blue:)Integer Integer Integer

A object can be created and assigned to a local variable, so you can use it multiple times:Color

dcl
CustomColor object type Color;
enddcl
map Color(128,128,255) to CustomColornew
NameField.SetForeground(CustomColor)
AddressField.SetForeground(CustomColor)

See for Font for a discussion of dynamic font creation.Constructor and Parameters
When using predefined colors, indicate that they are defined in the class, as shown in this example:Color

NameField.SetForeground(Color.RED)

Constants and Methods

The following table lists the constants and methods for this object:

Color object constants and methods

BLACK WHITE

DARKBLUE BLUE

DARKGREEN GREEN

DARKCYAN CYAN

DARKRED RED

DARKMAGENTA MAGENTA

DARKYELLOW YELLOW

DARKGRAY GRAY

LIGHTGRAY PINK

BROWN TURQUOISE

RGB:Integer

Color(Integer, Integer, Integer)

getBlue():Integer

getGreen():Integer

getRed():Integer

RGB:Integer

This allows you to get the RGB() value of the color. The RGB() value can be used to create a Java color or to compare two color objects. Here is
an example of these uses:

dcl
brownColor object type 'java.awt.Color';
enddcl
map 'java.awt.Color'(Color.BROWN.RGB()) to brownColornew

 brownColor.RGB() = Color.BROWN.RGB()if
trace('color matches');
endif

Color(Integer, Integer, Integer)

This method is a constructor taking red, green, and blue as integers.

getBlue():Integer

This method gets the blue value.

getGreen():Integer

This method gets the green value.

getRed():Integer

This method gets the red value.

Constants

The object defines useful integer constants that can be used within the rule.Constants

Constants

The following table provides a list of the constants.

Constants methods

ACCEPT OK_CANCEL

ALL_FIRST_UPPER_CASE OUT_OF_RANGE

ALT PLAIN

ASYNC_EVENT* PLAIN_MENUITEM

BORDER_DIALOG QUESTION

BORDER_NONE ROLLBACK

BORDER_SIZEABLE SETDOMAIN

BOTTOM SHIFT

CANCEL SHOW_ALWAYS

CENTER SHOW_AS_NEEDED

COORDINATE_CHAR SHOW_NEVER

CHECKBOX_MENUITEM SINGLE_RANGE_SELECTION

COORDINATE_PIXEL SINGLE_SELECTION

CTRL SYSTEM_EVENT*

DEFAULT_BUTTONS TOP

DEFAULT_CASE UP

DOWN UPPER_CASE

ERROR USER_EVENT*

FIRST_UPPER_CASE VERTICAL_LINES

HORIZONTAL_AND_VERTICAL_LINES VIEWDOMAIN

HORIZONTAL_LINES VK_F1

INFORMATION VK_F10

INTERFACE_EVENT* VK_F11

IN_ERROR VK_F12

LANDP_EVENT* VK_F2

LANDP_REQUEST_EVENT* VK_F3

LANDP_SYSTEM_EVENT* VK_F4

LEFT VK_F5

LISTBOX_BOTTOM VK_F6

LISTBOX_TOP VK_F7

LOWER_CASE VK_F8

MULTIPLE_RANGE_SELECTION VK_F9

NO WAIT

NOWAIT WARNING

NO_LINES YES

OK YES_NO

OK_BUTTON YES_NO_CANCEL

RIGHT

Entries marked with an asterisk are small Integer type constants. All other constants are Integer type.

GuiObject Type Constants

GuiObject type constants

BITMAP MENU

CHECKBOX MENUITEM

COLUMN MULTILINEEDIT

COMBOBOX PASSWORDFIELD

EDITFIELD POPUPMENU

ELLIPSE PUSHBUTTON

FILEEDITOR RADIOBUTTON

GROUPBOX RECTANGLE

LABEL TABLE

LISTBOX WINDOW

Format Type Constants

DATE_FORMAT
DECIMAL_FORMAT
LONGINT_FORMAT
SHORTINT_FORMAT
STRING_FORMAT

TIME_FORMAT

Usage

To map the value to a field in a view and pass it to other rules, create a Field of data type Smallint or Integer.
For example:

dcl
SaveMessageBox object type MessageBox;
MessageBoxReturn ;Integer
enddcl
> create a message box <
map MessageBox to SaveMessageBoxnew
> set message box properties <
SaveMessageBox.SetMessageType(Constants.QUESTION)
SaveMessageBox.SetButtonType(Constants.YES_NO_CANCEL)
SaveMessageBox.SetTitle('Save File')
SaveMessageBox.SetMessage('Save the file named %1?')
SaveMessageBox.SetArgument1('SAMPLE.XML')
> display message box <
map SaveMessageBox.Show to MessageBoxReturn
> map the value back to the calling rule <
map MessageBoxReturn to smallint_field of rule_ouput_view

Another example:

map Constants.LEFT to <edit_field_hpsid>.justification

Dimension

The object is used to specify the height and width of any visible GUI object (in integer precision) including a windows. In particular, the Dimension
 property of a visible object is of type Dimension.Size:Dimension

Normally the values of width and height are non-negative integers. The constructor that allows you to create a does not prevent youDimension
from setting a negative value for these properties. If the value of width or height is negative, the behavior of some methods defined by other
objects is undefined.

Dimension object is supported in thin client.not

Constructor and Parameters

The object constructs a Dimension and initializes it to the specified width and height.Dimension

Dimension(int width, int height)

Properties and Methods

The following table lists the properties and methods for this object.

Dimension properties and methods

Property:Type (Get Method) Set Method

Height:Integer setHeight(Integer)

Width:Integer setWidth(Integer)

Height:Integer

This is the height component of a object. Dimension objects are used to specify, via the property, the height and widthDimension Size:Dimension
of all visible objects, including the window itself. Use this property to query or set the height component of the .Dimension

Width:Integer

This property specifies the width of a object. The width of the column is set and queried with this property. Use this property to query orDimension

set the width component of the .Dimension

Example: Resizing an Edit Field

To resize an edit field when a push button is pressed, use the following code:

proc ResizeButtonClick Click object ResizeButtonfor
(e object type ClickEvent)
NameField.SetSize(Dimension(300, 100))new
endproc

To set the dimensions of an object:

dcl
myEditDimension object type Dimension;
enddcl
proc InitProc Initialize object TEST_DIMENSION (e object type InitializeEvent)for
map dimension(25,40) to myEditDimension EDIT_HPSID.setSize(myEditDimension)new
endproc

Font

The object specifies the font used to display text.Font

Font object is supported for thin client.not

Constructor and Parameters

You can create new objects with specified font names, styles, and sizes using the following code sample:Font

NameField.SetFont(new Font('Arial' , Font.BOLD, 14))

A object can be assigned to a local variable to use multiple times.Font

dcl
GroupBoxFont object type Font;
enddcl
map Font('Arial' , Font.BOLD, 14) to GroupBoxFontnew
myGroupBox.setFont(GroupBoxFont)

When using predefined fonts, indicate that they are defined in the Font class.
Font styles can be: FONT.PLAIN, FONT.BOLD, FONT.ITALIC, or FONT.BOLD+FONT.ITALIC.

Constants and Methods

Font constants and methods

The following table lists the constants and methods for this object:

BOLD ROMAN18

ITALIC ROMAN24

MODERN8 SWISS8

MODERN10 SWISS10

MODERN12 SWISS12

PLAIN SWISS14

ROMAN8 SWISS18

ROMAN10 SWISS24

ROMAN12 SYSTEMFONT8

ROMAN14

Font properties and methods

The following table lists the properties and methods for this object:

Property:Type (Get Method)

displayName :String getFont(FontName:String):Font
getStyle():Integer
getSize():Integer

The displayName is the logical name of the font (the name parameter used to construct the font) or the name set by the user using the property.

map to <afont>.displayname"my font"

getFont(FontName:String):Font

This method returns a predefined font (fonts defined in the fonts.ini).
For example, if is defined in font.ini as:TIMES

[TIMES]
Java=sanserif,12

then the following statement returns sanserif, 12 point for :myFont

set myFont := Font.getFont()"TIMES"

getStyle():Integer

Returns the current style. This is a combination of Font.PLAIN, Font.BOLD, Font.ITALIC.

getSize():Integer

Returns the size of the font.

Example: Specifying the font class

Indicate the font class when using predefined fonts, as shown here:

NameField.SetFont(Font.SWISS14)

Formats (Derived)

These derived formats inherit all the properties from the object.Format

DecimalFormat
LongIntFormat
IntFormat
ShortIntFormat
FloatFormat
DoubleFormat
DateFormat
TimeFormat
TimestampFormat
StringFormat

LongIntFormat class is used to format LongInt data type (64-bit integer), IntFormat class is used to format Int Format data (32-bit integer), and
ShortIntFormat class is used to format ShortInt data(16-bit integer). The other format classes are FloatFormat, DoubleFormat, DecimalFormat,
DateFormat, TimeFormat, TimestampFormat and StringFormat, which are associated with decimal, date, time, and string data types.

For a list of valid formatting symbols, refer to the .Rules Language Reference Guide

Properties and Methods

The following table lists the properties and methods for the derived format objects:

Derived format properties and methods

Property:Type (Get Method) Set Method

These are available for numeric types:
DecimalFormat, LongIntFormat, IntFormat,
ShortIntFormat, DoubleFormat, FloatFormat

 setMinimum(ShortInteger)

 setMinimum(Integer)

 setMinimum(Decimal)

 setMinimum(Double)

 setMaximum(ShortInteger)

 setMaximum(Integer)

 setMaximum(Decimal)

 setMaximum(Double)

Currency:Boolean setCurrency(Boolean)

This is available for string types:
StringFormat

Case setCase(Integer)

The setMinimum() and setMaximum methods set the range for a numeric field. For example, the value range of a field can be set to a minimum of
0 and a maximum of 100, and values less than 0 or greater than100 will result in an error.
The setCase() method for a string sets the case of the characters in the string (uppercase or lowercase). The following constants can be used
with the setCase method:

UPPER_CASE - All characters are uppercase
LOWER_CASE - All characters are lowercase
ALL_FIRST_UPPER_CASE - The first letter of every word is uppercase
FIRST_UPPER_CASE - Only the first letter of the first word is uppercase
DEFAULT_CASE - Use the case as entered and this is the default

For example:

dcl
strFormat object type StringFormat;
enddcl
map StringFormat to strFormatnew
strFormat.setCase(Constants.FIRST_UPPER_CASE)

GlobalEvent

The object is used for posting an event to which applications can subscribe. Global eventing is supported in Java (thick) clients only,GlobalEvent
but not in C# clients.

Properties and Methods

The following property is supported for this object:

post(Rule InstanceName:String):Boolean

For example, an ObjectSpeak method post could be used on the GlobalEvent object using

THRESHHOLD_MET.post()

where THRESHHOLD_MET is the name of the Physical Event object under a Rule.
On the subscribing end, the application can use either an event procedure or a Converse Event to handle the event. If the pre-defined system
view, HPS_EVENT_VIEW, is attached to the subscribing Rule, an event listener is automatically added to the Rule and a ConverseEvent is
triggered on receiving this event. The EVENT_NAME of the HPS_EVENT_VIEW has the name of the event.

Locale

The object is used to specify the information about country and language. Also, see the property.Locale Locale:Locale

Constructor and Parameters

The default constructor creates a System locale object (the same as HpsLocale.SYSTEM). The method name is .Constructor

Locale()

The user-configurable constructor allows you to specify the language and country code and creates a Locale object. This constructor creates a
Locale from the parameters for Language, a two-digit ISO language code (en for English, for example), and Country, a two-digit ISO country code
(US for United States, for example).

Locale(aLanguage:String, aCountry:String)

Properties and Methods

The following objects are predefined:Locale

Locale pre-defined objects

ALBANIA LUXEMBOURG

ARGENTINA NETHERLAND

AUSTRALIA NEW_ZEALAND

AUSTRIA NORWAY

BELGIUM POLAND

BRAZIL PORTUGAL

CANADA_FRENCH ROMANIA

CANADA_ENGLISH SINGAPORE

CHINA SOUTH_AFRICA

CZECHOSLOVAKIA SOUTH_KOREA

DENMARK SPAIN

FINLAND SWEDEN

FRANCE SWITZERLAND

GERMANY TAIWAN

GREECE THAILAND

HONGKONG THAILAND_BUDDHIST

HUNGARY TURKEY

ICELAND UNITED_KINGDOM

IRELAND UNITED_STATES

ITALY YUGOSLAVIA

JAPAN SYSTEM

The following table lists the read-only properties for this object:

Locale properties and methods

Property:Type (Get Method) Description

Country :String Gets country name

CurrencySymbol :String Gets symbol used for currency

DateSeparator :Char Gets separator (delimiter) for date format display

DecimalSeparator :Char Gets separator (delimiter) for decimal point

DefaultDateFormat :String Gets default date display format

DefaultTimeFormat :String Gets default time display format

Language :String Gets language for display

ThousandsSeparator :Char Gets separator for thousands

TimeSeparator :Char Gets separator (delimiter) for time format display

Point

The object is used to specify the location (in integer precision) of any visible GUI object, including a window, in (x, y) coordinate space. InPoint
particular, the property of visible objects is of type Point. For a window, the X and Y coordinates are relative to the upper left cornerLocation:Point
of the screen. For user interface objects (such as edit fields) the coordinates are relative to the upper left corner of the part of the window below
the title and menu bar.

Point object is supported in thin client.not

Constructor and Parameters

This object constructs and initializes a point at the specified (x, y) location in the coordinate space.

Point(int x, int y)

Properties and Methods

Here are the properties and methods for this object:

Point properties and methods

Property:Type (Get Method) Set Method

X:Integer setX(Integer)

Y:Integer setY(Integer)

X:Integer

This is the horizontal position (x coordinate) property of a Point object. Point objects are used in the property to specify the locationLocation:Point
of any object, including the window itself. The X property is used to query or set the x-component of the location.

Y:Integer

This is the vertical position (y coordinate) property of a Point object. Point objects are used in the property to specify the location ofLocation:Point
any object, including the window itself. The Y property is used to query or set the y-component of the location.

Example: Repositioning an Edit Field

Use the following code to reposition an edit field when a push button is pressed:

proc MoveButtonClick Click object MoveButtonfor
(e object type ClickEvent)
NameField.SetLocation(Point(200, 200))new
endproc

The following example shows how to edit the location:

dcl
myEditLocation object type Point;
enddcl
proc InitProc Initialize object TEST_DIMESION (e object type InitializeEvent)for
map Point(125,40) to myEditLocationnew
EDIT_HPSID.setLocation(myEditLocation)
endproc

SetItem

A SetItem object is used to dynamically create or update Rules Language SET elements, also known as set items. See also .Set

Constructors and Parameters

The following statements create SetItem objects:

SetItem(display: String, encoding: DataObject)

Specifies a new set item display.

SetItem(display: String, encoding: DataObject, state: Integer)

Specifies a new set item state.

SetItem(display: String, encoding: DataObject, text: String, state: Integer)

Specifies new set item text.
By including different parameters, you can create new SetItem objects in three ways. These parameters are:

The display parameter, which specifies a new set item display
The encoding parameter, which specifies new set item encoding
The state parameter, which specifies a new set item state. The default value for this parameter is ENABLED.
The text parameter specifies new set item text. The default value for this parameter is an empty (null) string.

Examples of use:

dcl
newItem OBJECT TYPE SetItem;
enddcl
MAP NEW SetItem(,) TO newItem"display" "encoding"
MAP NEW SetItem(, , SetItem.DISABLED) TO newItem"display" "encoding"
MAP NEW SetItem(, , , SetItem.ENABLED) TO newItem"display" "encoding" "text"

roperties and Constants

state:Integer

This property reflects the set item state, which is the way an item appears in associated GUI control. Set item can be in one of three states:

Enabled (default)
Non-selectable. The item does not display in the drop-down list but displays if the encoding was entered programmatically. This is a type
of read-only set item.
Disabled. The item cannot be selected and is not displayed. It is as though the item does not exist in the set.

The three corresponding constants in SetItem are:

ENABLED
NONSELECTABLE

DISABLED

Example of use:

newItem.setState(SetItem.DISABLED)

Methods

getEncoding(): DataObject

Returns encoding of the set item.

getDisplay(): String

Returns display of the set item.

getText(): String

Returns text of the set item.

Set

A object is used to update Rules Language SETs dynamically. Use this object to add new elements, access set items at runtime, and to readSet
and change their attributes.
New sets cannot be created at runtime. A Set object is constructed automatically for each set entity attached to the rule and has a the same name
as the set entity long name.

Properties

Count:Integer

Returns the number of items in the set.
For example:

DCL
 SI OBJECT TYPE SetItem;
 I,N INTEGER;
ENDDCL
DO FROM 1 TO mySet.Count INDEX I
 MAP mySet.GetSetItemAt(I) TO SI
 TRACE(,I, ,SI.GetDisplay())"INDEX= " " ITEM DISPLAY: "
ENDDO

Methods

addSetItem(item: SetItem)

Adds specified and previously created set item to the set. Encoding of item must be of the same type as the set or of convertible type (see
). No checking for duplicates is performed.Convertible types

For example:

mySet.addSetItem(SetItem(display, encoding))new

Or to add the same set item to several sets, write:

MAP NEW SetItem(display, encoding) TO newItem
mySet1.addSetItem(newItem)
mySet2.addSetItem(newItem)

addSetItem(display: String, encoding: DataObject)

Adds a new set item to a set.

addSetItem(display: String, encoding: DataObject, state: Integer)

Adds a new set item with a state parameter specified.

addSetItem(display: String, encoding: DataObject, text: String, state: Integer)

Adds a new set item with a text parameter specified.
These methods add a new set item to the set. The display parameter specifies new set item display. The encoding parameter specifies new set
item encoding. The state parameter specifies new set item state. The text parameter specifies new set item text. If addSetItem is used without a
state parameter specified, it defaults to SetItem.ENABLED. If addSetItem without text parameter is used, it defaults to empty string.
Encoding given must be of the same type as the set or of convertible type (see). If type of given encoding is not completelyConvertible types
equal to set type (but is convertible), this encoding is converted to set type. No checking for duplicates is performed.

getSetItem(encoding: DataObject) : SetItem

This method searches within the set for a set item with specified encoding. If several set items exist with the same encoding, the first one found is
returned. SetItem object is returned if a set item with this encoding is found; otherwise, a null reference is returned. Use the isClear function to test
if the method returns null reference.

getSetItemFromDisplay(display: String) : SetItem

This method searches within the set for a set item with a specified display. If several set items exist with equal displays, the first one found one is
returned. SetItem object is returned if a set item with this display is found; otherwise, a null reference is returned. Use the isClear function to test if
the method returns null reference..

getSetItemAt(index:Integer) : SetItem

This method returns the set item with the specified index. Null reference is returned if the index is greater than the number of set items. Use the
isClear function to test if the method returns null reference.

refresh()

This method updates GUI control associated with the set. Use this method after adding new items or changing a status of one or several set
items.

Example

Assume a rule has attached set of type INTEGER with name account_type.

DCL
display, encoding VARCHAR(40);
text VARCHAR(2000);
newSet (100) VIEW CONTAINS display, encoding, text;
setSize, i INTEGER;
item OBJECT TYPE SetItem;
ENDDCL
SQL ASIS
//query a set from database, populate newSet view and setSize
ENDSQL
DO TO setSize INDEX I
account_type.addSetItem(newSet.display,
INT(newSet.encoding)
)
// OR
// account_type.addSetItem(NEW SetItem(newSet.display,
// INT(newSet.encoding))
ENDDO
account_type.refresh()

Convertible types

Source Type Target Type Converted Type Comments

INTEGER DEC(n, m) DEC(10, 0) No data loss if n >= 10.

INTEGER SMALLINT SMALLINT Possible data loss.

SMALLINT DEC(n, m) DEC(5, 0) No data loss if n >= 10.

SMALLINT INTEGER INTEGER No data loss.

DEC SMALLINT SMALLINT Possible data loss.

DEC INTEGER INTEGER Possible data loss.

Any character type Any character type Equal to target type Possible data loss if target character data type is shorter than source.

Java Batch Objects

Batch objects are used to support batch client applications on the Java platform. This section discusses the object and events forRule
ObjectSpeak batch objects.

The only class of objects in batch ObjectSpeak is the .Abstract Class Objects

For information on how to create these objects using the Window Painter, refer to the Window Painter tool topic in the
.Development Tools Reference Guide

Abstract Class Objects

The following objects are the Abstract Class (high-level) batch objects available in ObjectSpeak:

Rule
System

Rule

The object plays a central role in the AppBuilder Java batch because it provides an object interface to AppBuilder Rules Language rules.Rule
The object has no properties, but it does define a number of methods to initiate actions, obtain information, and implement events.Rule

This section includes:

 MethodsRule
Events

Rule Methods

The following table lists the methods for the object.Rule

Rule object methods

queryUserAuthentication():Boolean

setUserAuthentication(userID:String, password:String)

trace(message:String<, object:view OR object:field>)

queryUserAuthentication():Boolean

The method queries for the name of the user and verifies permissions.queryAuthentication():Boolean

setUserAuthentication(userID:String, password:String)

The method enables you to set the user credentials to authenticate the remote server rules. The same method issetUserAuthentication()
invoked if QUERY_AUTHENTICATION_ON_STARTUP is enabled through the setting in the APPBUILDER.INI file. The AppBuilder
communication exits can override this information when a remote rule is invoked.

trace(message:String<, object:view OR object:field>)

The method traces the message. This method accepts either a View or a Field as an optional second parameter.trace(message:String)
When the second parameter is specified, the name and the value of the specified object is appended to the trace message. If a View is specified
as the second parameter, the name and the value of all fields are added as separate lines in the trace output.

Events

The following events can be triggered using the object:Rule

CommError - not supported in C#
SQLError - not supported in C#

System

The object provides an interface for some system services. Two methods are used to translate long names of AppBuilder entities, suchSystem
as rules or views, into corresponding Java class names or Java object names according to the AppBuilder naming conventions.

It is not supported in C#.

Constants and Methods

Constants

Type values:

The following table shows the various system type values.

 type valuesSystem

RULE_TYPE COMPONENT_TYPE

VIEW_TYPE WINDOW_TYPE

VIEWARRAY_TYPE OBJECT_TYPE

SET_TYPE HPSID_TYPE

FIELD_TYPE

Methods:

longNameToClassName(type:Integer, longName:String) : String

longNameToObjectName(type:Integer, longName:String) : String

longNameToClassName(type:Integer, longName:String) : String

The method translates the long name of an AppBuilder entity, whose type is specified by the first parameter using onelongNameToClassName
of the object constants, into a corresponding Java class name according to AppBuilder naming conventions.System

For example:

SET RuleClassName := System.longNameToClassName(System.RULE_TYPE, "MY_RULE")
RuleCaller.ExecuteRule(RuleClassName)

The parameter can have only one of the following values: , , , and type RULE_TYPE VIEW_TYPE VIEWARRAY_TYPE SET_TYPE
; other entities do not generate a class.COMPONENT_TYPE

longNameToObjectName(type:Integer, longName:String) : String

The method translates the long name of an AppBuilder entity, whose type is specified by the first parameter using onelongNameToObjectName
of the object constants, into a corresponding Java object name according to the AppBuilder naming conventions.System

For example:

SET RuleClassName := System.longNameToClassName(System.RULE_TYPE, "MY_RULE")
SET ViewObjectName := System.longNameToObjectName(System.VIEW_TYPE, "MY_VIEW")

RuleClassName ++ forms a reference to a field of generated rule class, which corresponds to the instance of view ViewObjectName MY_VIEW
owned by .MY_RULE

The type parameter can be anything except . This is because components' classes are never instantiated, and there is noCOMPONENT_TYPE
corresponding property in the rule class. Use for windows' objects that have , but for other objects andHPSID_TYPE HPSID OBJECT_TYPE
aliases.

Events

Events

This topic gives detailed information on all the events that are generated for Java-based ObjectSpeak and describes the event objects that are
passed into the event procedures.
Each event procedure has only one parameter. The name of this parameter is the name of the event followed by the word . For example,Event
the parameter for the Click event is called .ClickEvent
Event parameters are objects and, as such, have properties. Many of these properties are read-only ? that is, you can query their value but not
assign a value to them. For convenience, non-read-only properties have corresponding set methods.
Events that are not supported for thin clients (HTML) are noted. Migration samples for all the events are provided at < AppBuilder
>\samples\java\ospk.zip
For more information on the error checking and validating events, refer to .Data Validation

Data Validation

Data Validation

AppBuilder ObjectSpeak enables you to validate data when windows are created in an application. Data validation uses events to notify the
application that data is invalid or missing. AppBuilder provides both field-level and window-level validation.

Field-level Validation verifies that a field contains syntactically-valid data that is acceptable to the application.
Window-level Validation permits a window to be closed only if all the mandatory fields contain data and the data in all fields contains valid
syntax.

Field-level Validation

Field-level data validation occurs when:

The data in an editable field changes and focus is shifted away from the field
The end user presses while an editable field has focusEnter

The following figure describes the logic used to validate fields and windows.

Validation Flow Diagram

1.

Field-level validation occurs in two stages:

Triggering the FieldError Event - when data in the field contains syntax errors, the system triggers the FieldError event.

Triggering the FieldValidation Event - if the data is syntactically correct, the system maps the data to the data-linked data object (if
applicable) and triggers the event.FieldValidation

If a field contains errors, end users can return the field to the last known valid value by pressing Escape () while the field has focus.Esc
Field-level data validation occurs for the following objects with editable fields:

ComboBox
EditField
MultiLineEdit
PasswordField
Table

Triggering the FieldError Event

The event is triggered if the field contains errors, allowing the application to specify:FieldError

If the application should roll back the data to the last known acceptable value or leave the field in error. Use the Rollback:Boolean
property to specify the required action. The default value is and the data is rolled back.False not
If the application should display a message box describing the error. Use the property to specify the action. ByShowMessage:Boolean
default, the value is and the system shows the message box.True

The event contains the following important properties:FieldError

HpsID:String Returns the system identifier (HPSID) of the field in error.
Source:GuiObject Provides a reference to the field so that its properties can be accessed and its methods called, as necessary.

Example: FieldErrorEvent

The following is a sample procedure for an edit field named StartDate, which is data-linked to a Date field in the applicationFieldErrorEvent
hierarchy:

proc for FieldError object StartDate

(FldErr object type FieldErrorEvent)
set FldErr.Rollback = TRUE
Trace (' HpsID =', FldErr.HpsId)
Trace (' Source HpsID =', Fldr.Source.HpsId)
Trace (' ShowMessage =', FldErr.ShowMessage)
endproc

This procedure is called if the end user enters an invalid date into the StartDate field, and it responds by rolling the data back to the last known
acceptable value.

Triggering the FieldValidation Event

The event is triggered when an editable field loses focus or when the end user presses while a field has focus if there are noFieldValidation Enter
syntax errors. It allows the application to specify if data should be:

Accepted
Rolled back to the last known acceptable value
Considered in error

For example, a field containing an interest rate may have a value that is syntactically correct. In other words, it contains a valid numeric format,
but is invalid because the specified interest rate is not within a pre-defined range.
This event also allows you to specify that the application display a message box describing the error. Use the property toShowMessage:Boolean
specify the required action. By default, the system shows the message box.

If the data is accepted or rolled back, no message box is shown, regardless of the value of .ShowMessage

The event contains the following important properties:FieldValidation

HpsID:String ? Returns the system identifier (HPSID) of the field in error.
Source:GuiObject ? Provides a reference to the field allowing you to access its properties and call its methods, if necessary.

The data is mapped to an existing data link before the FieldValidationEvent is initialized, allowing data to be examined within the event procedure
or changed with a map statement.

Example: FieldValidation Event

The following is a sample event procedure for an edit field named "Interest" that is data-linked to a Decimal field in the applicationFieldValidation
hierarchy:

1.

2.

proc for FieldValidation object Interest

(e object type FieldValidationEvent)
if (MAIN_WINDOW_VIEW.Amount < 10000) and
(MAIN_WINDOW_VIEW.Interest < 10)
> display a message box <
DisplayMessageBox('Higher interest is required')
*> indicate that data is not acceptable; field
is now in error <*
e.SetResponse(Constants.IN_ERROR)
> suppress the default message box <
e.SetShowMessageBox(False)
endif
endproc

When the end user modifies the data in the Interest field and moves the focus to another field, the system calls this event procedure.
This procedure examines the loan amount. If the loan amount is less than $10,000 and the specified interest rate is less than 10%, the event calls
a procedure to display a message box indicating that a higher interest rate is required. It then specifies that the data in the field should be
considered in error.
Depending on the settings in the configuration file, the field displays the error condition by changing the foreground orAPPBUILDER.INI
background color, or both, of the edit field.

Window-level Validation

Window-level validation occurs when the end user clicks a button or selects a menu item whose property is or the Validation:Boolean True
 property is . Window-level validation allows the application to verify that the end user has specified all the requiredIgnoreValidation:Boolean False

information and that the information in the various fields is acceptable.
 describes the logic used to validate fields and windows.Validation Flow Diagram

Window-level validation occurs in three stages:

Triggering the WindowError Event - The system examines all fields with Mandatory:Boolean property set to True to ensure that they contain
 data. If any mandatory fields are empty, then the system triggers a WindowError event. If all mandatory fields contain data, the system

proceeds to the second stage.

Triggering the WindowError Event - The system examines the fields to ensure that the data is syntactically correct. If there are syntax
errors, the system triggers a event.WindowError
Triggering the WindowValidation Event - If the data syntax is correct, the system triggers a event. This allows theWindowValidation
application to verify the data.

If window-level validation fails for any reason, then the event of the button or menu item is triggered, thereby preventing the button orClick not
menu item from triggering events.
By using the property, you can routinely check mandatory fields as part of window-level validation.Validation:Boolean
For backwards compatibility, push buttons and menu items in the AppBuilder Java client contain not only the property, but alsoValidation:Boolean
two Boolean properties: and . These validation properties perform slightly differentIgnoreValidation:Boolean CheckMandatoryFields:Boolean
tasks:

Validation:Boolean - checks mandatory fields.always
IgnoreValidation:Boolean - only checks mandatory fields if the is .CheckMandatoryFields:Boolean True

Triggering the WindowError Event

The system triggers the event when:WindowError

Any mandatory fields are empty (if is)MandatoryError():Boolean True
Any fields contain data errors (if is)FieldError():Boolean True

This event also contains a property that specifies if a message box describing the error displays. By default, the systemShowMessage:Boolean
shows the message box.

Triggering the WindowValidation Event

The system triggers the event when:WindowValidation

All mandatory fields contain data and no fields contain errors.

This event defines the following results:

The required action if the application accepts the data. Use the property to specify the resulting action. If the applicationAccept():Boolean
accepts the data, the push button or menu option triggers a event.Click

That a message box display describing data errors. Use the property to specify the resulting action. By default,ShowMessage:Boolean
the system shows the message box.

If the data is accepted, no message box is shown, regardless of the value of .ShowMessage

User-Interface Properties

User-Interface Properties implemented by the Java user interface objects discussed in previous sections are described in this topic.

ObjectSpeak Events

Events in ObjectSpeak include:

ObjectSpeak events

Activate FieldValidation SQLError

CellFocusGained FocusGained Terminate (for Rule)

CellFocusLost FocusLost Terminate (for Window)

ChildRuleEnd HeaderClick Timer

Click Initialize (for Rule) WindowError

Close Initialize (for Window) WindowValidation

CommError MessageBox

Converse PageSelect

DataRequired ParentRuleEnd

DoubleClick Post

FieldError RuleEnd

Activate

This event is triggered on an existing instance of a detached rule if another attempt is made to detach that rule with the same instance name.
This event has no methods or properties.

Example: Activate Event

The following is an example of the syntax:

> example of Window ActivateEvent <
proc Activate object APPB_SS_MCLB_DISfor
(e object type ActivateEvent)
endproc

CellFocusGained

This event is triggered when a table cell gains focus. Various properties on the event can be used to obtain information about the cell that gained
focus.

Properties

The following table describes event properties for CellFocusGained.

CellFocusGained event properties

Property and Type Description

Column:Column This provides an object reference to the Column object that contains the cell clicked on. Properties and methods of the
Column object can be called to obtain additional information or to perform operations.

ColumnIndex:Integer This is the order number of the column, where the leftmost column is 1, the one to its right is 2, and so on. The
numbering column (if present) is not included in the numbering. Thus if there is a numbering column, the column to its
immediate right is 1.

HpsID:String This returns the system identifier (HPSID) of the object that generated the event.

PhysicalIndex:Integer This indicates the index (or occurrence number) of the row that contains the cell in the occurring view to which the table
is data-linked.

Source:GuiObject This is a reference to the Table object that generated the event, typed as a GuiObject.

VirtualIndex:Integer This indicates the virtual row number for the row that contains the cell.

Support

This event is supported for thin (HTML) clients. It is only supported for Java (thick) clients.not

Example: CellFocusGained Event

The following is an example of the syntax:

Proc CellFocusGained object TestMclb (MclbFocusGained object type CellFocusGainedEvent)for
Trace ('Column HpsID = ' ,MclbFocusGained.Column.Hpsid)
Trace ('HpsID = ' ,MclbFocusGained.Hpsid)
Trace ('Source HpsID = ' ,DMclbFocusGained.Source.Hpsid)
Trace ('PhysicalIndex = ' ,MclbFocusGained.PhysicalIndex)
Trace ('ColumnIndex = ', MclbFocusGained.ColumnIndex)
Trace ('VirtualIndex = ', MclbFocusGained.VirtualIndex)
EndProc

CellFocusLost

This event is triggered when a table cell loses focus. Various properties of the event can be used to obtain information about the cell that lost
focus.

Properties

The following table describes event properties for CellFocusLost.

CellFocusLost event properties

Property and Type Description

Column:Column This provides an object reference to the Column object that contains the cell clicked on. Properties and methods of the
Column object can be called to obtain additional information or to perform operations.

ColumnIndex:Integer This is the order number of the column, where the leftmost column is 1, the one to its right is 2, and so on. The
numbering column (if present) is not included in the numbering. Thus if there is a numbering column, the column to its
immediate right is 1.

HpsID:String This returns the system identifier (HPSID) of the object that generated the event.

PhysicalIndex:Integer This indicates the index (or occurrence number) of the row that contains the cell in the occurring view to which the table
is data-linked.

Source:GuiObject This is a reference to the Table object that generated the event, typed as a GuiObject.

VirtualIndex:Integer This indicates the virtual row number for the row that contains the cell.

Support

This event is supported for thin (HTML) clients. It is only supported for Java (thick) clients.not

Example: CellFocusLost Event

The following is an example of the syntax:

Proc CellFocusLost object TestMclb (MclbFocusLost object type CellFocusLostEvent)for
Trace ('Column HpsID = ' ,MclbFocusLost.Column.Hpsid)
Trace ('HpsID = ' ,MclbFocusLost.Hpsid)
Trace ('Source HpsID = ' ,MclbFocusLost.Source.Hpsid)
Trace ('PhysicalIndex = ' ,MclbFocusLost.PhysicalIndex)
Trace ('ColumnIndex = ', MclbFocusLost.ColumnIndex)
Trace ('VirtualIndex = ', MclbFocusLost.VirtualIndex)
EndProc

ChildRuleEnd

This event is triggered to a parent rule when a child rule terminates. (See .)ParentRuleEnd
ChildRuleEnd is not supported in C#.

Properties

The following table describes event properties for ChildRuleEnd.

ChildRuleEnd event properties

Property and Type Description

Instance:String This returns the instance name of the child rule that ended.

LongName:String This is the long name for the child rule.

OutputView:View This returns the output view of the child rule. This view can be mapped to any other view.

Example: ChildRuleEnd Event

The following is an example of the syntax:

> example of Rule ChildRuleEndEvent <
proc ChildRuleEnd object Rule_Afor
(evtChildRuleEnd object type ChildRuleEndEvent)
dcl
myChar (32);char
myInteger ;Integer
View myView contains myChar, myInteger;
enddcl
trace(,evtChildRuleEnd.Instance)"Instance: "
trace(,evtChildRuleEnd.LongName)"LongName: "
set myView := evtChildRuleEnd.OutputView
trace(,myChar)"myChar: "
trace(, (myInteger))"myInteger: " char
endproc

The following is an example of the output view being mapped to another view:

proc aaa FOR ChildRuleEnd object CUST_DIS
(evtChildRuleEnd object type ChildRuleEndEvent)
set CUST_DIS.CUST_INFO :=
evtChildRuleEnd.OutputView
endproc

If the child rule was detached with the INSTANCE clause, as shown in this code:

use RULE <rulename> DETACH INSTANCE <instance name>

then the Instance property contains the specified instance name; otherwise, it contains the long name of the rule that ended.

Click

This event is triggered if the user clicks the mouse button when the mouse is over a user interface object. It also occurs in the following situations:

The key is pressed when the window has a default push button.Enter
The spacebar is pressed when a check box, radio button, or push button has the focus.
The user presses the mnemonic key for a push button, radio button, or check box. The mnemonic is the underlined character in the text;
pressing and a mnemonic character is equivalent to clicking on the object with the mouse and thus triggers the Click event.Alt
The user clicks on a menu item or presses the accelerator key combination (if any) associated with the menu item.
The user selects an item in a list box or combo box by pressing an arrow key.
The user selects a cell in a table by clicking with the mouse button or (if already in the table) by pressing an arrow key.
The Selected property of a radio button is set to .True
The value of the Selected property of a check box is changed.
Data is mapped to a field data-linked to a radio button or check box.

Clicking on a radio button changes the data link associated with it when it is changing state (selected from unselected or vice versa).
Clicking on check box changes the data link associated with it.
The Click event is not supported for thin client EditField.

Properties

The following table describes event properties for Click Event.

Click event properties

Property and Type Description

Column:Column When triggered by a table, this provides an object reference to the Column object that was clicked on (to which the
object is data-linked). Properties and methods of the Column object can be called to obtain additional information or to
perform operations.

ColumnIndex:Integer When triggered by a table, this provides the order number (index) of the column that was clicked on, where the
left-most column is 1, the one to its right is 2, and so on. The numbering column (if present) is not included in the
numbering. Thus, if there is a numbering column, the column to its immediate right is 1.

HpsID:String This returns the system identifier (HPSID) of the object that generated this event. If this event is triggered by a table
cell, the HpsID property contains the system identifier (HPSID) of the table (not the cell).

PhysicalIndex:Integer When triggered by a table, this provides the occurrence number (index) of the row in the occurring view clicked on (to
which the object is data-linked).

Source:GuiObject This is a reference to the table object that generated the event, typed as a GuiObject. This provides an object reference
to the object that triggered the event. This reference can be used to manipulate the object. If this event is triggered by a
table cell, the Source property returns an object reference to the table itself (not the cell). The reference has the type of
GuiObject.

VirtualIndex:Integer When triggered by a table, this provides the virtual row number (index) for the row that was clicked on.

If the event is triggered by a table cell, the , , , and propertiesColumn:Column ColumnIndex:Integer PhysicalIndex:Integer VirtualIndex:Integer
contain information about the row and column of the cell that generated the event. If the event is not triggered by a table, these properties are not
used.

Example: Click Events

This example shows a Click event procedure that responds to only one object, namely the check box whose system identifier (HPSID) is
'CHECK_1'.

/////////////Click Event Procedure by a Single //////////////Object
// Checkbox CHECK_1 Event Click
Proc Click object CHECK_1 (CheckBoxClick object type ClickEvent)for
Trace(' HpsID = ', CheckBoxClick.Hpsid)
Trace(' Source HpsID = ', CheckBoxClick.Source.HpsID)
EndProc
// Spreadsheet MCLB_1 Event Click
Proc Click object MCLB_1 (MclbClick object type ClickEvent)for
Trace ('Column = ', MclbClick.Column.Hpsid)
Trace ('HpsID = ' ,MclbClick.Hpsid)
Trace ('Source HpsID = ' ,MclbClick.Source.Hpsid)
Trace ('PhysicalIndex = ' , MclbClick.PhysicalIndex)
Trace ('ColumnIndex = ', MclbClick.ColumnIndex)
Trace ('VirtualIndex = ', MclbClick.VirtualIndex)
EndProc

This example shows a Click event procedure that is triggered by all similar objects (such as push buttons) and demonstrates how the HpsID
property on the ClickEvent parameter can be used to determine which button was pressed.

///////////Click Event Procedure by Type of the //////////////Object
// Checkbox CHECK_1 Event Click
Proc Click Type CheckBox (CheckBoxClick object type ClickEvent)for
Trace(' HpsID = ', CheckBoxClick.Hpsid)
Trace(' Source HpsID = ', CheckBoxClick.Source.HpsID)
EndProc
// Spreadsheet MCLB_1 Event Click
Proc Click Type Table (TableClick object type ClickEvent)for
Trace ('Column = ', MclbClick.Column.Hpsid)
Trace ('HpsID = ' ,MclbClick.Hpsid)
Trace ('Source HpsID = ' ,MclbClick.Source.Hpsid)
Trace ('PhysicalIndex = ' , MclbClick.PhysicalIndex)
Trace ('ColumnIndex = ', MclbClick.ColumnIndex)
Trace ('VirtualIndex = ', MclbClick.VirtualIndex)
EndProc

Close

The event is triggered when the user attempts to close a window using either the system exit or the shortcut key. By default, the system exitClose
does nothing because many business applications do not want events created by the user to cause changes. So, to allow the system exit to close
the window, you must define the procedure to explicitly terminate the window by calling the event. Then, when the system exit is clicked,Close
the event is generated and the system terminates the window based on that event.Close
This event has no methods or properties.
This event is not supported in the thin client development.

Support

This event is supported for thin (HTML) clients, only for Java (thick) clients.not

Example: Close Events

> example of Window CloseEvent <
proc Close object APPB_SS_MCLBfor
(evtClose object type CloseEvent)
*> normal to then trigger the terminate event <*for this
thisrule.Terminate
endproc

You can also define this procedure:

proc CloseProcedure Close type windowfor
(evtClose object type CloseEvent)
(You can add other business logic here, such as an -then clause you want to check anything beforeif if
closing.)
windowname.terminate
endproc
where CloseProcedure is a name you define a procedure and windowname is the object name thefor for
window object.

CommError

The event is used in conjunction with HPS_COMM_ERROR_RULE system rule. Refer to for the information about rules. ForCommError Rule
further information on the HPS_COMM_ERROR_RULE, see the .Deploying Applications Guide
CommError event is not supported in C#.

Properties

The following table describes event properties for CommError.

CommError event properties

Property Type Description

abort Boolean Enable this flag to terminate the application on this communication error. This overrides any other setting and
the application exits. It is disabled by default and setting it to true enables it.

callCommErrorRule Boolean Enable this flag to invoke the HPS_COMM_ERROR_RULE on exit from this event. By default this is enabled
and the rule is called.

Exception Object This is the exception object with all the details of the error. Refer to .Exception Properties

LocalErrorCode Integer Error code from the client side. This is set when there is an error in client-side processing or the
communication error of the request or response.

Message String The error message as a string.

RemoteErrorCode Integer The error code from the server side.

RemoteRuleName String Name of the remote rule that failed to execute.

Exception Properties

The following table describes exception properties for CommError.

CommError Exception Properties

Name Type Description

callingRuleId String The client rule name

commErrorView View An AppBuilder view that has various fields listed below. This is useful to map data to other views for error
processing.

commErrorCode Integer The error code

errorID Integer The error ID

loginName String The user ID if given

protocolErrorCode Integer The communications error code

serverError Integer The error code from the server

serviceNameId String The short name of the remote rule

targetMachine String The server host name

targetProtocol String The protocol used for communication

targetServer String The target sever ID

tranId Integer A unique transaction ID

viewLength Integer The view length

workstationId String The client host name

Example: CommError Window Event

Here is an example of the syntax:

> example of Rule CommErrorEvent <
proc CommError Type Rulefor
(eCommErr object type CommErrorEvent)
> Trace CommErrorEvent properties <
trace('eCommErr.abort: ', eCommErr.abort)
trace('eCommErr.callCommErrorRule: ', eCommErr.callCommErrorRule)
trace('eCommErr.LocalErrorCode: ', eCommErr.LocalErrorCode)
trace('eCommErr.Message: ', eCommErr.Message)
trace('eCommErr.RemoteErrorCode: ', eCommErr.RemoteErrorCode)
trace('eCommErr.RemoteRuleName: ', eCommErr.RemoteRuleName)
> Trace CommErrorException properties <
trace('eCommErr.Exception.callingRuleId: ', eCommErr.Exception.callingRuleId)
trace('eCommErr.Exception.commErrorCode: ', eCommErr.Exception.commErrorCode)
trace('eCommErr.Exception.errorID: ', eCommErr.Exception.errorID)
trace('eCommErr.Exception.loginName: ', eCommErr.Exception.loginName)
trace('eCommErr.Exception.protocolErrorCode: ', eCommErr.Exception.protocolErrorCode)
trace('eCommErr.Exception.serverError: ', eCommErr.Exception.serverError)
trace('eCommErr.Exception.serviceNameId: ', eCommErr.Exception.serviceNameId)
trace('eCommErr.Exception.targetMachine: ', eCommErr.Exception.targetMachine)
trace('eCommErr.Exception.targetProtocol: ', eCommErr.Exception.targetProtocol)
trace('eCommErr.Exception.targetServer: ', eCommErr.Exception.targetServer)
trace('eCommErr.Exception.tranID: ', eCommErr.Exception.tranID)
trace('eCommErr.Exception.viewLength: ', eCommErr.Exception.viewLength)
trace('eCommErr.Exception.workstationId: ', eCommErr.Exception.workstationId)
endproc

Converse

The event is triggered when a user interface action occurs that would have caused the converse window statement to return in legacyConverse
applications. This event is triggered by the window, not by other user interface objects.

This event is used to provide backwards compatibility and should not be used for new applications.

To use the event to port existing applications, define a event procedure, and include the logic that followed the converseConverse Converse
window statement in the converse window loop. The event object that is passed to the event procedure has a number ofConverse Converse
read-only properties that make available the same information provided in the predefined system view HPS_EVENT_VIEW.
If HPS_EVENT_VIEW is attached to the rule in the application hierarchy, then HPS_EVENT_VIEW is updated with the appropriate information
before the event is triggered. Your application code can then obtain the information it needs from the properties of the eventConverse Converse
or from HPS_EVENT_VIEW.

Properties

The following table describes event properties for Converse.

Converse event properties

Property and
Type

Description

EventParam()
:String

This returns a string that contains the name of the event, such as 'HPS_PB_CLICK', 'HPS_IMMEDIATE_RETURN', and
'HPS_MENU_SELECT'.

EventQualifier()
:String

EventSource()
:String

This returns the system identifier (HPSID) of the user interface object on which the action occurred which triggered the
event.

EventType()
:Integer

EventView()
:String

EventParam() :String

This returns an optional, event-specific string that contains additional information.
This string can be empty.

EventQualifier() :String

This returns an optional, event-specific string that contains additional information.
This string can be empty.

EventSource() :String

This provides the system identifier (HPSID) of the user interface object on which the action occurred that triggered the event. For example, for an
HPS_PB_CLICK event, this property provides the system identifier (HPSID) of the push button that was clicked.

EventType() :Integer

This returns the type of event of the predefined system view HPS_EVENT_VIEW, as one of the following values (as defined in the Constants
class):

SYSTEM_EVENT
INTERFACE_EVENT
USER_EVENT
ASYNC_EVENT
LANDP_EVENT
LANDP_REQUEST_EVENT
LANDP_SYSTEM_EVENT

EventView() :String

This returns the name of an optional, event-specific view that contains additional information.
This string is empty if no view is provided.

Example: Converse Event

> example of Window ConverseEvent <
proc Converse type Windowfor
(evtConverse object type ConverseEvent)
trace('evtConverse.EventParam: ', evtConverse.EventParam)
trace('evtConverse.EventQualifier: ', evtConverse.EventQualifer)
trace('evtConverse.EventSource: ', evtConverse.EventSource)
trace('evtConverse.EventType: ', evtConverse.EventType)
trace('evtConverse.EventView: ', evtConverse.EventView)
endproc

DataRequired

The event is triggered by the object when it requires different data mapped into its data-linked occurring view. It needs thisDataRequired Table
information to respond to the user's request to scroll data. This event is used to implement the . It canSmooth Scrolling in a DataRequired Event
be used to instruct the table to automatically update its display and to specify to the table what data has been placed in the occurring view.

Smooth Scrolling in a DataRequired Event

The Smooth Scrolling option scrolls the page from one link to another rather than jumping to it directly. This can prevent user disorientation,
particularly in a large document. There are two ways to implement smooth scrolling. The first approach is similar to that used in previous versions

of the product; it requires you to explicitly call the method, and optionally the method. In another moresetVirtualListBoxSize() setFirstVisibleRow()
efficient approach, the table calls these methods automatically.
Both of these approaches share the requirement that the program logic must obtain the appropriate data from the data source and place it in the
data-linked occurring view. The program logic knows which data is needed by the TopVirtualRow property of event. It requires youDataRequired
to explicitly call the method, and, optionally, the method. In the second approach, these methods aresetVirtualListBoxSize() setFirstVisibleRow()
called automatically by the table itself. In both approaches, the event procedure must fetch the appropriate data and place it in theDataRequired
data-linked occurring view.
In the first approach, when event is triggered, its event procedure calls the table's method to determine whichDataRequired ElevatorPosition()
virtual row should be placed in the top of the occurring view. Once the data has been fetched and is placed in the occurring view, the table's

 method is called to specify what virtual row was actually placed in the top of the occurring view and the total number ofsetVirtualListBoxSize()
virtual rows in the data source. Optionally, the tables method can be called to specify that a row other than that at the top ofsetFirstVisibleRow()
the occurring view should be displayed at the top of the table. The table is then updated with the appropriate data.
A more efficient way to implement smooth scrolling is to make use of the TopVirtualRow and Refresh properties of the event. If,DataRequired
after fetching the data into the data-linked occurring view, the event procedure sets the event's Refresh property to , then there is no needTrue
for the event procedure to call and ?these methods are automatically called by the table itself. WhensetVirtualListBoxSize() setFirstVisibleRow()
this event is triggered, the TopVirtualRow property is initialized with the virtual row index of the data that needs to be displayed at the top of the
table. At this point, the event procedure for the event fetches the data and places it into the data-linked occurring view.
There is another way to implement smooth scrolling that is more compatible with previous versions of the product. In this approach, when this
event is triggered, its event procedure calls the table's method to determine which virtual row should be placed at the top of theElevatorPosition()
occurring view. Once the data has been fetched and is placed in the occurring view, the table's method is called to specifysetVirtualListBoxSize()
what virtual row was actually placed in the top of the occurring view and the total number of virtual rows in the data source. The table is then
updated with the appropriate data.
For an example of smooth scrolling using system components, refer to the section on smooth scrolling in .System Components Reference Guide

Properties

The following table describes event properties for DataRequired.

DataRequired event properties

Property and Type Description

Direction():Integer This is a read only property representing the scrolling direction. It can have one of the following values:Constants.UP,
Constants.DOWN.

HpsID:String This returns the system identifier (HPSID) of the object that generated the event.

Refresh():Boolean This indicates whether the table should automatically update its display.

Source:GuiObject This is a reference to the object that generated the event, typed as a GuiObject.

TopVirtualRow:Integer On input, this contains the virtual index of the row that must be displayed at the top of the table. On output, this must
contain the virtual index of the first row in the data-linked occurring view. (Output value is significant only if Refresh is
True.)

TypeString:String This returns a string to indicate the type of event.

The property of event specifies the system identifier (HPSID) of the table which is requesting data. The TypeStringHpsID:String DataRequired
property specifies the kind of action that resulted in the need for additional data.
The property indicates if the table should automatically update the new top virtual row. If you want a new top row other than theRefresh():Boolean
current one, set the event property TopVirtualRow before setting this method. If Refresh is , the table updates the new top row automaticallyTrue
by calling and when the event procedure exits. If Refresh is , you must include code,setVirtualListBoxSize FirstVisibleRow DataRequired False
within the event procedure, to cause the display to be updated. This code consists of a call to the table's DataRequired setVirtualListBoxSize()
method and, optionally, the method. By default, Refresh is set to . We recommend that you allow the table tosetFirstVisibleRow() False
automatically update these values.
When the event procedure is first invoked, the property is pre-initialized with the virtual index of the row that must beTopVirtualRow:Integer
displayed at the top of the table. When the event procedure exits, TopVirtualRow must contain the virtual index of the first row in the data-linked
occurring view if Refresh is set to .True
If the application does not use a back buffer to include rows at the top of the occurring view that are before the row to be displayed at the top of
the displayed table, then the input and output values of TopVirtualRow are identical. However, if a back buffer is used, then the input and output
values are different.
If the virtual table size (which determines the position of the thumb in the table's vertical scroll bar) is considered to change as a result of the data
fetch, the table's method must be called explicitly in the event procedure, even if Refresh is .setVirtualListBoxSize() True
The TopVirtualRow property has different meanings on input and output. On input, when the event procedure is first invoked, TopVirtualRow is
pre-initialized with the virtual index of the row that must be displayed at the top of the table. The output value of TopVirtualRow is significant only if
Refresh is when the event procedure exits. If it is set to , then on output TopVirtualRow must contain the virtual index of the first row inTrue True
the data-linked occurring view.

Refresh():Boolean

This indicates whether the table should automatically update its display.

Direction():Integer

This is a read only property representing the scrolling direction. It can have one of the following values: Constants.UP or Constants.DOWN.

Example: Table DataRequiredEvent

> example of Table DataRequiredEvent <
proc DataRequired object OBJ_LBfor
(e object type DataRequiredEvent)
endproc

DoubleClick

The event is triggered if the user double-clicks the mouse button when the mouse is over a user interface object. It is triggered byDoubleClick
most common user interface objects, with the notable exception of check boxes and push buttons.
The DoubleClick event is not supported for thin client EditField.

Double-clicking on an object also triggers ClickEvent, if ClickEvent is defined for that object. The order of events generated are
ClickEvent, DoubleClickEvent.

Properties

The following table describes properties for DoubleClick.

DoubleClick properties

Property and Type Description

Column:Column When triggered by a table, this provides an object reference to the Column object that was clicked on (to which the
object is data-linked). Properties and methods of the Column object can be called to obtain additional information or to
perform operations.

ColumnIndex:Integer When triggered by a table, this provides the order number (index) of the column that was clicked on, where the leftmost
column is 1, the one to its right is 2, and so on. The numbering column (if present) is not included in the numbering.
Thus if there is a numbering column, the column to its immediate right is 1.

HpsID:String This returns the system identifier (HPSID) of the object that generated the event.

PhysicalIndex:Integer When triggered by a table, this provides the occurrence number (index) of the row in the occurring view clicked on (to
which the object is data-linked).

Source:GuiObject This is a reference to the table object that generated the event, typed as a GuiObject.

VirtualIndex:Integer When triggered by a table, this provides the virtual row number (index) for the row that was clicked on.

If the event is triggered by a table cell, the , , , and propertiesColumn:Column ColumnIndex:Integer PhysicalIndex:Integer VirtualIndex:Integer
contain information about the row and column of the cell that generated the event. If the event is not triggered by a table, these properties are not
used.
The property of the event can be used to obtain the system identifier (HPSID) of the object that generated the Click event. If thisHpsID:String
event is triggered by a table cell, the HpsID property contains the system identifier (HPSID) of the table (not the cell).
The property provides an object reference to the object that triggered the event. This reference can be used to manipulate theSource:GuiObject
object. If this event is triggered by a table cell, the Source property returns an object reference to the table itself (not the cell). The reference has
the type of GuiObject.

Example: DoubleClickEvent

////////DOUBLECLICK Event Procedure by Type of the ///////////Object
// Spreadsheet MCLB_1 Event DOUBLECLICK
Proc DoubleClick Type Table (TableDoubleClick object type DoubleClickEvent)for
Trace ('Column = ', TableDoubleClick.Column.Hpsid)
Trace ('HpsID = ', TableDoubleClick.Hpsid)
Trace ('Source HpsID =', TableDoubleClick.Source.Hpsid)
Trace ('PhysicalIndex =', TableDoubleClick.PhysicalIndex)
Trace ('ColumnIndex =', TableDoubleClick.ColumnIndex)
Trace ('VirtualIndex = ', TableDoubleClick.VirtualIndex)
EndProc
// Multilineedit MLE_1 Event DOUBLECLICK
Proc DoubleClick Type MultiLineEdit (MultiLineEditDoubleClick object type DoubleClickEvent)for
Trace(' HpsID =', MultiLineEditDoubleClick.Hpsid)
Trace('Source HpsID =', MultiLineEditDoubleClick.Source.HpsID)
EndProc
/////////////DOUBLECLICK Event Procedure by Every Single //////////////Object
// Spreadsheet MCLB_1 Event DOUBLECLICK
Proc DoubleClick object MCLB_1 (MclbDoubleClick object type DoubleClickEvent)for
Trace ('Column = ', MclbDoubleClick.Column.Hpsid)
Trace ('HpsID = ', MclbDoubleClick.Hpsid)
Trace ('Source HpsID =', MclbDoubleClick.Source.Hpsid)
Trace ('PhysicalIndex =', MclbDoubleClick.PhysicalIndex)
Trace ('ColumnIndex =', MclbDoubleClick.ColumnIndex)
Trace ('VirtualIndex = ', MclbDoubleClick.VirtualIndex)
EndProc
// Multilineedit MLE_1 Event DOUBLECLICK
Proc DoubleClick object MLE_1 (MultiLineEditDoubleClick object type DoubleClickEvent)for
Trace(' HpsID =', MultiLineEditDoubleClick.Hpsid)
Trace('Source HpsID =', MultiLineEditDoubleClick.Source.HpsID)
EndProc

FieldError

The event is triggered when an editable field loses focus or when the Enter key is pressed while the field has focus, and the data in theFieldError
field is in error. It allows the application to specify whether the data should be rolled back to the last known acceptable value and whether a
message box describing the data should be displayed.
This event is triggered by the following objects:

ComboBox
EditField
MultiLineEdit
PasswordField
Table

To specify whether the data should be rolled back, set the property. To specify whether a message box should be shown if theRollback:Boolean
field is not rolled back, set the property. By default, the data is rolled back and an error message is shown. AShowMessage:Boolean not not
setting in the VALIDATION section of APPBUILDER.INI, SHOW_FIELD_ERROR_MESSAGE_BOX_DEFAULT, can be used to configure the
default for .ShowMessage
For more information, see .Field-level Validation

Support

This event is supported for thin (HTML) clients.not

Properties

The following table describes event properties for FieldError.

FieldError event properties

Property and Type Description

ColumnIndex:Integer When triggered by a table, this provides the order number (index) of the column that was clicked on, where the
left-most column is 1, the one to its right is 2, and so on. The numbering column (if present) is not included in the
numbering. Thus, if there is a numbering column, the column to its immediate right is 1.

HpsID:String Read-only property. This returns the system identifier (HPSID) of the object that generated the event.

PhysicalIndex:Integer When triggered by a table, this provides the occurrence number (index) of the row in the occurring view clicked on (to
which the object is data-linked).

Rollback:Boolean This indicates whether the data should be rolled back to the last known acceptable value. (The default value is
FALSE.)

ShowMessage:Boolean This indicates whether a message box describing the error should be shown if the data is not rolled back. (The
default value is FALSE; unless the default is being specified by a setting in appbuilder.ini.)

Source:GuiObject Read-only property. This is a reference to the object that generated the event, typed as a GuiObject.

VirtualIndex:Integer When triggered by a table, this provides the virtual row number (index) for the row that was clicked on.

If this event is triggered by a table cell, the property contains the system identifier (HPSID) of the table itself (not the cell), and theHpsID:String
Source property returns an object reference to the table.

Example: FieldError Event

// FieldErrorEvent EditFieldfor
Proc FieldError object EDIT_1(FieldErrorEdit object type FieldErrorEvent)for
Trace('HpsID = ', FieldErrorEdit.HpsID)
Trace('RollBack =', FieldErrorEdit.RollBack)
Trace('ShowMessage =', FieldErrorEdit.ShowMessage)
Trace('Source HpsID =', FieldErrorEdit.Source.Hpsid)
endproc
//FieldErrorEvent For MCLB
Proc FieldError object MCLB_1(FieldErrorMclb object type FieldErrorEvent)for
Trace('HpsID = ', FieldErrorMclb.HpsID)
Trace('RollBack =', FieldErrorMclb.RollBack)
Trace('ShowMessage =', FieldErrorMclb.ShowMessage)
Trace('Source HpsID =', FieldErrorMclb.Source.Hpsid)
Trace('ColumnIndex =', FieldErrorMclb.ColumnIndex)
Trace('PhysicalIndex =', FieldErrorMclb.PhysicalIndex)
Trace('VirtualIndex =', FieldErrorMclb.VirtualIndex)
endproc

FieldValidation

The event allows an application to validate the data in an editable field when the field loses focus or when the key isFieldValidation Enter
pressed while the field has focus. It is triggered only if there is no intrinsic data or formatting errors. If there are errors, the event isFieldError
triggered.
This event is triggered by the following objects:

ComboBox
EditField
MultiLineEdit
PasswordField
Table

For more information, see .Field-level Validation

Usage

This event allows the application to specify whether the data should be accepted, rolled back to the last known acceptable value, or considered in
error. The default value is .ACCEPT
This event also allows the application to specify whether a message box should be displayed if the data is regarded as "in error". By default, a
message box is shown if the data is in error.
To specify whether the data should be accepted, rolled back, or considered in error, set the property to one of the followingResponse:Integer
values:

ACCEPT
ROLLBACK
IN_ERROR

To specify whether a message box should be shown if the field is in error, set the property to or .ShowMessage:Boolean True False
If this event is triggered by a table cell, the property contains the system identifier (HPSID) of the table itself (not the cell), and theHpsID:String
Source property returns an object reference to the table.

Properties

The following table describes event properties for FieldValidation.

FieldValidation event properties

Property and Type Description

ColumnIndex:Integer When triggered by a table, this provides the order number (index) of the column that was clicked on, where the
left-most column is 1, the one to its right is 2, and so on. The numbering column (if present) is not included in the
numbering. Thus, if there is a numbering column, the column to its immediate right is 1.

HpsID:String Read-only property. This returns the system identifier (HPSID) of the object that generated the event.

PhysicalIndex:Integer When triggered by a table, this provides the occurrence number (index) of the row in the occurring view clicked on (to
which the object is data-linked).

Response:Integer This indicates whether the data should be accepted, rolled back to the last known acceptable value, or regarded in
error. The default value is accepted.

ShowMessage:Boolean This indicates whether a message box describing the error should be shown if the data is not rolled back. (The
default value is TRUE.)

Source:GuiObject Read-only property. This is a reference to the object that generated the event, typed as a GuiObject.

VirtualIndex:Integer When triggered by a table, this provides the virtual row number (index) for the row that was clicked on.

Support

This event is supported for thin (HTML) clients.not

Example: FieldValidation

> example of Field FieldValidationEvent <
// FieldValidationEvent EditFieldfor
Proc FieldValidation object EDIT_1(FieldValidationEdit object type FieldValidation)for
Trace('HpsID = ', FieldValidationEdit.HpsID)
Trace('Response =', FieldValidationEdit.Response)
Trace('ShowMessage =', FieldValidationEdit.ShowMessage)
Trace('Source HpsID =', FieldValidationEdit.Source.Hpsid)
endproc
//FieldValidationEvent For MCLB
Proc FieldValidation object MCLB_1(FieldValidationMclb object type FieldValidationEvent)for
Trace('HpsID = ', FieldValidationMclb.HpsID)
Trace('Response =', FieldValidationMclb.Response)
Trace('ShowMessage =', FieldValidationMclb.ShowMessage)
Trace('Source HpsID =', FieldValidationMclb.Source.Hpsid)
Trace('ColumnIndex =', FieldValidationMclb.ColumnIndex)
Trace('PhysicalIndex =', FieldValidationMclb.PhysicalIndex)
Trace('VirtualIndex =', FieldValidationMclb.VirtualIndex)
endproc

FocusGained

The event is triggered when a user interface object gains focus.FocusGained
Tables trigger the event. They do trigger the event.CellFocusGained not FocusGained
The FocusGained event is not supported for thin client EditField.

Properties

The following table describes event properties for FocusGained.

FocusGained event properties

Property and Type Description

HpsID:String This returns the system identifier (HPSID) of the object that generated the event.

Source:GuiObject This is a reference to the object that generated the event, typed as a GuiObject.

The property of the event can be used to obtain the system identifier (HPSID) of the object that gained focus.HpsID:String
The property provides a reference to the object that triggered the event in the form of a GuiObject and can be used toSource:GuiObject
manipulate the object.

Support

This event is supported for thin (HTML) clients. It is only supported for Java (thick) clients.not

Example: FocusGained

> example of Window FocusGainedEvent <
// FocusGainedEvent EditFieldfor
Proc FocusGained object EDIT_1(FieldFocusGained object type FocusGainedEvent)for
Trace('HpsID = ', FieldFocusGained.HpsID)
Trace('Source HpsID =', FieldFocusGained.Source.Hpsid)
endproc

FocusLost

The event is triggered when a user interface object loses focus.FocusLost
If the focus is removed from this field temporarily (for example, because another window is activated) this event is not triggered.
Tables do trigger this event but rather the event.not CellFocusLost
The FocusLost event is not supported for thin client EditField.

Properties

The following table describes event properties for FocusLost.

FocusLost event properties

Property and Type Description

HpsID:String This returns the system identifier (HPSID) of the object that generated the event.

Source:GuiObject This is a reference to the object that generated the event, typed as a GuiObject.

The property of the event can be used to obtain the system identifier (HPSID) of the object that lost focus.HpsID:String
The property provides a reference to the object that triggered the event in the form of a GuiObject and can be used toSource:GuiObject
manipulate the object.

Support

This event is supported for thin (HTML) clients, but is supported for Java (thick) clients.not

Example: FocusLostEvent

> example of Window FocusLostEvent <
// FocusLostEvent EditFieldfor
Proc FocusLost object EDIT_1(FieldFocusLost object type FocusLostEvent)for
Trace('HpsID = ', FieldFocusLost.HpsID)
Trace('Source HpsID =', FieldFocusLost.Source.Hpsid)
endproc

HeaderClick

This event is generated when you click on a table column header. The table's data can be sorted depending on the column index, if the property
UsingDefaultSorting is TRUE (the sorting order can be one of Constants.ASCENDING or Constants.DESCENDING, the default is the former).

The following example will sort the table data in DESCENDING order based on the column index:

proc HeaderClick object MCLB_1(e object pointer to HeaderClickEvent)for
set e.UsingDefaultSorting := true
set e.SortingOrder := Constants.DESCENDING
endproc

The sorting of Virtual Table is undefined, the smooth scrolling will reset the sorting when DataRequiredEvent is generated. You are advised not to
use default sorting with virtual table sizes(VirtualListBoxSize).

Properties

The following table describes event properties for HeaderClick.

HeaderClick properties

Properties Description

Column:Column The Column object of the table header being clicked on.

ColumnIndex:Integer column index of the column

HpsID:String HpsID of the table

SortingOrder:Integer order by which the mclb to be sorted if the property UsingDefaultSorting is true

Source:GuiObject source at generated the event

UsingDefaultSorting:Boolean When this property is true, the table is sorted depending on the property SortingOrder.

Initialize (for Rule)

The rule event is triggered on entry to a rule each time it is called. If the rule has a window attached, the window event isInitialize Initialize
triggered after this event. This event is an ideal location to place code for initialization of data or state information.

Do not make any assumptions regarding the status of the window in the Initialize (for rule) event.

Rule Initialize Event Properties

Property and Type Description

SourceName:String Returns the name of the Rule object.

Example: Rule Initialize Event

> example of Rule InitializeEvent <
proc Initialize type Rulefor
(eRuleInit object type InitializeEvent)
trace('eRuleInit.SourceName: ', eRuleInit.SourceName)
endproc

Initialize (for Window)

The window event is triggered after the window and all controls have been created, and after the rule event. At the time of thisInitialize Initialize
event, while the window exists, it will not be visible. The window will automatically be made visible after this event has occurred. This event is an
ideal location to place code to initialize data structures and call ObjectSpeak methods that set the appearance or behavior of user interface
objects.

Window Initialize Event Properties

Property and Type Description

SourceName:String Returns the name of the Window object.

Example: Window Initialize Event

> example of Window InitializeEvent <
proc Initialize type Windowfor
(eWindowInit object type InitializeEvent)
trace('eWindowInit.SourceName: ', eWindowInit.SourceName)
endproc

Here is another example of the syntax:

proc Initialize Initialize object MAIN_WINDOWfor
(e object type InitializeEvent)
> initialize data <
map 0 to NumOfOrders
> call ObjectSpeak methods to modify window <
NameField.setForeground(Color.RED)
CustomerIDField.setEditable(False)
endproc

MessageBox

The MessageBox event is supported in the thin client only. When a method is invoked, a JavaScript message box is displayedshowMessageBox
on the Browser screen. Two message types are supported: ERROR and QUESTION.
If the message type is ERROR, the message is displayed, and after acknowledging the message by clicking , you can continue with theOK
current page. If the message type is QUESTION, the response (YES/NO or OK/CANCEL) is sent back to the Server and fired as a MessageBox
on the Window.

> example of MessageBoxEvent <
proc MessageBox object WINDOW_Afor
(e object type MessageBoxEvent)
*> e.response will be Constants.OK, Constants.CANCEL, Constants.YES or Constants.NO
<*
caseof (e.response)

 Constants.OKcase
endcase
endproc

The Message Box is asyncronous, meaning that it will not be displayed until the currently active event procedure has completed.

PageSelect

The event is fired when the user selects a tab page.PageSelect

Properties

The following table describes event properties for PageSelect.

PageSelect properties:

Property and Type Description

Source:GuiObject Returns the source object (TabControl).

HpsID:String Returns the system identifier (HPSID) of the tab control.

SelectedPageIndex:Integer Returns the index of the selected tab page.

ParentRuleEnd

The event is triggered on a detached rule when the parent rule ends. See .ParentRuleEnd ChildRuleEnd
ParentRuleEnd is not supported in C#.

Properties

The following table describes event properties for ParentRuleEnd.

ParentRuleEnd event properties

Property and Type Description

TerminateChild() :Boolean

TerminateChild() :Boolean

Child rules are terminated along with parent rules by default as specified by the CLOSE_DETACHED_RULES_WITH_PARENT setting in the
APPBUILDER.INI file. This property overrides the default from the APPBUILDER.INI file setting.

Example: ParentRuleEnd

> example of Rule ParentRuleEvent <
proc ParentRuleEnd type Rulefor
(eParentRuleEnd object type ParentRuleEndEvent)
trace('eParentRuleEnd.TerminateChild: ',
eParentRuleEnd.TerminateChild)
endproc

Post

The event is triggered when a rule uses the method to post a view to another rule. The event is triggered on the rule that receives thePost Post
posted view.
Post event is not supported in C#.

Properties

The following table describes event properties for Post.

Post event properties

Property and Type Description

Internal():Boolean

LongName:String This is the long name for the posting rule.

SourceName():String This returns the name of the rule that posted the view (the source rule)

SourceObject():Object

Subject():String

View():View This returns a reference to the view that was posted. The view returned by the View property is an untyped view. This
means that it must be mapped either to a view defined in the hierarchy or to a view defined locally in the rule, before its
fields can be accessed.

ViewName This returns the name of the view that was posted.

Internal():Boolean

This determines whether the event originates from an AppBuilder rule.

SourceName():String

This is the instance name of event source.

SourceObject():Object

This is the event source.

Subject():String

This is the event name.

View():View

This is a reference to a view.

Example: PostEvent

> example of Rule PostEvent <
proc Post type Rulefor
(evtPost object type PostEvent)
trace('evtPost.Internal: ',evtPost.Internal)
trace('evtPost.LongName: ',evtPost.LongName)
trace('evtPost.SourceName: ',evtPost.SourceName)
trace('evtPost.Subject: ',evtPost.Subject)
trace('evtPost.View: ',evtPost.View)
trace('evtPost.ViewName: ',evtPost.ViewName)

RuleEnd

The event provides notification that a rule has ended. This event is never raised in C#.RuleEnd

Properties

The following table describes event properties for RuleEnd.

RuleEnd event properties

Property and
Type

Description

Instance:String This returns the instance name of the rule that ended. If the rule was detached with the INSTANCE clause, (as USE RULE
<rulename> DETACH INSTANCE <instance name>) then the Instance property contains the specified instance name;
otherwise, it contains the long name of the rule that ended.

LongName:String This is the long name for the calling rule.

OutputView:View This returns the output view of the rule that ended. This view can be mapped to any other view.

Example: RuleEnd Event

> example of Window RuleEndEvent <
proc RuleEnd type Rulefor
(eRuleEnd object type RuleEndEvent)
trace('eRuleEnd.Instance: ', eRuleEnd.Instance)
trace('eRuleEnd.LongName: ', eRuleEnd.LongName)
trace('eRuleEnd.OutputView: ', eRuleEnd.OutputView)
endproc

Here is an example of a event for the OutputView property:RuleEnd

proc aaa RuleEnd object CUST_DISfor
(e object type RuleEndEvent)
map e.OutputView to CUST_INFO of CUST_DIS
endproc

The rule that ends must have been detached from the rule that receives the event, using the following syntax:
use RULE < > DETACH < >rule_name rule_object_name
where is the name of the local variable (defined in the dcl section) that references the rule.< rule_object_name >

SQLError

This event provides SQL error information. In order for this event to be enabled, the Rule must have its "DMBS Usage"property enabled. This also
enables the rule access to the AppBuilder SQLCA system view which may provide additional information about the SQL error.
SQLError event is not supported in C#.

Properties

The following table describes event properties for SQLError.

SQLError event properties

Property and Type Description

Details:View View containing the following properties

ErrorCode:Integer The SQL code as implemented by the SQL provider

Message:String The SQL message as implemented by the SQL provider

Details:View

This is a view which owns fields related to the SQL error.

ErrorCode:Integer

This is the SQL error code for the event.

Message:String

This is a string representing the SQL message as implemented by the SQL provider.

Example: SQLError Event

> example of Rule SQLErrorEvent <
proc SQLError type Rulefor
(eSQLError object type SQLErrorEvent)
trace('eSQLError.Details.ErrorCode: ', eSQLError.Details.ErrorCode)
trace('eSQLError.Details.SqlState: ', eSQLError.Details.SqlState)
endproc

Terminate (for Rule)

The rule event is triggered just prior to the rule exiting. If the rule has a window, this event will be triggered after the window Terminate Terminate
event.

Do not make any assumptions regarding the status of the window in the rule Terminate event.

Properties

The following table describes event properties for Terminate (forRule).

Rule Terminate event properties

Property and Type Description

SourceName:String Returns the name of the Rule object.

Example: Rule Terminate Event

> example of rule TerminateEvent <
proc Terminate type Rulefor
(eRuleTerminate object type TerminateEvent)
trace('eRuleTerminate.SourceName: ', eRuleTerminate.SourceName)
endproc

Terminate (for Window)

The Window event is triggered on the window closing. The rule event is triggered after this event.Terminate Terminate

Properties

The following table describes event properties for Terminate (for Window).

Window Terminate event properties

Property and Type Description

SourceName:String Returns the name of the Window object.

Example: Window Terminate Event

> example of TerminateEvent <
proc Terminate type Windowfor
(eWindowTerminate object type TerminateEvent)
trace('eWindowTerminate.SourceName: ', eWindowTerminate.SourceName)
endproc

Timer

The event is triggered by the object to provide one or more timed notifications at regular intervals. events are normally used toTimer Timer Timer
either delay performing an action for a specified period of time or to repeat an action, such as updating a display field.

Properties

The following table describes event properties for Timer event.

Timer event properties

Property and Type Description

HpsID:String This returns the system identifier (HPSID) of the timer object that generated the event.

Source:GuiObject This is a reference to the object that generated the event, typed as a GuiObject.

Example: Timer Event

> example of Timer object TimerEvent <
proc Timer object myTimerfor
(eTimer object type TimerEvent)
trace('eTimer.HpsID: ',eTimer.HpsID)
trace('eTimer.Source.Enabled: ', eTimer.Source.Enabled)
trace('evtTimer.Source.Focus: ', eTimer.Source.Focus)
endproc

WindowError

The event is triggered when window validation fails either because one or more fields contain errors or because mandatory fields doWindowError
not contain any data. Window validation occurs when a push button or menu item with the Validate property set to is activated.True
For more information, refer to .Window-level Validation
This event is not supported in the thin client development, neither in C#.

Properties

The following table describes event properties for WindowError.

WindowError event properties

Property and Type Description

FieldError():Boolean If this event was triggered because a field contains an error, this property is True.

HpsID:String This returns the short name of the window that generated the event, since the window does not have an system
identifier (HPSID).

MandatoryError():Boolean If a mandatory field has no data, then this property is True.

ShowMessage:Boolean This indicates whether a message box describing the error should be shown if the data is not rolled back. By
default, a message box is shown; the default value is TRUE.

Source:GuiObject This provides an object reference to the object that triggered the event ? in this case, the window itself. This
reference, which has the type of GuiObject, can be used to manipulate the window.

For backwards compatibility with previous versions of this product, the property on objects and IgnoreValidation:Boolean PushButton MenuItem
objects can be set to in order to trigger window validation. Legacy applications can suppress the check on mandatory fields by setting the False

 property to in those objects.CheckMandatoryFields:Boolean False

MandatoryError():Boolean

This indicates whether window validation failed because mandatory fields are empty.

FieldError():Boolean

This indicates whether window validation failed because one or more fields are in error.

Example:WindowError Event

> example of WindowErrorEvent <
proc WindowError object OSPK_EVT_WINERR_WNDfor
(WinErr object type WindowErrorEvent)
Trace (' HpsID =', WinErr.HpsId)
Trace (' Source HpsID =', WinErr.Source.HpsId)
Trace (' FieldError =', WinErr.FieldError)
Trace (' MandatoryError =', WinErr.MandatoryError)
Trace (' ShowMessage =', WinErr.ShowMessage)
endproc

WindowValidation

The event allows an application to verify that fields in the window have acceptable data. It is triggered when the user clicks aWindowValidation

push button or menu item whose Validate property is set to , no fields are in error, and all mandatory fields contain data. If there are errors,True
the event is triggered.WindowError
This event allows the application to validate the window data as a whole and prevent the window from closing if the data is unacceptable. For
example, the application can use this event to verify that the data in each field is consistent with data in other fields.
For more information, refer to .Window-level Validation
This event is not supported in the thin client development.

Properties

The following table describes event properties for WindowValidation.

WindowValidation event properties

Property and Type Description

Accept():Boolean This determines whether the fields in the window have acceptable data.

HpsID:String This returns the short name of the window that generated the event, since the window does not have a system
identifier (HPSID).

ShowMessage:Boolean This indicates whether a message box should be shown if the data is not accepted. The default value is TRUE.

Source:GuiObject This provides a reference to the object that triggered the event ? in this case, the window itself. The reference has the
type GuiObject and can be used to manipulate the window.

For backwards compatibility with previous versions of this product, the property on objects and IgnoreValidation:Boolean PushButton MenuItem
objects can be set to in order to trigger window validation. Legacy applications can suppress the check on mandatory fields by setting the False

 property to in those objects.CheckMandatoryFields:Boolean False
This event also allows you to specify whether a message box should be displayed if the data is not acceptable. By default, the message box is
shown. To prevent the message box display, set to .ShowMessage:Boolean False

Accept():Boolean

This specifies whether the data is the window is acceptable. The default value is .True
To specify that the data in the window is not acceptable, set the event Accept property to . If it is , then the push button or menu itemFalse True
that triggered window validation triggers the event. If it is , the event is not triggered.Click False Click

Example: WindowValidation Event

> example of Window WindowValidationEvent <
proc WindowValidation object OSPK_EVT_WINVAL_WNDfor
(WinVal object type WindowValidationEvent)
Trace (' HpsID =', WinVal.HpsId)
Trace (' Source HpsID =', WinErr.Source.HpsId)
Trace (' ShowMessage =', WinErr.ShowMessage)

 WinVal.Accept() = TRUEif
Trace(' Vlaue Acceptable')
else
Trace('Value not Acceptable')
endproc

User-Interface Properties
User-Interface Properties implemented by the Java user interface objects discussed in previous sections are described in this topic.

User-Interface Properties

The Java user interface properties available to ObjectSpeak objects in are listed in alphabetical order in the following table. Each property is then
described in greater detail in the linked subsections.

Object properties

Altered:Boolean Font:Font Rollback:Boolean

AutoSelect:Boolean Foreground:Color RowHeight:Integer

BackBuffer:Integer Format:Format Selected:Boolean

Background:Color HeaderLineCount:Integer SelectedPageIndex:Integer

CallingRule:Rule HpsID:String SelectionMode:Integer

CheckMandatoryFields:Boolean IgnoreValidation:Boolean ShortHelp:String

Column:Column Image:String ShowMessage:Boolean

ColumnIndex:Integer ImmediateReturn:Boolean Size:Dimension

Currency:Boolean Instance:String Source:GuiObject

DatabaseSize:Integer Justification:Integer SourceName:String

DisplayMask:String Lines:Integer Style:Integer

DisplayPicture:String Locale:Locale TabStop:Boolean

DomainType:Integer Location:Point Text:String

Editable:Boolean LongName:String TopVirtualRow:Integer

EditLimit:Integer Mandatory:Boolean Type:Integer

EditMask:String Mnemonic:Char TypeString:String

Empty:Boolean MnemonicKeycode:Integer Validation:Boolean

Enabled:Boolean OutputView:View VirtualIndex:Integer

Error:Boolean PhysicalIndex:Integer Visible:Boolean

Focus:Boolean PopupMenu:PopupMenu

FocusedGuiObject:GuiObject Response:Integer

Altered:Boolean

For objects that have data links, this indicates whether the data in the field has been altered since the window was first displayed or since the last
call to the window's method.clearAltered()

This property is automatically set to when the data associated with any GUI object on the window is modified by the user. The applicationTrue
can query the Altered property to determine whether data needs to be saved. Use the method to set the value to .ClearAltered False

For example, consider a window that has a Save button. When the user clicks , the Click event procedure can query the Altered property toSave
determine whether it actually needs to save the data. If it does save the data, the application should then call the method andClearAltered()
indicate that there are no more changes that need to be saved.

User-interface objects associated with data, other than windows, have their own Altered property that indicates whether the data has been
modified. The Altered property is automatically set to when the user modifies the data. Moreover, for every object other than the window, theTrue
Altered property is not read-only, you can both query and assign a value to the property.

A GuiObject is altered only if the data associated with that object is changed. Typing something in an edit field does not alter the edit field until you
tab out of the field and the entered data is validated.

AutoSelect:Boolean

For an edit field, multiline edit, password field, and combo box, this property specifies whether text is automatically selected when the field
receives focus. The default is except for multiline edit.True,

When an editable object gains focus, the text in the edit area is automatically selected if this property is set to . The default value is .True True

When a list box is first shown and no items are currently selected, if this property is , the first item is selected when receiving focus. Also, ifTrue
the list box is already shown and no items are currently selected, and this property is changed from to , the first item is selected whenFalse True
receiving focus.

Table functionality is similar to the list box functionality except that the entire row is selected only if the table's property is ;RowSelect True
otherwise, only the first (non-numbering) cell of the first row is selected. When a Table is first shown, if is True and nothing is currentlyAutoSelect
selected, the first row is selected (if is) or the first cell in the first row is selected (if RowSelect is). Also, when the Table isRowSelect True False
already shown and no row or cell is currently selected, if is changed from to , the first one is selected when receiving focus.AutoSelect False True

For Tables (also called multicolumn list boxes or MCLBs), when AutoSelect is :True

You deselect the "select all" of the rows using the keyboard or mouse (but it is possible to deselect it by calling).cannot clearSelection
The selection moves with focus.
The and events preserve any previous selection if it is less than the virtual size. For example,setVirtualListBoxSize dataRequired
selecting row 1 and then calling with 50, 100 preserves the selected row even if that is not in the current virtualsetVirtualListboxSize
limits.

BackBuffer:Integer

This property represents the number of records back from the first visible record to fetch, when smooth scrolling. The value should be greater than
0 and less than (ScrollabeOccurs - VisibleOccurs). The ideal value should be (ScrollableOccurs - VisibleOccurs) / 2.

Background:Color

This property specifies the background color for the object. If the foreground or background colors are not specified, the table's color is used for
the column. Group boxes have no background color; the background is transparent and displays the background color of the window.

Some objects, such as labels and check boxes, always use the background color of the window or panel. For menu items, this property and
method have no effect. The Color object is used to specify the foreground and background colors of these objects.

CallingRule:Rule

This property specifies the parent rule for a rule, allowing to navigate back through the calling tree.

CheckMandatoryFields:Boolean

This property specifies whether push buttons and menu items verify that all mandatory fields contain data before triggering their associated action.
This property is provided for backwards compatibility with previous versions of the product. We recommend you use the Validation:Boolean
property for new development.

Column:Column

For certain events that occur in tables, this property provides an object reference to the table column in which the event originated. This is a
read-only property.
This applies to and events, and to and events when they originate in a table.CellFocusGained CellFocusLost Click DoubleClick

ColumnIndex:Integer

For certain events that occur in tables, this property indicates the index of the table column in which the event originated. The left-most column is
1, the one to its right is 2, and so on. The numbering column (if present) is not included in the numbering. Therefore, if there is a numbering
column, the column to its immediate right is 1. This is a read-only property.
This applies to and events, and to and events when they originate in a table.CellFocusGained CellFocusLost Click DoubleClick

Currency:Boolean

This property specifies whether the currency symbol should be displayed when displaying decimal data. The currency symbol can be displayed in
edit fields, table cells, list boxes, and combo boxes, which are data-linked to a decimal.

Only for decimal fields.

DatabaseSize:Integer

This property specifies the size of the database.

DisplayMask:String

This property provides a mask used to format data for display when the focus is not on the field. DisplayMask is a property of the object. ItFormat
applies to edit fields, combo boxes, list boxes, and table cells.

DisplayMask and DisplayPicture are valid for Decimal and Integer formats and be used for String Formats.cannot

DisplayPicture:String

This property is the same as . It is provided for backwards compatibility with previous versions of the product.DisplayMask:String

DomainType:Integer

This property is read-only and returns the type of domain used by the combo box. The values can be one of Constants.SETDOMAIN or
Constants.VIEWDOMAIN.

Editable:Boolean

This property specifies whether the data displayed in an edit field, multiline edit field, password field, or table column can be edited.
To prevent the text from being edited by the user, but still allow the field to receive focus (perhaps so that text can be copied to the clipboard), set
this property to .False

EditLimit:Integer

This property specifies the number of characters that can be entered into an edit field, multiline edit field, or password field. To limit the amount of
text that can be entered, use the EditLimit property. The default value is zero (0), which specifies there is no limit on the number of characters that
can be entered.

If the field is data-linked to a string or character field, the edit limit is automatically set to the length of the data-linked character field. If a field does
not have a data link, it can contain a maximum of 255 characters.

For thin client applications, the EditLimit is applied only on focus lost or tab out from the input field. Unlike other AppBuilder
clients, processing every key through JavaScript would slow data entry in this case.

EditMask:String

This property specifies which characters can be entered at specific locations in an editable field. EditMask is a property of the objectFormat
associated with the editable field. It applies to edit fields, combo boxes, list boxes, and table cells.
For valid EditMask character values, refer to .Valid EditMask Characters

Valid EditMask Characters

The valid EditMask characters that can be used in the property are listed in the following table:EditMask:String

Valid EditMask characters

Mask
Character

Description Sample Edit Mask Sample
Input

Sample Result

#
Digit placeholder

1234 1234

9
Digit or space placeholder

9999 1234 1234

.
Decimal separator

99.99 1234 12.34

,
Thousand separator

9,999 1234 1,234

-
Sign placeholder

-#### -1234 -1234

:
Time separator

hh:mm:ss 123001 12:30:01

/
Date separator

dd/MM/yy 121001 12/10/01

<
Converts all characters that follow to lower case

?<??? ABCD Abcd

>
Converts all characters that follow to upper case

?>??? abcd aBCD

&
ANSI character from 32-126 or 128-235

&&& A2d A2d

A or a Alphanumeric character AAA A23 A23

?
Alphabet character only

??? Abc Abc

'...'
Single quotes hold a group of literals.

'Today is'
dd/MM/yy

121202 Today is
12/12/02

Treat the next character in the mask string as a literal. Use this
character to include #, &, A, or ? characters in the mask. This character
is treated as a literal for masking purposes.

###\\-###\\-#### 2222222222 222-222-2222

dd
Day of the month

dd/MM/yy 121202 02/12/12

EEE
Day of week

EEE dd/MM/yy 170402 Wed
17/04/02

MM
Two-digit month

MM 04 04

MMM
Three-letter month name

dd/MMM/yy 17Mar02 17/Mar/02

yy
Two-digit year

dd/MM/yy 170402 17/04/02

yyyy
Four-digit year

dd/MM/yyyy 170402 17/04/2002

mm
Minutes

hh:mm:ss 123001 12:30:01

ss
Seconds

hh:mm:ss 123001 12:30:01

hh
Hours

hh:mm:ss 123001 12:30:01

tt
AM/PM

hh:mm:ss tt 123001 AM 12:30:01 AM

Literal All other symbols are displayed as literals; that is, as themselves.

If the EditMask is set to or , the characters are converted to lowercase or uppercase.< > all

Empty:Boolean

This property indicates whether or not an editable field contains data. This is a read-only property.

Enabled:Boolean

This property specifies whether an object is enabled or disabled. Disabled objects be edited or modified, or receive focus.cannot

For Tables, enabling or disabling occurs on a per column basis.

For the object, the Enabled property can be set to to temporarily prevent the timer from firing. Typical applications do not need to useTimer False
the Enabled property - just the and methods.start() stop()

Error:Boolean

This indicates whether the interface object contains data that is in error. This is a read-only property.

Focus:Boolean

This property has no parameters.

FocusedGuiObject:GuiObject

This property returns the guiObject that has focus.

Font:Font

This property specifies the font used to display text in an object that displays text.

For a column object, if the font is not specified, the table's default font is used for the column.

This property is not supported in thin client applications.

Foreground:Color

This property specifies the font color in all objects that display text. If the foreground or background colors are not specified, the table's color is
used for the column. For menu items, this property and method have no effect. The Color object is used to specify the foreground and background
colors of these objects.

Format:Format

This property specifies various formatting information for editable fields, including edit fields, combo boxes, and table cells. It specifies the Format
object associated with the object. The object contains information about how to display and edit the text in every cell in the column. The Format

 object type and the data link must agree. For objects created in Construction Workbench, the object is automatically created andFormat Format
assigned to the object. Format is not used by combo boxes linked to sets (that is, static combo boxes). Refer to the object for moreFormat
information.

HeaderLineCount:Integer

This read only property returns the count of header lines for the column.

HpsID:String

This property specifies the system identifier (HPSID) of the object. Each object must have a unique system identifier (HPSID) or unpredictable
behavior may occur. The system identifier must not begin with a number and must not contain special characters (!, @, #, $, %, ^, &, *, etc.)
Underscore characters (_) may be used.

The system identifier (HPSID) can be set only once and cannot be changed. Attempting to set this property more than once generates an error.
Trying to set the system identifier (HPSID) to an empty string generates an error.

IgnoreValidation:Boolean

For push buttons and menu items, this property specifies that window validation is not performed before the object's event is triggered. ThisClick
property is provided for backwards compatibility with previous versions of the product. We recommended that you use the Validation property for
new development.

Image:String

This property specifies the image file name for a Bitmap object in Window Painter. For a push button object, it is the image file name for the
Bitmap of the push button.

Use a forward slash (/) for the file and directory separator. This ensures that your code is portable across platforms.

ImmediateReturn:Boolean

This property specifies whether the control can generate the immediate-return event. If this property is set to , a event isConverse True Converse
generated. For an editable-object, this occurs when the user changes the selection of an object and moves focus to another object. For
non-editable objects, this occurs when the user double-clicks an object.

This property is provided for backwards compatibility and should not be used in new application development. We recommended you use the
ImmediateReturn property and that you do not use the event for new applications. Use the , , or event toConverse Click DoubleClick FocusLost
simulate ImmediateReturn functionality.

Instance:String

This property returns the instance name of a rule.

Justification:Integer

This property specifies the horizontal justification for text in edit fields, password fields, labels, list boxes, combo boxes, and tables. Valid values,
as defined in the class, are:Constants

LEFT
CENTER
RIGHT

The Justification property is used to specify whether the text should be left-justified, centered, or right-justified. By default, text is left-justified. For
a label, the horizontal justification of text within the label area is specified by the Justification property, while the vertical justification is determined
by the VerticalJustification property.

Lines:Integer

This property specifies whether horizontal lines, vertical lines, both, or neither are drawn between cells in a table. Valid values, as defined in the
Constants class, are:

HORIZONTAL_LINES
VERTICAL_LINES
HORIZONTAL_AND_VERTICAL_LINES
NO_LINES

Locale:Locale

This property specifies both a country and a language. Locales are used in conjunction with objects, as well as on the object.Format Window
Refer to the object for a list of the possible values.Locale

Location:Point

This property specifies the position of a window or user interface object, relative to the upper left corner of the window. The property is a Point
object and contains both a horizontal and vertical component.

For convenience, the SetLocation(X, Y) method can be used to specify the position without having to create a object. The size and positionPoint
of the object can be queried or set using the and Location properties, respectively. The size and position of a table can be queriedSize:Dimension
or set using the Size and Location properties.

This property is not supported in thin client applications.

LongName:String

This property specifies the long name for a rule. The long name is stored in UPPERCASE letters. When comparing values to the long name,
ensure that your value is UPPERCASE.

Mandatory:Boolean

This property specifies whether or not a field is mandatory. That is, whether it must contain data before the window closes successfully. It applies
to edit fields, password fields, multiline edit fields, combo boxes, and table columns. If the represents an editable field, then theGuiObject
Mandatory property indicates whether or not the field contain data before the window is successfully closed.must

If Mandatory is set to , when window-level validation occurs, and mandatory field checking is requested, window validation fails if any of theTrue
cells in the column contain no text. See the property.Validation:Boolean

This property is not supported in the thin client applications through ObjectSpeak. It is supported through client-side javascript.

Mnemonic:Char

This property specifies the mnemonic character for buttons and other objects. Any letter in the English alphabet is valid. For push buttons, when
Alt and a mnemonic key are pressed together, the push button event is generated. For a check box, the check box is toggled. For a radioClick
button, it triggers the radio button. For menus and menu items, it selects or clears a menu item.

Java development does support NLS characters.not

MnemonicKeycode:Integer

This property specifies the mnemonic keycode for buttons and other objects; it is the integer keycode associated with the Mnemonic:Char
character. This is the ASCII equivalent for the key. For push buttons, when Alt and a mnemonic key are pressed together, the push button Click
event is generated. For a check box, the check box is toggled. For a radio button, the radio button is selected or cleared. For menus and menu
items, a menu item is selected or cleared. The following table describes the ASCII codes.

ASCII code equivalents

*
ASCII

*
ASCII

*
ASCII

*
ASCII

*
ASCII

*
ASCII

*
ASCII

0 48 9 57 I 73 R 82 a 97 j 106 s 115

1 49 A 65 J 74 S 83 b 98 k 107 t 116

2 50 B 66 K 75 T 84 c 99 l 108 u 117

3 51 C 67 L 76 U 85 d 100 m 109 v 118

4 52 D 68 M 77 V 86 e 101 n 110 w 119

5 53 E 69 N 78 W 87 f 102 o 111 x 120

6 54 F 70 O 79 X 88 g 103 p 112 y 121

7 55 G 71 P 80 Y 89 h 104 q 113 z 122

8 56 H 72 Q 81 Z 90 i 105 r 114
* *

OutputView:View

This property returns the output view of a rule. This view can be mapped to any other view.

PhysicalIndex:Integer

For certain events that occur in tables, this property indicates the index (or occurrence number) of the row in the occurring view to which the table
is data-linked. This applies to and events. It also applies to and events when they originate in aCellFocusGained CellFocusLost Click DoubleClick
table. This is a read-only property.

PopupMenu:PopupMenu

This property sets the popup menu that can be displayed for objects on a window and the window itself, typically by right-clicking. If a given user
interface object does not have a popup menu but the window does, right-clicking an object causes the window's popup menu to be displayed.
Therefore, if you want only one popup menu for the window and all its objects, define a popup for the window.

Response:Integer

In , this property specifies whether the data should be accepted, rejected, or rolled back to the last known acceptable value. TheFieldValidation
default is ACCEPT. Valid values, specified in the class, are:Constants

ACCEPT
ROLLBACK
IN_ERROR

Rollback:Boolean

In , this property specifies whether the data should be rolled back to the last known acceptable value. The default value is .FieldError False

RowHeight:Integer

This property specifies the height of a table row.

Selected:Boolean

This property determines if a check box, radio button, check box menu item, or radio button menu item is currently selected. This property
indicates whether a menu item that can display a check mark is currently checked, or whether a menu item that can display a radio button has the
radio button selected. The Checked property is similar to the Selected property, but indicates information only about the checked state.

SelectedPageIndex:Integer

This property returns the index of the selected tab page in a tab control object.

SelectionMode:Integer

This property specifies how rows can be selected for list boxes, combo boxes, and tables. Valid values, as specified in the class, are:Constants

SINGLE_SELECTION - only one row at a time can be selected
SINGLE_RANGE_SELECTION - (or extended) a single continuous range of rows can be selected
MULTIPLE_RANGE_SELECTION - multiple ranges of rows can be selected

ShortHelp:String

This property specifies the text for the tool tip that is displayed when the mouse pointer pauses briefly on the object. If it is set to an empty string,
no tool tip is displayed. It is not supported in C#.

ShowMessage:Boolean

This property specifies whether an error message box should be displayed during and . By default, the messageFieldValidation WindowValidation
box is shown if the error condition is not removed. The default value is .True

This applies to the following events:

FieldError
FieldValidation
WindowError
WindowValidation

Size:Dimension

This property specifies the width and height of a window, any visible user interface object, and the window itself. The property is a Dimension
object that contains both a width and height. The Size property of visible objects is of type Dimension.

For convenience, the method can be used to specify the width and height without having to create a object. ThesetSize(width, height) Dimension
size and position of the object can be queried or set with the Size and Location properties. For example, when a GuiObject represents a menu
item, calling the Size property has no effect because you cannot specify the size of a menu item. Query or set the size and position of a table
using the Size and Location properties.

This property is not supported in thin client applications.

Source:GuiObject

This property provides a reference to the object that triggered the event in the form of a GuiObject. For more information, see the topic.GuiObject
This is a read-only property.

SourceName:String

This property returns the long name of the object associated with the event.

Style:Integer

This property changes a menu item into a selectable menu item or radio button menu item. Valid values, as specified in the class, are:Constants

PLAIN
CHECKBOX
RADIOBUTTON

The style of a menu item can be changed only once in Java.

TabStop:Boolean

This property specifies whether or not you can transfer keyboard focus to a user interface object by pressing the key.Tab

Normally, you can use the key to move focus onto an object, but setting TabStop to prevents this. Even if TabStop is False, focus canTab False
still be set on the table with the mouse (or programmatically using the method) unless the field is disabled.setFocus()

Text:String

This property specifies the text for labels, edit fields, multiline edit fields, editable combo boxes, and table cells. It specifies the label for group
boxes and table columns and the title for group boxes. Use this property to query or set the text in the edit area. If the edit area does not have a
data link, the Text property is the only way to access the text. If it has a data link, the text in the edit area can be accessed either through the Text
property, or by using rules code to access the data-linked field.

TopVirtualRow:Integer

When the event is triggered by a table that requires additional data mapped into its data-linked view, this property specifies theDataRequired
virtual row that appears at the top of the displayed table.

Type:Integer

This read-only property returns the type of the derived object. The type constants are defined in the Constants class. For example, if the guiObject
is an editfield, the Type property returns . Other examples include:Constants.EDITFIELD

Constants.DATE_FORMAT
Constants.DECIMAL_FORMAT
Constants.LONGINT_FORMAT
Constants.SHORTINT_FORMAT
Constants.STRING_FORMAT
Constants.TIME_FORMAT

TypeString:String

This specifies the type of event in a event. The string is one of the following:DataRequired

ListBoxTop
ListBoxBottom
OutOfRange

Validation:Boolean

For push buttons and menu items, this specifies whether window validation must be successfully performed before the object's event isClick
triggered. Setting Validation to is equivalent to setting to and to .True IgnoreValidation:Boolean False CheckMandatoryFields:Boolean True

To cause to occur when an object is clicked, set its Validation property to . Window-level validation allows theWindow-level Validation True
application to verify that the user has specified all required information, and that the information in the various fields is acceptable.

For backwards compatibility, push buttons and menu items contain not only the Validation property but also two Boolean properties named
IgnoreValidation and CheckMandatoryFields. The Validation property and the IgnoreValidation and CheckMandatoryFields properties represent
two slightly different approaches to validation. If the Validation property is used to enable window validation, the check on mandatory fields is
always performed. However, if IgnoreValidation is used to enable validation, then the check on mandatory fields is done ifonly
CheckMandatoryFields is . We recommended you use the Validate property for new applications because checking mandatory fields shouldTrue
be routinely performed as part of window validation.

VirtualIndex:Integer

For certain events that occur in tables, this property indicates the virtual row number for the row that contains the cell in which the event
originates. It applies to and events and also applies to and events when they originate in aCellFocusGained CellFocusLost Click DoubleClick
table. This is a read-only property.

Visible:Boolean

This property specifies whether a user interface object or window is visible. It can be used to determine if an object in a window or the window
itself is visible and can be used to change the visibility of an object or window. By default, an object is visible but can be hidden. For windows, the

 method is called implicitly whenever the Visible property is set to . Setting menu items and pop-up menus to be either visibleupdateDisplay() True
or invisible is useful when you are constructing language-specific user interfaces.

Java Support Matrix
The tables in this section summarize ObjectSpeak object support for Java application development.

See Java Support for Events
See Java Support for Properties
See Java Support for Methods

Platform support for each entry is noted in the tables as such:

J indicates Java (thick) client support
H indicates HTML (thin) client support
An asterisk (*) indicates a read-only property

Java Support for Events

See details Java support for ObjectSpeak events. The events are listed alphabetically.ObjectSpeak Events Java Support Matrix

ObjectSpeak Events Java Support Matrix

Events /
Controls

C

h

e

c

k

B

o

x

C

o

l
u

m

n

C

o

m

b

o

B

o

x

E

d

i
t
F

i
e

l
d

E

l
l
i
p

s

e

G

r
o

u

p

B

o

x

L

a

b

e

l

L

i
s

t
B

o

x

M

e

n

u

M
e
n
u
I
t
e
m

M

u

l
t
i
L

i
n

e

E

d

i
t

P

a

s

s

w

o

r
d

F

i
e

l
d

P
u
s
h
B
u
t
t
o
n

R

a

d

i
o

B

u

t
t
o

n

R

e

c

t
a

n

g

l
e

T
a
b
l
e

F

o

r
m

a
t

G

u

i
O

b

j
e

c

t

R
u
l
e
a

W
i
n
d
o
w

M

e

s

s

a

g

e

B

o

x

P

o

p

u

p

M

e

n

u

T

i
m

e
r

Activate HJ

CellFocusGained J

CellFocusLost J

ChildRuleEnd HJ

Click J J J J J J HJ J J HJ J J

Close

CommError HJ

Converse HJ HJ

DataRequired HJ

DoubleClick J J J J J J J HJ

FieldError J J J J J

FieldValidation J J J J J

FocusGained J J J J J J J J

FocusLost J J J J J J J J

HeaderClick J

Initialize HJ HJ

MessageBoxEvent H

ParentRuleEnd HJ

Post HJ

RuleEnd HJ

SQLError HJ

Terminate HJ HJ

Timer J

WindowError H Jb

WindowValidation H Jc

a. The Rule object is also supported on the Server for the CommError and SQLError events.

b. These events (WindowError and WindowValidation) can be handled through JavaScript on the client-side. A default "extension.js" can be
customized to include processing logic for these events.

c. These events (WindowError and WindowValidation) can be handled through JavaScript on the client-side. A default "extension.js" can be
customized to include processing logic for these events.

Java Support for Properties

See details Java support for ObjectSpeak object properties listed alphabetically.ObjectSpeak Properties Java Support Matrix
The following properties are supported as ObjectSpeak methods for thin client applications; however, they are supported through client-sidenot
JavaScripts.

CheckMandatory
IgnoreValidation
ImmediateReturn
Mandatory
Validation

ObjectSpeak Properties Java Support Matrix

Properties /
Objects

C
h
e
c
k
B
o
x

C
o
l
u
m
n

C
o
m
b
o
B
o
x

E
d
i
t
F
i
e
l
d

E
l
l
i
p
s
e

G
r
o
u
p
B
o
x

L
a
b
e
l

L
i
s
t
B
o
x

M
e
n
u

M

e

n

u

B

a

r

M
e
n
u
I
t
e
m

M
u
l
t
i
L
i
n
e
E
d
i
t

P
a
s
s
w
o
r
d
F
i
e
l
d

P
u
s
h
B
u
t
t
o
n

R
a
d
i
o
B
u
t
t
o
n

R
e
c
t
a
n
g
l
e

T
a
b
l
e

F

o

r
m

a
t

G
u
i
O
b
j
e
c
t

R

u

l
e

W

i
n
d
o
w

M

e

s

s

a

g

e

B

o

x

P

o

p

u

p

M

e

n

u

T

i
m

e
r

Accelerator J

Altered J J J J J J J J J J J J J

Argument1 J

Argument2 J

Argument3 J

AutoSelect J J

AutoTab J

Background HJ HJ HJ HJ J HJ HJ HJ HJ HJ HJ J HJ HJ HJ

Border:
Boolean

 J J

BorderStyle

ButtonType J

CallingRule J

Checked HJ

Check
Mandatory
Fields

 J J

Column J

Column
Index

Country

Currency

DataLink HJ HJ HJ HJ HJ HJ J

Delay

Display
Mask

Display
Picture

Editable J J HJ J HJ

EditLimit J J J J J

EditMask J

Elevator
Position

Empty HJ J

Enabled HJ J HJ HJ HJ HJ HJ HJ HJ HJ HJ HJ

Error

EventName

EventParam

Event
Qualifier

EventSource

EventType

FieldPath HJ HJ HJ J

First
Visible
Row

 HJ

Focus:
Boolean

J J J J J J J J J J J

Font J J J J J J J J J J J J J J HJ HJ

Foreground HJ HJ HJ HJ HJ HJ HJ HJ HJ HJ HJ HJ HJ HJ

Format HJ HJ HJ HJ

Header
Height

 J

Height

Horizontal
Text
Position

 HJ

HpsIDa H*J H*J H*J J H*J H*J H*J H*J H*J H*J H*J J H*J H*J J H*J

Ignore
Validation

 J J

Image J

Immediate
Return

HJ J J J J J J HJ

InsertBreak J

InsertTab J

Justification HJ J HJ J J J J J

Label H

Last
Visible
Row

 HJ

Lines J J

Locale J

Location J J J J J J J J J J J J J J

Mandatory J J J J J J

Menubar HJ

Message

Message
Typeb

Mnemonic J J J J J

Numbering
Column

 HJ

Parentc J

Physical
Index

 J

Popup J

PopupMenu J J J J J J J J J J

Repeats

Resizable

Response

Rollback

RowHeight

RowMargin J

RowSelect HJ

Running

Scrollable
Occurs

 HJ

Selected HJ HJ HJ

Selected
Index

 HJ HJ

Selected
RowCount

 J*

Selection
Mode

 HJ HJ J

SetLink HJ HJ HJ

ShortHelp J J J J J J J J J J J J J

Show
Message

Size J J J J J J J J J J J J J

Source

Style

TabStop J J J J J J J J J

Text HJ HJ HJ J HJ HJ HJ HJ HJ HJ HJ HJ J J

Top
Virtual
Row

Title

Type HJ

Validation J J

Vertical
Justification

 J J J

Vertical
Text
Position

ViewLink HJ HJ HJ J J J

Virtual
Index

Visible HJ HJ HJ J J J HJ J J HJ HJ HJ HJ J HJ

Visible
Occurs

 HJ

Visible
Row
Count

Width J

WordWrap J

a. HpsID is a read-only property in HTML as indicated by the asterisk beside the H notation in the table.

b. Java thin (HTML) clients support only ERROR and QUESTION message box types. Java thin (HTML) clients use message box functionality in
JavaScript and these are the only two types available.

c. Parent is a read-only property similar to HPSID, but it is valid for both Java and HTML clients. You must confirm this once the nc
and servlet.blds are fixed. It is valid for Checkbox, Column, ComboBox, EditField, Ellipse(J), GroupBox, GuiObject, Label, ListBox, MessageBox,
PasswordField, PopupMenu(J), PushButton, RadioButton, Rectangle(J), and Table.

Java Support for Methods

See details Java support for ObjectSpeak methods listed alphabetically.ObjectSpeak Methods Java Support Matrix

ObjectSpeak Methods Java Support Matrix

Methods /
Objects

C

h

e

c

k

B

o

x

C

o

l
u

m

n

C

o

m

b

o

B

o

x

E

d

i
t
F

i
e

l
d

E

l
l
i
p

s

e

G

r
o

u

p

B

o

x

L

a

b

e

l

L
i
s
t
B
o
x

M
e
n
u

M
e
n
u
B
a
r

M

e
n

u

I
t
e
m

M

u

l
t
i
L

i
n

e

E

d

i
t

P

a

s

s

w

o

r
d

F

i
e

l
d

P

u

s

h

B

u

t
t
o

n

R

a

d

i
o

B

u

t
t
o

n

R

e

c

t
a

n

g

l
e

T
a
b
l
e

F

o

r
m

a
t

G

u

i
O

b

j
e

c

t

R
u
l
e

W

i
n
d
o
w

M
e
s
s
a
g
e
B
o
x

P

o

p

u

p

M

e

n

u

T

i
m

e
r

add(aMenu:Menu) J J

add(Item:MenuItem) J

addChild(Object)

addColumn(Col:Column) HJ

addCookie(name:String,
value:String,
age:Integer)

addHeader(String)

addSeparator() J

clearAltered() J

clearSelection() HJ

clearWindowChanges() HJ

disableTopAndBottomEvents(
Boolean)

findGuiObject(HPSID:String)
:GuiObject

 HJ

getActiveWindow():Window

getCallingRule():Rule J

getColumn() HJ

getCookie(aView:View,
age:Integer)

getImpName():String HJ

getInputView():View

getItem(index:Integer) HJ

getItemCount() HJ

getLongName():String HJ

getMenu(index:Integer) HJ

getMenuCount() HJ

getNextSelectedIndex()
:Integer

getNextSelectedIndex(
Index:Integer):Integer

 HJ HJ

getOutputView():View

getSelectedIndex():Integer

getShortName():String HJ

getWindow():Window HJ

hasFocus():Boolean J J J J J J J J J J J

postTo(Rule instance,
String Subject):Boolean

 HJ

postTo(Rule instance,
String Subject,
View):Boolean

 HJ

postTo(Rule instance,
String Subject,
View,
Parameter):Boolean

postToChild(
InstanceName:String,
Info:View):Boolean

 HJ

postToChild(String Instance,
String Subject):Boolean

 HJ

postToChild(String Instance,
String Subject,
View):Boolean

 HJ

postToParent(String Subject)
:Bool

 HJ

postToParent(String Subject,
View):Boolean

 HJ

postToParent(Info:View)
:Boolean

 HJ

printFrame()

queryUserAuthentication()
:Boolean

 J

resetSelectedIndex():Integer

resetSelectionInterval(
StartIndex:Integer,
StopIndex:Integer)

selectedIndex():Integer HJ HJ HJ

setBorder():Boolean

setCellStyleClass(row:Integer,
col:Integer,
cssClassName:String)

 H

setColumnStyleClass(col:Integer,
cssClassName:String)

 H

setCookie(aView:View,
age:Integer)

setFirstVisibleRow(
Row:Integer)

 HJ

setHelpFile(
HelpFileName:String)
:Boolean

 J

setMenuBar(bar:MenuBar) HJ HJ

setMoreRows(n:Integer,
flag:Boolean)

 HJ

setRowStyleClass(row:Integer,
cssClassName:String)

 H

setSelectedIndex(
Index:Integer)

 HJ HJ

setSelectedInterval(
StartIndex:Integer,
StopIndex:Integer)

 HJ

setSelectionInterval(
StartIndex:Integer,
StopIndex:Integer)

 HJ HJ

setSetLink(AbfSet)

setStyleClass(cssClassName:String) H

setUserAuthentication(
userID:String,
password:String)

 HJ

setVirtualListBoxSize(
TopVirtualRow:Integer,
VirtualTableSize:Integer)

 HJ

show() :Integer HJ

showHelpTopic(HelpID:String)
:Boolean

 J

showMessageBox(
MessageType:Integer,
message:String):Integer

 HJ

showMessageBox(
Message:String,
Title:String,
ButtonType:Integer,
MessageType:Integer):Integer

 HJ

start() J

stop() J

terminate() HJ HJ

updateDisplay() J

Supported Methods for Java Classes
This topic summarizes the supported methods for Java classes declared public in AppBuilder.

Supported Java Classes and Methods

Java Classes and Methods summarizes the supported Java classes and methods for application development. These classes are declared public
so that other parts of AppBuilder can call them.

Java Classes and Methods

Java Class Method

appbuilder.util. AbfDataObject

This is a base class for all field types.

public void map(AbfDataObject f) throws ClassCastException

 public void clear()

 public void fireAbfDataChange()

 public boolean isNull()

 public boolean isClear()

 public void addAbfDataChangeListener

 public void removeAbfDataChangeListener

appbuilder.util.AbfDate public void map(java.util.Date date) throws AbfDataException

 public java.util.Date getJavaValue()

appbuilder.util.AbfArray public get(int idx)

 public int getOccurs()

 public void firePreAbfDataChange()

 public void resize(int newSize)

appbuilder.util.AbfBlob implements java.sql.Clob, java.sql.Blob

 public void map(Reader from) throws AbfDataException

 public void map(InputStream from) throws AbfDataException

 public void map(byte[] from) throws AbfDataException

 public void map(char[] from) throws AbfDataException

 public void map(String filename)

 public char[] getChars() throws IOException

 public byte[] getBytes() throws IOException

 public String getFilename()

appbuilder.util.AbfBoolean public void map(Boolean value)

 public boolean getJavaValue()

appbuilder.util.AbfDecimal public void map(BigDecimal d)

 public BigDecimal getJavaValue()

appbuilder.util.AbfDouble public void map(double value)

 public double getJavaValue()

appbuilder.util.AbfFloat public void map(double value)

 public void map(float value)

 public double getJavaValue()

appbuilder.util.AbfLongInt public void map(long value)

 public long getJavaValue()

appbuilder.util.AbfInt public void map(int value)

 public int getJavaValue()

appbuilder.util.AbfTime public void map(Date date)

 public Date getJavaValue()

appbuilder.util.AbfTimeStamp public void map(Date date)

 public Date getJavaValue()

appbuilder.util.AbfShortInt public void map(short value)

 public void map(int value)

 public short getJavaValue()

appbuilder.util.AbfString public void map(String value)

 public String getJavaValue()

appbuilder.util.AbfDataChangeListener public void dataChange(AbfDataChangeEvent evt)

 public void preDataChange(AbfDataChangeEvent evt)

 public void sizeChange(AbfDataChangeEvent evt)

appbuilder.util.AbfDataChangeEvent public AbfDataObject getDataObject()

appbuilder.util.AbfSystem void init(String appbuilderIniUrl)

 public void appTrace(int level, String s)

 public static String deriveClassName(int type, String longName) a

 public static String deriveObjectName(int type, String longName) b

appbuilder. AbfModule

This is a base class of rule types.

public static AbfStruct start(String ruleClassName, HpsView iView, AbfStruct
oView)

 public AbfModule getCallingRule()

 public AbfStruct run (AbfStruct iView)

appbuilder. AbfClientModule

This is a base class for servlet and GUI
rules.

public void post(HpsPostEvent e)

appbuilder.AbfPostEvent public AbfPostEvent (Object source, String sourceName, String subject, HpsView
view)

 public AbfStruct getView()

 public String getSourceName ()

 public String getSubject()

 public Object getSourceObject()

 public String getParam()

a. Given an object type and it's long name, it returns the generated java class name. The valid types are RULE_TYPE, VIEW_TYPE,
VIEWARRAY_TYPE, SET_TYPE and COMPONENT_TYPE as defined in AbfSystem.

b. Given an object type and it's long name, it returns the generated name of the instance variable. In addition to the types in deriveClassName,
AbfSystem.WINDOW_TYPE, FIELD_TYPE, OBJECT_TYPE can be used.

Supported Methods in CSharp

Supported Methods in C#

This appendix presents a full list of supported methods in C# Objectspeak.

All thin client features of Java are not supported in C# since thin client is not supported.

If an object inherits any class, then all methods and properties of the inherited class are available in the object.

Accelerator

C# support for Accelerator

Constructors

CONSTRUCTOR(ODE_eCHAR, ODE_eLONG)

CONSTRUCTOR(ODE_eLONG, ODE_eLONG)

Properties

ALT

CTRL

KeyChar

KeyCode

Modifiers

SHIFT

VK_F1

VK_F2

VK_F3

VK_F4

VK_F5

VK_F6

VK_F7

VK_F8

VK_F9

VK_F10

VK_F11

VK_F12

ActivateEvent

C# support for ActivateEvent

Properties

HpsId

Array

C# support for Array

Methods

ELEM(ODE_eINDEX, ODE_eELEM)

ELEM(ODE_eINDEX)

INSERT(ODE_eINDEX)

REPLACE(ODE_eINDEX, ODE_eELEM)

RESIZE(ODE_eELEM)

SIZE()

CellFocusGainedEvent

C# support for CellFocusGainedEvent

Properties

COLUMN

COLUMNINDEX

HPSID

PHYSICALINDEX

SOURCE

VIRTUALINDEX

CellFocusLostEvent

C# support for CellFocusLostEvent

Properties

COLUMN

COLUMNINDEX

HPSID

PHYSICALINDEX

SOURCE

VIRTUALINDEX

CheckBox

C# support for CheckBox

Inherits

GuiObject

Constructors

CONSTRUCTOR()

CONSTRUCTOR(ODE_eString)

Events

CLICK(ODE_eOBJECT)

DOUBLECLICK(ODE_eOBJECT)

FOCUSGAINED(ODE_eOBJECT)

FOCUSLOST(ODE_eOBJECT)

FIELDERROR(ODE_eOBJECT)

Properties

ALTERED - has Set method

AUTOSELECT

DATALINK - has Set method

EDITABLE - has Set method

EMPTY

ERROR

IMMEDIATERETURN - has Set method

MANDATORY - has Set method

MNEMONIC - has Set method

MNEMONICKEYCODE - has Set method

POPUPMENU - has Get/Set methods

SELECTED - has Set method

TABSTOP - has Set method

TEXT - has Set method

ClickEvent

C# support for ClickEvent

Properties

COLUMN

COLUMNINDEX

HPSID

PHYSICALINDEX

SOURCE

VIRTUALINDEX

CloseEvent

C# support for CloseEvent

Properties

HPSID

Color

C# support for Color

Constructors

CONSTRUCTOR(ODE_eLONG, ODE_eLONG, ODE_eLONG)

CONSTRUCTOR(ODE_eOBJECT)

Properties

BLACK

BLUE

BROWN

CYAN

DARKBLUE

DARKCYAN

DARKGRAY

DARKGREEN

DARKMAGENTA

DARKRED

DARKYELLOW

GRAY

GREEN

LIGHTGRAY

MAGENTA

PINK

RED

TURQUOISE

WHITE

YELLOW

Column

C# support for Column

Inherits

GuiObject

Constructors

CONSTRUCTOR()

CONSTRUCTOR(ODE_eSTRING)

Events

FIELDERROR(ODE_eOBJECT)

Properties

ALTERED - has Set method

EDITABLE - has Set method

EDITLIMIT - has Set method

EMPTY

ERROR

FIELDPATH - has Get/Set methods

FORMAT - has Set method

HEADERLINECOUNT - has Get method

IMMEDIATERETURN - has Set method

JUSTIFICATION - has Get/Set methods

MANDATORY - has Set method

POPUPMENU - has Get/Set methods

SETLINK - has Set methodsGet/

WIDTH - has Set methods

Methods

ADDHEADER(ODE_eSTRING)

ADDHEADER(ODE_eSTRING, ODE_eLONG)

GETHEADER()

GETHEADER(ODE_eLONG)

GETSCALEDWIDTH(ODE_eLONG)

REMOVEHEADER(ODE_eSTRING)

ODE_eVOID SETHEADER(ODE_eString, ODE_eInt)

SETSCALEDWIDTH

ComboBox

C# support for ComboBox

Inherits

GuiObject

Constructors

CONSTRUCTOR()

CONSTRUCTOR(ODE_eSTRING)

Events

CLICK(ODE_eOBJECT)

DOUBLECLICK(ODE_eOBJECT)

FIELDERROR(ODE_eOBJECT)

FIELDVALIDATION(ODE_eOBJECT)

FOCUSGAINED(ODE_eOBJECT)

FOCUSLOST(ODE_eOBJECT)

SELECT(ODE_eOBJECT)

Properties

ALTERED - has Set method

AUTOSELECT - has Set method

DATALINK - has Set method

DOMAINTYPE - has Get method

EDITABLE - has Set method

EDITLIMIT - has Set method

EMPTY

ERROR

FIELDPATH - has Get/Set methods

FORMAT - has Set method

IMMEDIATERETURN - has Set method

ISAUTOSELECT

JUSTIFICATION - has methodsGet/Set

MANDATORY - has Set method

POPUPMENU - has Get/Set methods

SETLINK - has Set method

SELECTEDINDEX - has Set method

TABSTOP - has Set method

TEXT - has Set method

VIEWLINK - has Set method

Methods

GETLISTLINK

SETLISTLINK(ODE_eOBJECT)

CommErrorEvent

C# support for CommErrorEvent

Properties

HPSID

Constants

C# support for Constants

Properties

ACCEPT

ALL_FIRST_UPPER_CASE

ALT

ASYNC_EVENT

BITMAP

BOOLEAN_FORMAT

CANCEL

CENTER

CENTER_JUSTIFY

CHECKBOX

CHECKBOX_MENUITEM

COLUMN

COMBOBOX

COORDINATE_CHAR

COORDINATE_PIXEL

CTRL

DATE_FORMAT

DECIMAL_FORMAT

DEFAULT_BUTTONS

DEFAULT_CASE

DOUBLE_FORMAT

EDITFIELD

ELLIPSE

ERROR

FILEEDITOR

FIRST_UPPER_CASE

FLOAT_FORMAT

GROUPBOX

HOTSPOT

HORIZONTAL_AND_VERTICAL_LINES

HORIZONTAL_LINES

INFORMATION

IN_ERROR

INT_FORMAT

INTERFACE_EVENT

LABEL

LANDP_EVENT

LANDP_REQUEST_EVENT

LANDP_SYSTEM_EVENT

LEFT

LEFT_JUSTIFY

LISTBOX

LONGINT_FORMAT

LOWER_CASE

MENU

MENUITEM

MULTILINEEDIT

MULTIPLE_RANGE_SELECTION

NO

NO_LINES

OK

OK_BUTTON

OK_CANCEL

PANE

PASSWORDFIELD

PLAIN

PLAIN_MENUITEM

POPUPMENU

PROGRESSBAR

PUSHBUTTON

QUESTION

RADIOBUTTON

RADIOBUTTON_MENUITEM

RECTANGLE

RIGHT

RIGHT_JUSTIFY

ROLLBACK

SHIFT

SHORTINT_FORMAT

SINGLE_RANGE_SELECTION

SINGLE_SELECTION

STRING_FORMAT

SYSTEM_EVENT

TABBEDPANE

TABLE

TIME_FORMAT

UPPER_CASE

USER_EVENT

WARNING

WINDOW

YES

YES_NO

YES_NO_CANCEL

VERTICAL_LINES

VK_DELETE

VK_F1

VK_F2

VK_F3

VK_F4

VK_F5

VK_F6

VK_F7

VK_F8

VK_F9

VK_F10

VK_F11

VK_F12

VK_INSERT

ConverseEvent

C# support for ConverseEvent

Properties

HPSID

DataRequiredEvent

C# support for DateRequiredEvent

Properties

DATABASESIZE

HPSID

REFRESH

SETDATABASESIZE

SETREFRESH

SETTOPVIRTUALROW

SOURCE

TOPVIRTUALROW

TYPESTRING

DecimalFormat

C# support for DecimalFormat

Properties

CURRENCY - has Set method

DISPLAYMASK - has Set method

DISPLAYPICTURE - has Set method

EDITMASK - has Set method

MAXIMUMSET

MINIMUMSET

Methods

DECIMALTOSTRING(ODE_eOBJECT, ODE_eSTRING, ODE_eOBJECT)

DISPLAYSTRING(ODE_eOBJECT)

EDITSTRING(ODE_eOBJECT)

SETMAXIMUM(ODE_eOBJECT)

SETMINIMUM(ODE_eOBJECT)

STRINGTODECIMAL(ODE_eSTRING, ODE_eSTRING, ODE_eOBJECT)

Dimension

C# support for Dimension

Constructors

CONSTRUCTOR(ODE_eLONG, ODE_eLONG)

Properties

HEIGHT - has Set method

WIDTH - has Set method

DoubleClickEvent

C# support for DoubleClickEvent

Properties

COLUMN

COLUMNINDEX

HPSID

PHYSICALINDEX

SOURCE

VIRTUALINDEX

DoubleFormat

C# support for DoubleFormat

Properties

CURRENCY - has Set method

DISPLAYMASK - has Set method

DISPLAYPICTURE - has Set method

EDITMASK - has Set method

MAXIMUMSET

MINIMUMSET

Methods

DISPLAYSTRING(ODE_eOBJECT)

DOUBLETOSTRING(ODE_eOBJECT, ODE_eSTRING, ODE_eOBJECT)

EDITSTRING(ODE_eOBJECT)

SETMAXIMUM(ODE_eOBJECT)

SETMINIMUM(ODE_eOBJECT)

STRINGTODOUBLE(ODE_eSTRING, ODE_eSTRING, ODE_eOBJECT)

EditField

C# support for EditField

Inherits

GuiObject

Constructors

CONSTRUCTOR()

CONSTRUCTOR(ODE_eSTRING)

Events

CLICK(ODE_eOBJECT)

DOUBLECLICK(ODE_eOBJECT)

FIELDERROR(ODE_eOBJECT)

FIELDVALIDATION(ODE_eOBJECT)

FOCUSGAINED(ODE_eOBJECT)

FOCUSLOST(ODE_eOBJECT)

Properties

 ALTERED - has Set method

AUTOSELECT - has Set method

AUTOTAB - has Set method

BORDER - has Set method

DATALINK - has Set method

EDITABLE - has Set method

EDITLIMIT

EMPTY

ENABLED - has Set method

ERROR

FORMAT - has Set method

IMMEDIATERETURN - has Set method

JUSTIFICATION - has Get/Set methods

MANDATORY - has Set method

POPUPMENU - has Get/Set methods

SETLINK - has Set method

TABSTOP - has Set method

TEXT - has Set method

Ellipse

C# support for Ellipse

Inherits

GuiObject

Constructors

CONSTRUCTOR()

Events

CLICK(ODE_eOBJECT)

DOUBLECLICK(ODE_eOBJECT)

EnterKeyEvent

C# support for EnterKeyEvent

Properties

ENTERKEY

HPSID

SOURCE

FieldErrorEvent

C# support for FieldErrorEvent

Properties

COLUMNINDEX

HPSID

PHYSICALINDEX

ROLLBACK - has Set method

SHOWMESSAGE - has Set method

SOURCE

VIRTUALINDEX

FieldValidationEvent

C# support for FieldValidationEvent

Properties

COLUMNINDEX

HPSID

PHYSICALINDEX

RESPONSE

SETRESPONSE

SHOWMESSAGE - has Set method

SOURCE

VIRTUALINDEX

FileEditor

C# support for FileEditor

Inherits

GuiObject

Constructors

CONSTRUCTOR()

CONSTRUCTOR(ODE_eSTRING)

Events

CLICK(ODE_eOBJECT)

DOUBLECLICK(ODE_eOBJECT)

FIELDERROR(ODE_eOBJECT)

FIELDVALIDATION(ODE_eOBJECT, ODE_eOBJECT)

FIELDVALIDATION(ODE_eOBJECT)

FOCUSGAINED(ODE_eOBJECT)

FOCUSLOST(ODE_eOBJECT)

Properties

ALTERED - has Set method

AUTOSELECT - has Set method

DATALINK - has Set method

EDITABLE - has Set method

EDITLIMIT - has Set method

EMPTY

ERROR

IMMEDIATERETURN - has Set method

INSERTBREAK - has Set method

INSERTTAB - has Set method

MANDATORY - has Set method

POPUPMENU - has Get/Set methods

TABSTOP - has Set method

TEXT - has Set method

WORDWRAP - has Set method

FloatFormat

C# support for FloatFormat

Properties

CURRENCY - has Set method

DISPLAYMASK - has Set method

DISPLAYPICTURE - has Set method

EDITMASK - has Set method

MAXIMUMSET

MINIMUMSET

Methods

DISPLAYSTRING(ODE_eOBJECT)

EDITSTRING(ODE_eOBJECT)

FLOATTOSTRING(ODE_eOBJECT, ODE_eSTRING, ODE_eOBJECT)

SETMAXIMUM(ODE_eOBJECT)

SETMINIMUM(ODE_eOBJECT)

STRINGTOFLOAT(ODE_eSTRING, ODE_eSTRING, ODE_eOBJECT)

FocusGainedEvent

C# support for FocusGainedEvent

Properties

HPSID

SOURCE

FocusLostEvent

C# support for FocusLostEvent

Properties

HPSID

SOURCE

Font

C# support for Font

Constructors

CONSTRUCTOR(ODE_eOBJECT)

CONSTRUCTOR(ODE_eSTRING, ODE_eLONG, ODE_eFLOAT)

Properties

BOLD

DISPLAYNAME

FONT

FONTNAMES

ITALIC

MODERN10

MODERN12

MODERN8

PLAIN

ROMAN10

ROMAN12

ROMAN14

ROMAN18

ROMAN24

ROMAN8

SIZE

STYLE

SWISS10

SWISS12

SWISS14

SWISS18

SWISS24

SWISS8

SYSTEMFONT8

Methods

GETFONT(ODE_eOBJECT)

GETFONTNAMES(ODE_eOBJECT)

GETSIZE(ODE_eFLOAT)

GETSTYLE(ODE_eLONG)

Format

C# support for Format

Properties

DISPLAYMASK - has Set method

DISPLAYPICTURE - has Set method

EDITMASK - has Set method

Methods

DISPLAYSTRING(ODE_eOBJECT)

EDITSTRING(ODE_eOBJECT)

GroupBox

C# support for GroupBox

Inherits

GuiObject

Constructors

CONSTRUCTOR()

CONSTRUCTOR(ODE_eSTRING)

Properties

TEXT - has Set method

GuiObject

C# support for GuiObject

Properties

BACKGROUND - has Set method

ENABLED - has Is/Set methods

FOCUS - has Has method

FONT - has Get/Set methods

FOREGROUND - has Set method

HPSID - has Set method

LOCATION - has Set method

SHORTHELP - has Set method

SIZE - has Set method

TYPE

VISIBLE - has Is/Set methods

Methods

SETFOCUS()

SETSIZE(ODE_eLONG, ODE_eLONG)

SETLOCATION(ODE_eLONG, ODE_eLONG)

HeaderClickEvent

C# support for HeaderClickEvent

Properties

COLUMN

COLUMNINDEX

HPSID

SORTINGORDER - has Set method

SOURCE

USEDEFAULTSORTING - has Set method

InitializeEvent

C# support for InitializeEvent

Properties

HPSID

IntFormat

C# support for IntFormat

Properties

CURRENCY - has Set method

DISPLAYMASK - has Set method

DISPLAYPICTURE - has Set method

EDITMASK - has Set method

MAXIMUMSET

MINIMUMSET

Methods

DISPLAYSTRING(ODE_eOBJECT)

EDITSTRING(ODE_eOBJECT)

INTTOSTRING(ODE_eOBJECT, ODE_eSTRING, ODE_eOBJECT)

SETMAXIMUM(ODE_eOBJECT)

SETMINIMUM(ODE_eOBJECT)

STRINGTOINT(ODE_eSTRING, ODE_eSTRING, ODE_eOBJECT)

IWindow

C# support for IWindow

Events

CLOSE(ODE_eOBJECT)

CONVERSE(ODE_eOBJECT)

ENTERKEY(ODE_eOBJECT)

INITIALIZE(ODE_eOBJECT)

TERMINATE(ODE_eOBJECT)

WINDOWERROR(ODE_eOBJECT)

WINDOWVALIDATION(ODE_eOBJECT)

Properties

ALTERED - ha s Is/Set methods

CLIENTSIZE

CLIENTSIZE SET - has Is method

DEFAULTBUTTON

FINDFOCUSEDGUIOBJECT

FOCUSEDGUIOBJECT

FOCUS OWNER - has Get method

HELPTOP IC - has Get method

MAXIMIZABLE - ha s Is/Set methods

MENUBAR

MINIMIZABLE - h sas Is/Set method

POPUPMENU - has Get/Set methods

RESIZAB LE - has Is/Set methods

TEXT - has Set method

TITLE - has Set method

Methods

ADDCHILD(ODE_eOBJECT)

CLEARALTERED()

CLEARSELECTION()

CLEARWINDOWCHANGES()

GETABFMENUBAR()

GETDEFAULTPUSHBUTTON()

GETSCALEDCLIENTSIZE()

PRINTFRAME()

SETABFMENUBAR(ODE_eOBJECT)

SETDEFAULTPUSHBUTTON(ODE_eOBJECT)

SETSCALEDCLIENTSIZE(ODE_eOBJECT)

SHOWMESSAGEBOX(ODE_eSTRING, ODE_eSTRING, ODE_eLONG, ODE_eLONG)

SHOWMESSAGEBOX(ODE_eSTRING, ODE_eLONG)

TERMINATE()

UPDATEDISPLAY()

Label

C# support for Label

GuiObject

Constructors

CONSTRUCTOR()

Events

CLICK(ODE_eOBJECT)

DOUBLECLICK(ODE_eOBJECT)

Properties

HORIZONTALTEXTPOSITION - has Set method

IMAGE - has Set method

JUSTIFICATION ds- has Get/Set metho

MNEMONIC - has Set method

MNEMONICKEYCODE - has Set method

P OPUPMENU - has Get/Set methods

TEXT - has Set method

VERTICALJUSTIFICATION - ethodhas Get/Set m

Methods

SETAUTOSIZE(ODE_eBOOL)

SETVERTICALTEXTPOSITION(ODE_eLONG)

ListBox

C# support for ListBox

Inherits

GuiObject

Constructors

CONSTRUCTOR()

CONSTRUCTOR(ODE_eSTRING)

Events

CLICK(ODE_eOBJECT)

DOUBLECLICK(ODE_eOBJECT)

FIELDERROR(ODE_eOBJECT)

FOCUSGAINED(ODE_eOBJECT)

FOCUSLOST(ODE_eOBJECT)

Properties

ALTERED

EDITABLE - has Set method

EMPTY

ERROR

FIELDP ATH - has Get/Set methods

FORMAT - has Set method

IMMEDIATERETURN - has Set method

ISAUTOSELECT

JUST IFICATION - has Get/Set methods

MANDATORY - has Set method

NEXT SELECTEDINDEX - has Get method

POPUPMENU - has Set method

SELECTEDINDEX - has Set method

SELECTIONMODE - has Set method

TABSTOP - has Set method

VIEWLINK - has Set method

Methods

CLEARSELECTION()

GETFIELDPATHSTRING()

GETNEXTSELECTEDINDEX(ODE_eLONG)

NEXTSELECTEDINDEX(ODE_eLONG)

RESETSELECTEDINDEX(ODE_eLONG)

RESETSELECTIONINTERVAL(ODE_eLONG, ODE_eLONG)

SETAUTOSELECT(ODE_eBOOL)

SETFIELDPATHSTRING(ODE_eSTRING)

SETSELECTIONINTERVAL(ODE_eLONG, ODE_eLONG)

LongIntFormat

C# support for LongIntFormat

Properties

CURRENCY - has Set method

DISPLAYMASK - has Set method

DISPLAYPICTURE - has Set method

EDITMASK - has Set method

MAXIMUMSET

MINIMUMSET

Methods

DISPLAYSTRING(ODE_eOBJECT)

EDITSTRING(ODE_eOBJECT)

LONGINTTOSTRING(ODE_eOBJECT, ODE_eSTRING, ODE_eOBJECT)

SETMAXIMUM(ODE_eOBJECT)

SETMINIMUM(ODE_eOBJECT)

STRINGTOLONGINT(ODE_eSTRING, ODE_eSTRING, ODE_eOBJECT)

Menu

C# support for Menu

Inherits

GuiObject

Constructors

CONSTRUCTOR(ODE_eSTRING)

CONSTRUCTOR()

Events

CLICK(ODE_eOBJECT)

Properties

ACCELERATOR - has Set method

CHECKED - has Is/Set methods

CHECKMANDATORYFIELDS - has Set method

COUNT

IGNOREVALIDATION - has Set method

MNEMONIC - has Set method

MNEMONICKEYCODE - has Set method

SELEC sTED - has Is/Set method

STYLE - has Set method

 TEXT - has Get/Set methods

VALIDATION - has Set method

Methods

ADD(ODE_eOBJECT)

ADDSEPARATOR()

GETITEM(ODE_eLONG)

GETITEMCOUNT

MenuBar

C# support for MenuBar

Inherits

GuiObject

Constructors

CONSTRUCTOR()

Properties

MENUCOUN T - has Get method

Methods

ADD(ODE_eOBJECT)

GETMENU(ODE_eLONG)

MenuItem

C# support for MenuItem

Inherits

GuiObject

Constructors

CONSTRUCTOR(ODE_eSTRING)

CONSTRUCTOR()

Events

CLICK(ODE_eOBJECT)

Properties

ACCELERATOR - has Set method

CHECKED - ha dss Is/Set metho

CHECKMANDATORYFIELDS - has Set method

COUNT

IGNOREVALIDATION - has Set method

MNEMONIC - has Set method

MNEMONICKEYCODE - has Set method

SELECTED - has Is/Set methods

STYLE - has Set method

TEXT - has sGet/Set method

VALIDATION - has Set method

Methods

ADD(ODE_eOBJECT)

ADDSEPARATOR()

GETITEM(ODE_eLONG)

GETITEMCOUNT

MessageBox

C# support for MessageBox

Constructors

CONSTRUCTOR()

CONSTRUCTOR(ODE_eOBJECT, ODE_eSTRING, ODE_eSTRING, ODE_eLONG, ODE_eLONG)

Properties

ARGUMENT1 - has Set method

ARGUMENT2 - has Set method

ARGUMENT3 - has Set method

BUTTONTYPE - has Set method

LOCALE

MESSAGE - has Set method

MESSAGETYPE - has Set method

PARENT

TITLE - has Set method

Methods

SETABFLOCALE(ODE_eOBJECT)

SETABFPARENT(ODE_eOBJECT)

SHOW()

MultiLineEdit

C# support for MultiLineEdit

Inherits

GuiObject

Constructors

CONSTRUCTOR()

CONSTRUCTOR(ODE_eSTRING)

Events

CLICK(ODE_eOBJECT)

DOUBLECLICK(ODE_eOBJECT)

FIELDERROR(ODE_eOBJECT)

FIELDVALIDATION(ODE_eOBJECT, ODE_eOBJECT)

FIELDVALIDATION(ODE_eOBJECT)

FOCUSGAINED(ODE_eOBJECT)

FOCUSLOST(ODE_eOBJECT)

Properties

 ALTERED - has Set method

AUTOSELECT - has Set method

DATALINK - has Set method

EDITABLE - has Set method

EDITLIMIT - has Set method

EMPTY

ERROR

IMMEDIATERETURN - has Set method

INSERTBREAK - has Set method

INSERTTAB - has Set method

MANDATORY - has Set method

POPUPMENU - has Set method

TABSTOP - has odsGet/Set meth

TEXT - has Set method

NodeEvent

C# support for NodeEvent

Properties

HPSID

TREENODE

SOURCE

PageSelectEvent

C# support for PageSelectEvent

Properties

HPSID

SELECTEDPAGEINDEX

SOURCE

Pane

C# support for Pane

Inherits

GuiObject

Constructors

CONSTRUCTOR()

Events

CLICK(ODE_eOBJECT)

DOUBLECLICK(ODE_eOBJECT)

FOCUSGAINED(ODE_eOBJECT)

FOCUSLOST(ODE_eOBJECT)

Properties

BORDERSTYLE - has Set method

LOWERED_BEVEL

NO_BORDER

OPAQUE - has Set method

POPUPMENU - has Set method

RAISED_BEVEL

TABSTOP - has Set method

Methods

ADD(ODE_eOBJECT)

PasswordField

C# support for PasswordField

Inherits

EditField

GuiObject

Constructors

CONSTRUCTOR()

CONSTRUCTOR(ODE_eSTRING)

Events

CLICK(ODE_eOBJECT)

DOUBLECLICK(ODE_eOBJECT)

FIELDERROR(ODE_eOBJECT)

FIELDVALIDATION(ODE_eOBJECT)

FOCUSGAINED(ODE_eOBJECT)

FOCUSLOST(ODE_eOBJECT)

Properties

ALTERED - has Set method

AUTOSELECT - has Set method

AUTOTAB - has Set method

BORDER - has Set method

DATALINK - has Set method

EDITABLE - has Set method

EDITLIMIT - has Set method

EMPTY

ENABLED - has Set method

ENABLED - has Set method

ERROR

FORMAT - has Set method

IMMEDIATERETURN - has Set method

JUSTIFICATION - has sGet/Set method

MANDATORY - has Set method

POPUPMENU - ha s Get/Set methods

SETLINK - has Set method

TABSTOP - has Set method

TEXT - has Set method

Point

C# support for Point

Constructors

CONSTRUCTOR(ODE_eLONG, ODE_eLONG)

Properties

X - has Set method

Y - has Set method

PopupMenu

C# support for PopupMenu

Inherits

GuiObject

Constructors

CONSTRUCTOR()

Methods

ADD(ODE_eOBJECT)

ADDSEPARATOR()

PushButton

C# support for PushButton

Inherits

GuiObject

Constructors

CONSTRUCTOR()

CONSTRUCTOR(ODE_eSTRING)

Events

CLICK(ODE_eOBJECT)

FOCUSGAINED(ODE_eOBJECT)

FOCUSLOST(ODE_eOBJECT)

Properties

CHECKMANDATORYFIELDS - has Set method

HORIZONTALTEXTPOSITION - has Set method

IGNOREVALIDATION - has Set method

IMAGE - has Set method

MNEMONIC - has Set method

MNEMONICKEYCODE - has Set method

POPUPMENU - has Set method

PRESSED

SETTABSTOP

TEXT - has Set method

VALIDATION - has Set method

VERTICALTEXTPOSITION

Methods

SETVERTICALTEXTTOIMAGEPOSITION(ODE_eLONG)

RadioButton

C# support for RadioButton

Inherits

GuiObject

Constructors

CONSTRUCTOR()

CONSTRUCTOR(ODE_eSTRING)

Events

CLICK(ODE_eOBJECT)

DOUBLECLICK(ODE_eOBJECT)

FIELDERROR(ODE_eOBJECT)

FOCUSGAINED(ODE_eOBJECT)

FOCUSLOST(ODE_eOBJECT)

Properties

ALTERED - has Set method

DATALINK - has Set method

EDITABLE - has Set method

EMPTY

ERROR

IMMEDIATERETURN - has Set method

MANDATORY - has Set method

MNEMONIC - has Set method

MNEMONICKEYCODE - has Set method

POPUPMENU - has Set method

SELECTED - has Set method

TABSTOP - has Set method

TEXT - has Set method

Rectangle

C# support for Rectangle

Inherits

GuiObject

Constructors

CONSTRUCTOR()

Events

CLICK(ODE_eOBJECT)

DOUBLECLICK(ODE_eOBJECT)

RowFocusGainedEvent

C# support for RowFocusGainedEvent

Properties

HPSID

PHYSICALINDEX

SOURCE

VIRTUALINDEX

RowFocusLostEvent

C# support for RowFocusLostEvent

Properties

HPSID

PHYSICALINDEX

SOURCE

VIRTUALINDEX

Rule

C# support for Rule

Events

ACTIVATE(ODE_eOBJECT)

CHILDRULEEND(ODE_eOBJECT)

COMMERROR(ODE_eOBJECT)

CONVERSE(ODE_eOBJECT)

INITIALIZE(ODE_eOBJECT)

PARENTRULEEND(ODE_eOBJECT)

POST(ODE_eOBJECT)

RULEEND(ODE_eOBJECT)

SQLERROR(ODE_eOBJECT)

TERMINATE(ODE_eOBJECT)

Properties

ACTIVEWINDOW

CALLINGRULE - has Get method

IMPNAME - has Get method

INSTANCE

 LONGNAME - has Get method

SHORTNAM E - has Get method

WINDOW - has Get method

Methods

GETIMPNAME()

GETINSTANCENAME()

GETTARGETWINDOW()

FINDGUIOBJECT(ODE_eSTRING)

FINDGUIOBJECT(ODE_eSTRING, ODE_eLONG)

POSTTO(ODE_eOBJECT, ODE_eSTRING)

POSTTO(ODE_eOBJECT, ODE_eSTRING, ODE_eOBJECT)

POSTTO(ODE_eOBJECT, ODE_eSTRING, ODE_eOBJECT, ODE_eSTRING)

POSTTOCHILD(ODE_eSTRING, ODE_eSTRING)

POSTTOCHILD(ODE_eSTRING, ODE_eSTRING, ODE_eOBJECT)

POSTTOCHILD(ODE_eSTRING, ODE_eSTRING, ODE_eOBJECT, ODE_eSTRING)

POSTTOPARENT(ODE_eSTRING, ODE_eOBJECT)

POSTTOPARENT(ODE_eSTRING)

POSTTOPARENT(ODE_eSTRING, ODE_eOBJECT, ODE_eSTRING)

QUERYUSERAUTHENTICATION()

SETHELPFILE(ODE_eSTRING)

SETUSERAUTHENTICATION(ODE_eSTRING, ODE_eSTRING)

SHOWHELPTOPIC(ODE_eSTRING)

TERMINATE()

TRACE(ODE_eSTRING)

Set

C# support for Set

Methods

ADDSETITEM(ODE_eSTRING, ODE_eDECIMALRef, ODE_eLONG)

ADDSETITEM(ODE_eSTRING, ODE_eINTRef, ODE_eLONG)

ADDSETITEM(ODE_eSTRING, ODE_eSTRINGRef, ODE_eSTRING, ODE_eLONG)

ADDSETITEM(ODE_eSTRING, ODE_eDECIMALRef, ODE_eSTRING, ODE_eLONG)

ADDSETITEM(ODE_eSTRING, ODE_eINTRef, ODE_eSTRING, ODE_eLONG)

ADDSETITEM(ODE_eSTRING, ODE_eSTRINGRef)

ADDSETITEM(ODE_eOBJECT)

ADDSETITEM(ODE_eSTRING, ODE_eINTRef)

ADDSETITEM(ODE_eSTRING, ODE_eSTRINGRef, ODE_eLONG)

ADDSETITEM(ODE_eSTRING, ODE_eDECIMALRef)

GETSETITEM(ODE_eDECIMALRef)

GETSETITEM(ODE_eINTRef)

GETSETITEM(ODE_eSTRINGRef)

GETSETITEMFROMDISPLAY(ODE_eSTRING)

REFRESH()

SetItem

C# support for SetItem

Constructors

CONSTRUCTOR(ODE_eSTRING, ODE_eSTRINGRef, ODE_eLONG)

CONSTRUCTOR(ODE_eSTRING, ODE_eDECIMALRef, ODE_eSTRING, ODE_eLONG)

CONSTRUCTOR(ODE_eSTRING, ODE_eDECIMALRef, ODE_eLONG)

CONSTRUCTOR(ODE_eSTRING, ODE_eINTRef, ODE_eLONG)

CONSTRUCTOR(ODE_eSTRING, ODE_eINTRef, ODE_eSTRING, ODE_eLONG)

CONSTRUCTOR(ODE_eSTRING, ODE_eINTRef)

CONSTRUCTOR(ODE_eSTRING, ODE_eSTRINGRef)

CONSTRUCTOR(ODE_eSTRING, ODE_eSTRINGRef, ODE_eSTRING, ODE_eLONG)

CONSTRUCTOR(ODE_eSTRING, ODE_eDECIMALRef)

Properties

DISABLED

ENABLED

GETDISPLAY

GETENCODING

GETTEXT

NONSELECTABLE

STATE - has Set method

ShortIntFormat

C# support for ShortIntFormat

Properties

CURRENCY - has Set method

DISPLAYMASK - has Set method

DISPLAYPICTURE - has Set method

EDITMASK - has Set method

MAXIMUMSET

MINIMUMSET

Methods

DISPLAYSTRING(ODE_eOBJECT)

EDITSTRING(ODE_eOBJECT)

SETMAXIMUM(ODE_eOBJECT)

SETMINIMUM(ODE_eOBJECT)

SHORTTOSTRING(ODE_eOBJECT, ODE_eSTRING, ODE_eOBJECT)

STRINGTOSHORT(ODE_eSTRING, ODE_eSTRING, ODE_eOBJECT)

TabControl

C# support for TabControl

Inherits

GuiObject

Constructors

CONSTRUCTOR()

CONSTRUCTOR(ODE_eSTRING)

Events

TABPAGEDeselected(ODE_eOBJECT)

TABPAGESelected(ODE_eOBJECT)

Properties

BACKGROUND - has Set method

COUNT

FONT - has Set method

FOREGROUND - has Set method

MULTIPLEROWS - has Set method

ORIENTATION - has Set method

SELECTEDTAB

SELECTEDINDEX

SIZE - has Set method

TABSTOP - has Set method

VISIBLE - has Set method

Methods

ADDPAGE(ODE_eOBJECT)

GETPAGE(ODE_eLONG)

INSERTPAGE(ODE_eLONG, ODE_eOBJECT)

REMOVE(ODE_eOBJECT)

REMOVEAT(ODE_eLONG)

SETENABLEDPAGE(ODE_eLONG, ODE_eBOOL)

Table

C# support for Table

Inherits

GuiObject

Constructors

CONSTRUCTOR()

CONSTRUCTOR(ODE_eSTRING)

Events

CELLCLICK (ODE_eOBJECT)

CELLDOUBLECLICK (ODE_eOBJECT)

CELLFOCUSGAINED(ODE_eOBJECT)

CELLFOCUSLOST(ODE_eOBJECT)

CLICK(ODE_eOBJECT)

DATAREQUIRED(ODE_eOBJECT)

ENTERKEYPRESSED(ODE_eOBJECT)

FIELDERROR(ODE_eOBJECT)

FIELDVALIDATION(ODE_eOBJECT)

HEADERCLICK(ODE_eOBJECT)

ROWFOCUSGAINED(ODE_eOBJECT)

ROWFOCUSLOST(ODE_eOBJECT)

Properties

ALTERED - has Set method

AUTOSELECT - has Set method

BACKBUFFER - ha hodss Get/Set met

BACKGRNDCOLOR

BORDER

BORDERSTYLE - has Set method

DATABASESIZE - has Get method

CURRENTCOLUMN

CURRENTROW

EDITABLE - has Set method

ELEVATORPOSITION - has Get method

EMPTY

ERROR

FIRSTVISIBLEROW - has ethodsGet/Set m

FOREGRNDCOLOR

JUSTIFICATION - has Get/Set methods

HEADERBACK sGROUND - has Get/Set method

HEADERFONT - has Get/Set method

HEADERFOREGROUN sD - has Get/Set method

HEADERHEIGHT

IMMEDIATERETURN - has Set method

ISAUTOSELECT

ISROWSELECT

LASTVISIBLEROW - has Set method

LINES - has Get/Set methods

MANDATORY - has Set method

NEXTSELECTEDINDEX

NUMBERINGCOLUMN - has Has/Set methods

POPUPMENU - has Set method

ROWHEIGHT

ROWSELECT - has Is/Set methods

SCROLLABLEOCCURS

SCROLLLOCK - has Is/Set method

SCROLLBARS - has Set method

SELECTEDINDEX - has Set method

SELECTEDROWCOUNT - has Get method

SELECTIONMODE - has Get/Set methods

TABSTOP - has Set method

VIEWLINK - has Get/Set methods

VISIBLEOCCURS

Methods

ADDCOLUMN(ODE_eOBJECT)

CLEARSELECTION()

CONVERTTOPHYSICAL(ODE_eLONG)

DISABLETOPANDBOTTOMEVENTS(ODE_eBOOL)

GETCOLUMN(ODE_eLONG)

GETFIRSTVISIBLEOCCURRENCE

GETLASTVISIBLEOCCURRENCE

GETLISTLINK

GETNEXTSELECTEDPHYSICALINDEX

GETNEXTSELECTEDINDEX()

GETNEXTSELECTEDINDEX(ODE_eLONG)

GETOCCURS

GETSCALEDHEADERHEIGHT

GETSCALEDROWHEIGHT

GETSELECTEDPHYSICALINDEX

GETSELECTEDVIRTUALINDEX

GETVISIBLEROWS

NEXTSELECTEDINDEX(ODE_eLONG)

RESETSELECTEDINDEX(ODE_eLONG)

RESETSELECTIONINTERVAL(ODE_eLONG, ODE_eLONG)

SETLISTLINK(ODE_eOBJECT)

SETMOREDATA(ODE_eBOOL)

SETMOREROWS(ODE_eLONG, ODE_eBOOL)

SETNUMBERINGCOLUMN(ODE_eBOOL)

SETSELECTIONINTERVAL(ODE_eLONG, ODE_eLONG)

SETSCALEDHEADERHEIGHT(ODE_eLONG)

SETSCALEDROWHEIGHT(ODE_eLONG)

SETVIRTUALLISTBOXSIZE(ODE_eLONG, ODE_eLONG)

TabPage

C# support for TabPage

Inherits

GuiObject

Constructors

CONSTRUCTOR()

CONSTRUCTOR(ODE_eSTRING)

Properties

DISABLEDIMAGE - has Set method

IMAGE - has Set method

TITLE - has Set method

Methods

ADDCHILD(ODE_eOBJECT)

ADDIMAGE(ODE_eSTRING)

TerminateEvent

C# support for TerminateEvent

Properties

HPSID

Timer

C# support for Timer

Constructors

CONSTRUCTOR(ODE_eOBJECT)

Events

TIMER(ODE_eOBJECT)

Properties

DELAY - has Set method

ENABLED - has Set method

HPSID - has Set method

REPEATS - has Set method

RUNNING

Properties

START()

STOP()

TimerEvent

C# support for TimerEvent

Properties

HPSID

SOURCE

TreeView

C# support for TreeView

Inherits

GuiObject

Constructors

CONSTRUCTOR()

CONSTRUCTOR(ODE_eOBJECT)

Events

NODECLICK(ODE_eOBJECT)

NODEDOUBLECLICK(ODE_eOBJECT)

BEFORELABELEDIT(ODE_eOBJECT)

AFTERLABELEDIT(ODE_eOBJECT)

BEFORENODESELECT(ODE_eOBJECT)

AFTERNODESELECT(ODE_eOBJECT)

BEFORENODEEXPAND(ODE_eOBJECT)

AFTERNODEEXPAND(ODE_eOBJECT)

BEFORENODECOLLAPSE(ODE_eOBJECT)

AFTERNODECOLLAPSE(ODE_eOBJECT)

Properties

LABELEDIT - has Get/Set methods

IMAGEINDEX - has Get/Set methods

POPUPMENU - has Set methods

SELECTEDIMAGEINDEX - has Get/Set methods

SELECTEDNODE - has Get/Set methods

TEXT - has Get/Set method

Methods

ADD(ODE_eOBJECT)

ADDBMPTOIMAGELIST(ODE_eSTRING)

CLEAR()

COLLAPSE()

COLLAPSEALL()

COUNT()

EXPAND()

EXPANDALL()

FIND(ODE_eSTRING)

INSERT(ODE_eLONG, ODE_eOBJECT)

REMOVE(ODE_eSTRING)

TreeNode

C# support for TreeNode

Constructors

CONSTRUCTOR()

CONSTRUCTOR(ODE_eOBJECT)

Properties

BACKGROUND - has Set method

HPSID - has Set method

FOREGROUND - has Set method

FONT - has Get/Set method

LABELEDIT - has Get/Set methods

IMAGEINDEX - has Get/Set methods

POPUPMENU - has Set methods

SELECTEDIMAGEINDEX - has Get/Set methods

TEXT - has Get/Set method

Methods

ADD(ODE_eOBJECT)

CLEAR()

COLLAPSE()

COUNT()

EXPAND()

EXPANDALL()

FIND(ODE_eSTRING)

INSERT(ODE_eLONG, ODE_eOBJECT)

REMOVE(ODE_eSTRING)

Window

C# support for Window

Events

CLOSE(ODE_eOBJECT)

CONVERSE(ODE_eOBJECT)

ENTERKEY(ODE_eOBJECT)

INITIALIZE(ODE_eOBJECT)

TERMINATE(ODE_eOBJECT)

WINDOWERROR(ODE_eOBJECT)

WINDOWVALIDATION(ODE_eOBJECT)

Properties

ALTERED - has Is/Set methods

CLIENTSIZE

CLIENTSIZESET - has Is method

DEFAULTBUTTON

FINDFOCUSEDGUIOBJECT

FOCUSEDGUIOBJECT

FOCUSOWNER - has Get method

GETABFMENUBAR

GETDEFAULTPUSHBUTTON

GETSCALEDCLIENTSIZE

HELPTOPIC - has Get method

MAXIMIZABL dE - has Is/Set metho

MENUBAR

MINIMIZABLE - has Is/Set methods

POPUPMEN dsU - has Get/Set metho

RESIZABL E - has Is/Set methods

TEXT - has Set method

TITLE - has Set method

Methods

ADDCHILD(ODE_eOBJECT)

CLEARALTERED()

CLEARSELECTION()

CLEARWINDOWCHANGES()

PRINTFRAME()

SETABFMENUBAR(ODE_eOBJECT)

SETDEFAULTPUSHBUTTON(ODE_eOBJECT)

SETSCALEDCLIENTSIZE(ODE_eOBJECT)

SHOWMESSAGEBOX(ODE_eSTRING, ODE_eSTRING, ODE_eLONG, ODE_eLONG)

SHOWMESSAGEBOX(ODE_eSTRING, ODE_eLONG)

TERMINATE()

UPDATEDISPLAY()

WindowValidationEvent

C# support for WindowValidationEvent

Properties

ACCEPT

FIELDERROR

HPSID

MANDATORYERROR

SETACCEPT

SETSHOWMESSAGE

SHOWMESSAGE

SOURCE

Sample Code
The sample in this section demonstrates ObjectSpeak for user interface object CheckBox. You can also use the zip file from
{Install_Directory}\SAMPLES\Java to import it into the Repository.

Check Box Sample

> --- <
*> Sample rule to demonstrate ObjectSpeak GUI control: Check Box <*for
> --- <
dcl
aBool ;boolean
aChar (5);char
booleanChar proc (aBoolean): (5);boolean char
traceGuiObject proc (aGuiObject object type GuiObject);
traceObject proc (anObject object type CheckBox);
clickedObject object type CheckBox;
definePopupMenu proc;
aPopupMenu object type PopupMenu;
aMenuItem object type MenuItem;
MenuClick proc Click object aMenuItemfor
(e object type ClickEvent);
aCheckBox object type CheckBox;
checkBoxClick proc Click type CheckBoxfor
(e object type ClickEvent);
checkBoxFocusGained proc FocusGained type CheckBoxfor
(e object type FocusGainedEvent);
checkBoxFocusLost proc FocusLost type CheckBoxfor
(e object type FocusLostEvent);
enddcl

// Initialize the window
proc Initialize object SAMPLE_CHECKBOXfor
(e object type InitializeEvent)
// define a popup menu
definePopupMenu()
STATIC_TB.setPopupMenu(aPopupMenu)
// instantiate the object
map CheckBoxnew
to aCheckBox
// set the properties using the methods provided
aCheckBox.setAltered()false
aCheckBox.setBackground(Color(212,208,200))new
aCheckBox.setDataLink(SAMPLE_CHECKBOX_FLD2 of SAMPLE_CHECKBOX_W)
aCheckBox.setEnabled()true
aCheckBox.setFont(Font.Swiss10)
aCheckBox.setForeground(Color.Black)
aCheckBox.setHpsID()"DYNAMIC_TB"
aCheckBox.setImmediateReturn()false
aCheckBox.setLocation(30,50)
aCheckBox.setPopupMenu(aPopupMenu)
aCheckBox.setSelected()false
aCheckBox.setShortHelp('Dynamic CheckBox linked to a field')boolean
aCheckBox.setSize(250,16)
aCheckBox.setTabStop()true
aCheckBox.setText()"Dynamic CheckBox"
aCheckBox.setText()"abcdefghijklmnopqrstuvwxyz"
// aCheckBox.aCheckBox.setMnemonic('D') // or
aCheckBox.setMnemonicKeycode(30)
aCheckBox.setVisible()true
aCheckBox.setFocus()
// define the listener the objectfor
handler aCheckBox(checkBoxClick)
handler aCheckBox(checkBoxFocusGained)
handler aCheckBox(checkBoxFocusLost)
// add the object to the window
SAMPLE_CHECKBOX.addChild(aCheckBox)
endproc
// process the click event type of objectfor this
proc checkBoxClick Click type CheckBoxfor
(e object type ClickEvent)
map thisRule.findGuiObject(e.HpsID)
to clickedObject
trace('--')
trace('Message:checkBox '++e.HpsID++' has been clicked')
trace('Here are the objects properties:-')
traceGuiObject(e.Source)

traceObject(clickedObject)
endproc
// process the FocusGained event type of objectfor this
proc checkBoxFocusGained FocusGained type CheckBoxfor
(e object type FocusGainedEvent)
map thisRule.findGuiObject(e.HpsID)
to clickedObject
trace('--')
trace('Message:checkBox '++e.HpsID++' has focus gained')
trace('Here are the objects properties:-')
traceGuiObject(e.Source)
traceObject(clickedObject)
endproc
// process the FocusLost event type of objectfor this
proc checkBoxFocusLost FocusLost type CheckBoxfor
(e object type FocusLostEvent)
map thisRule.findGuiObject(e.HpsID)
to clickedObject
trace('--')
trace('Message:checkBox '++e.HpsID++' has focus lost')
trace('Here are the objects properties:-')
traceGuiObject(e.Source)
traceObject(clickedObject)
endproc
// process the popup menu
proc MenuClick Click object aMenuItemfor
(e object type ClickEvent)
endproc
// process the close event
proc Close object SAMPLE_CHECKBOXfor
(e object type CloseEvent)
SAMPLE_CHECKBOX.Terminate
endproc
// Terminate the window
proc Terminate object SAMPLE_CHECKBOXfor
(e object type TerminateEvent)
endproc

// trace the properties of the GuiObject
proc traceGuiObject(aGuiObject object type GuiObject)
trace(' Altered :'++ booleanChar(aGuiObject.Altered()))
endproc
// trace the properties of the object
proc traceObject(anObject object type CheckBox)
trace(' Background :'
++ (anObject.Background().getRed()) ++ ','char
++ (anObject.Background().getGreen()) ++ ','char
++ (anObject.Background().getBlue()))char
trace(' Enabled :'
++ booleanChar(anObject.Enabled()))
trace(' Font :'
++ anObject.Font().displayName())
trace(' Foreground :'
++ (anObject.Foreground().getRed()) ++ ','char
++ (anObject.Foreground().getGreen()) ++ ','char
++ (anObject.Foreground().getBlue()))char
trace(' HpsID :'
++ anObject.HpsID())
trace(' ImmediateReturn :'
++ booleanChar(anObject.ImmediateReturn()))
trace(' Location :'
++ (anObject.Location().X()) ++ ','char
++ (anObject.Location().Y()))char
// trace(' Mnemonic :'++ anObject.Mnemonic())
// trace(' Mnemonic :'++ (anObject.MnemonicKeycode()))char
trace(' Selected :'
++ booleanChar(anObject.Selected()))
trace(' ShortHelp :'
++ anObject.shortHelp())
trace(' Size :'

++ (anObject.Size().Width()) ++ ','char
++ (anObject.Size().Height()))char
trace(' TabStop :'
++ booleanChar(anObject.TabStop()))
trace(' Text :'
++ anObject.Text())
trace(' Visible :'
++ booleanChar(anObject.Visible()))
trace(' Focus :'
++ booleanChar(anObject.hasFocus()))
caseof (anObject.HpsID())

 'STATIC_TB'case
map anObject.dataLink()
to aChar

 'DYNAMIC_TB'case
map anObject.dataLink()
to aBool
map booleanChar(aBool)
to aChar
endcase
trace(' Linked Data :'++ aChar)
endproc
// Convert a into characterboolean
proc booleanChar(aBoolean): (5)boolean char

 aBooleanif
proc ('True')return
else
proc ('False')return
endif
endproc
// define a popup menu
proc definePopupMenu
map PopupMenunew
to aPopupMenu
map MenuItemnew
to aMenuItem
aMenuItem.setHpsID()"SAMPLE_MI"
aMenuItem.setText()"Sample Popup menu"
aMenuItem.setMnemonic('P')
Handler aMenuItem(MenuClick)
aPopupMenu.add(aMenuItem)
endproc

	ObjectSpeak Reference Guide
	Introduction to ObjectSpeak
	User-Interface Objects
	Comprehensive List of Objects
	Abstract Class Objects
	Basic Control Objects
	Dynamic-Only Control Objects
	Supporting Objects

	Java Batch Objects
	Events
	Data Validation
	ObjectSpeak Events

	User-Interface Properties
	Java Support Matrix
	Supported Methods for Java Classes
	Supported Methods in CSharp
	Sample Code

