AppBuilder

By Magic Software Enterprises

Magic Software
AppBuilder

ersion 3.2

ObjectSpeak Reference Guide

Corporate Headquarters:

Magic Software Enterprises
5 Haplada Street,

Or Yehuda 60218, Israel
Tel +972 3 5389213

Fax +972 3 5389333

© 1992-2013 AppBuilder Solutions

All rights reserved.

Printed in the United States of America.

AppBuilder is a trademark of AppBuilder Solutions. All
other product and company names mentioned herein are
for identification purposes only and are the property of,
and may be trademarks of, their respective owners.

Portions of this product may be covered by U.S. Patent
Numbers 5,295,222 and 5,495,610 and various other
non-U.S. patents.

The software supplied with this document is the property
of AppBuilder Solutions and is furnished under a license
agreement. Neither the software nor this document may
be copied or transferred by any means, electronic or
mechanical, except as provided in the licensing
agreement.

AppBuilder Solutions has made every effort to ensure
that the information contained in this document is
accurate; however, there are no representations or
warranties regarding this information, including
warranties of merchantability or fitness for a particular
purpose. AppBuilder Solutions assumes no responsibility
for errors or omissions that may occur in this document.
The information in this document is subject to change
without prior notice and does not represent a
commitment by AppBuilder Solutions or its
representatives.

1. ObjectSpeak Reference GUILE e e e e e e 2

1.1 Introduction t0 OBJECISPEAKot 2
1.2 User-Interface ObJeCtSo e 6
1.2.1 Comprehensive List Of ObJeCtS 6
1.2.2 ABSEract Class ObJeCtSot 7
1.2.3 Basic Control OBJECESo 17
1.2.4 Dynamic-Only Control ODJECESt o ittt e e e e e e e 52
1.2.5 SUPPOIING ObJECES . . . ottt e e e 63
1.3 Java BatCh Objects 7
LA EVBNES .o e e e e 79
1. 4.1 Data Validationo 79
1.4.2 ObJectSpeak EVENISo e 83
1.5 User-Interface Propertie€sot e e 104
1.6 Java SUPPOTE MALIX . oo ottt et e e e e e e e e e e e e e 114
1.7 Supported Methods for Java ClasSesottt e e e e e 122
1.8 Supported Methods iN CSOharDot e e 124

1.9 SAMPIE COUE . .ot 162

ObjectSpeak Reference Guide

Introduction to ObjectSpeak

AppBuilder provides a way to interact with properties of objects and methods at execution time using extensions to the Rules Language and the
application runtime system collectively called ObjectSpeak. ObjectSpeak uses an object-based Rules Language syntax to manage entities that

are displayed within the runtime windows as objects. Rules coding for applications is simplified using ObjectSpeak because ObjectSpeak does

not require component calls or changes to the hierarchy.

Managing Objects with ObjectSpeak

ObjectSpeak functions use more compact Rules Language syntax and minimize overall impact on the size and complexity of the application
hierarchy. With ObjectSpeak, Rules Language takes a modern, object-based approach to window objects, such as edit fields, push buttons, and
check boxes. For information about the Rules Language, refer to the Rules Language Reference Guide .

While designing a window in Window Painter, you can set the properties for the objects in a window. For more information on Window Painter,
refer to the Development Tools Reference Guide . Understanding object properties helps you to manipulate these properties at execution time
using ObjectSpeak.

To gain the basic understanding of ObjectSpeak, see the following sections:

® Prerequisites
® General Syntax

After you have understood the prerequisites and reviewed the syntax, you can review detailed information about the events that are triggered by
the objects and how to respond to them in the following sections:

® User-Interface Objects
® Java Batch Objects
L]
[]

Events
User-Interface Properties

1. Portions of ObjectSpeak functionality are also available using standard system components provided by AppBuilder to perform
standard functions. For more information, refer to the System Components Reference Guide.

Prerequisites

Readers of this guide should be familiar with developing applications using AppBuilder and installing the AppBuilder product. If you require
information on installation procedures, see Installation Guide for Windows . You also require basic application development experience, familiarity
with the Microsoft Windows NT/2000 operating system, and a working knowledge of distributed applications.

This guide is a companion to the Rules Language Reference Guide . You should have that information available because it documents extensions
for different languages (Java, C#) to the Rules Language for supported ObjectSpeak entities.

Associated manuals
For more information about the concepts and overall process of developing applications, refer to the documents listed in the following table.

Documentation Set

Documentation Title Topics

Developing Applications Guide Detailed information on using AppBuilder to create applications.

Deploying Applications Guide Detailed information on configuring and deploying applications.
Development Tools Reference Guide Detailed descriptions of the tools used in AppBuilder to create applications.
Repository Administration Guide for Workgroup and Personal Overview and specific details on configuring and managing repository-based
Repositories development.

Rules Language Reference Guide Detailed instructions for developing applications using Rules Language.

Terminology

ObjectSpeak uses some terminology that, though it differs from terms used in Window Painter, is more in keeping with current standard
terminology. The following table explains the correspondence between these terms.

AppBuilder ObjectSpeak = AppBuilder Window Painter

Enabled not Protected

Editable not Read-only

Label Static Text

ShortHelp Status Line Help

Table Multicolumn List Box (MCLB), Spreadsheet

General Syntax

Using the general syntax of ObjectSpeak involves:

Understanding Dot Notation
Accessing Properties
Using Pre-Defined Objects versus Dynamic Objects

Calling Methods
Responding to Events

Understanding Dot Notation

The general syntax of an ObjectSpeak expression is shown in the example:

The name of the object is followed by a period, which is followed by the name of the property. In this example, the name of the object, a push
button, is myPushButton. The property is Visible. By looking up the property Visible in User-Interface Properties, we find that it is a Boolean,
having a value of either True (for on or visible) or False (for off or hidden).

Accessing Properties

ObjectSpeak allows you to manipulate the properties of user interface objects during execution. For example, you may want to disable or enable a
menu item dynamically in response to the current state of the program or protect an edit field by making it non-editable.

ObjectSpeak uses a "dot" notation to indicate that a property or method of an object is being accessed. The standard syntax for accessing the
properties and methods of an object is:

Use the name of the object (QueryButton), followed by a period, followed by the name of the property (Text).

Using Get and Set Methods

For each property, ObjectSpeak uses two common methods: Get and Set . Get retrieves the value of the object's property and assigns a variable.
This can be done simply by using the dot notation:

If the property has a boolean type, then IS is used instead of Get. Get, Set, and IS are all prefixes, that is, they are followed by a property name.
Set assigns a value for that property to the object, as shown in the following sample:

Examples: Modifying New and Existing Properties

The following ObjectSpeak sample changes the Text property of the push button called QueryButton to Query :

map ' Query' to QueryButton. Text

This example assigns a new value to a property.
The following example demonstrates how to determine the current value of a property:

if QueryButton. Text = 'Query'
use rul e QUERY_RULE
endi f

In this example, the value of the Text property of the QueryButton object is not being changed; it is simply being referenced to see if it is equal to
the string Query .

Using Pre-Defined Objects versus Dynamic Objects

Some window objects are pre-defined and can be referred to in the Rules Language code using their system identifier (HPSID). For example, an
edit field defined in the window as myEdit , can be used as follows, without a declaration:

SET nyEdit.text := "Hello World'

L dcl |
nyEdit object type EditField;
! enddcl i

map new EditField to nyEdit
set nyEdit.text := 'Hello Again'

When declaring these dynamic objects, avoid using the pre-defined object types?such as EditField, PushButton, and Checkbox?as the name of
the object. Code generation generates ambiguous reference errors when it encounters these object names. If you want to use these names, refer
to the Rules Language Reference Guide for an explanation of how to use aliases to redefine object names.

', For HTML, adding an object to the window dynamically is not supported.

=

Calling Methods

Methods are functions or procedures that can be called on an object. Methods tell the object to perform a specific task.
For each of the properties common to window objects, set the value of that property by using the Set prefix before the name of the property. For a
list of common properties, refer to User-Interface Properties.

Parameters in Methods

The general syntax for an object method is as follows:

Method parameters appear in parentheses following the method name. If there are no parameters, empty parentheses are shown.

Within the parentheses, the parameter name is given first, followed by a colon, and then the type.

Multiple parameters are separated by commas.

If a method has a return value, the closing parenthesis of the parameters is followed by a colon, which is followed by the return value

type.

In most cases, to dynamically create an object, use new ObjectName . For such objects, the method for creating the object is not shown.

® Some objects (such as Color) require parameters to create a new instance. For these objects, the method for creating the instance is
shown. The method name is the same as the object name, and the required parameters are indicated.

® Support for NIL representing null values: you can use NIL as a parameter of an ObjectSpeak method call for an OBJECT type. NIL is

generated as null in the resulting Java code.

Examples: Show and Set Methods

Using the Show Method

In this example, the Java client contains an object named MessageBox that displays a message. The MessageBox object has a method named
Show that causes the message box to display.

dcl
M/MessageBox obj ect type MessageBox;
enddcl

map new MessageBox to MyMessageBox

map 'Invalid Data' to MyMessageBox. Title

map ' The anpunt in the Interest field is too |arge'
to MyMessageBox. Message

M/ MessageBox. Show

This example:

1. Creates a MessageBox object and maps it to the local variable MyMessageBox .
2. Assigns the title and message strings to the Title and Message properties.
3. Calls the Show method to display the message box.

In an actual AppBuilder application, this computer code is located in the body of a procedure.
Note

Using the Set Method

A Set method is used to assign values to properties. For example, consider the following code samples that accomplish the same result:

This line assigns (maps) a value directly to the Text property of the push button.

map ' Query' to QueryButton. Text

This line calls the setText set method of the push button, passing the new text as a parameter. In this example, setText() is the set method for the
Text property.

Set methods take exactly one parameter, whose type is the same as that of the property. By convention, the name of a property set method is
simply the property name prefixed by Set . For example, a string property named Text has a set method named setText, which takes a string
parameter. Likewise, a Boolean property named AutoSelect has a set method named setAutoSelect() which takes one Boolean parameter, as the
following code illustrates:

Although both methods (set property and map statement) can be used to change the value of a property, the set method provides a slightly more
compact notation.

Responding to Events

In AppBuilder, rules that display windows are completely event-driven. This means by clicking or selecting an item, events are initialized. These
events are sent to the rule, where they are optionally handled by special procedures called event procedures . Event procedures are defined
within the rule itself using a special syntax and contain the logic that is needed to respond to the event. Events and event procedures play a
central role in event-driven programming. In fact, writing event-driven programs is largely a process of determining which events you need to

respond to and writing event procedures that provide the appropriate responses.
The following are some of the actions that generate events:

Opening the window

Closing the window

Clicking a push button, radio button, or check box

Selecting a menu item

Shifting focus to a user interface object, such as an edit field

Shifting focus away from a user interface object

Double-clicking on an object

Entering erroneous data into an error field

Trying to close the window when one or more fields contain erroneous data

It is not necessary to provide an event handler for every event that is generated. If the program is required to respond to the event, an event
procedure must be defined and the code that responds to the event must be placed within the procedure.

Example: Closing a Window Using an Event Procedure

If a window contains a push button named CloseButton that is used to close the window when clicked, the required event procedure is:

proc for Cick object O oseButton
(e object type dickEvent)

MAI N_W NDOW Ter mi nat e
endpr oc

This event procedure responds to the Click event by calling the Terminate method on the window, causing the window to close.

User-Interface Objects

User-interface objects are used to build windows for client applications on different platforms (like Java, .NET, etc.). This section discusses all of
the available objects and the properties, methods, and events for ObjectSpeak objects. For each object described in this section, an overview is
provided followed by lists of the properties, methods, and events for that object. Detailed information about the properties that are common to
many of these objects is summarized in User-Interface Properties.

The objects are organized into these categories:

® Abstract Class Objects

® Basic Control Objects

® Dynamic-Only Control Objects
® Supporting Objects

The first category includes the high-level user interface objects, including Rule and Window. The second category includes the basic building
blocks of any window user interface, from check box to edit field. The third category includes the functional objects that can only be generated
dynamically, such as the pop-up menu. The fourth category consists of support objects, such as colors and fonts, that support the other user
interface building blocks.

For information on how to create these objects using the Window Painter, refer to the Window Painter tool topic in the
Development Tools Reference Guide .

Comprehensive List of Objects

The following table lists the user interface objects available in ObjectSpeak.

ObjectSpeak objects

Accelerator = Ellipse Label PasswordField = Setltem Window

CheckBox FileEditor ListBox Point System

Color Eont Locale PopupMenu Table
Column Format Menu PushButton TabControl
ComboBox ' Formats (Derived) = MenuBar RadioButton TabPage
Constants = GlobalEvent Menultem Rectangle Timer
Dimension = GroupBox MessageBox | Rule TreeView
EditField GuiObject MultiLineEdit = Set TreeNode

These objects are also categorized as:

Abstract Class Objects

Basic Control Objects
Dynamic-Only Control Objects
Supporting Objects

Abstract Class Objects

The following objects are the Abstract Class (high-level) user interface objects available in ObjectSpeak:

Format
GuiObject
Rule

System
Window

Format

The Format object specifies the information needed to format text for display in various types of fields. A Format object is used for edit fields,
combo boxes, list boxes, and table columns, where it is specified.

When a GUI object, such as an edit field, is created during the design phase in Window Painter, it automatically creates the Format object and
generates the code to call setFormat() on the GUI object. The Format object used by a user interface object can be obtained by viewing its
Format property.

DisplayMask specifies the mask that is used when the field does not have focus. Focus indicates that the object is active. For backwards
compatibility, the DisplayPicture property is also included; it is equivalent to DisplayMask . EditMask specifies the mask that is used to format the
text when the field has focus.

For detailed information on display and edit masks, refer to the Developing Applications Guide .
Properties and Methods
The following table lists the properties and methods for this object.

Format object properties and methods

Property: Type (Get Method) Set Method
DisplayMask:String setDisplayMask(String)
DisplayPicture:String setDisplayPicture(String)
EditMask:String setEditMask(String)
Type:integer

Additional Get Method Additional Set Method

getDisplayString(DataObject):String

getEditString(DataObject):String

Example: Modifying the Display Mask

The following code sample shows how to use ObjectSpeak in the rules code to modify the display mask used by an edit field named
BirthDateField :

{ map 'dd/nmyyyy' to BirthDateField. Format.Di spl ayMask

GuiObject

A GuiObiject object is a generic type used to display any interface object. Many events provide a reference to the object that triggered the event.
This reference is specified in the Source:GuiObject property of the event, as illustrated in Example: GuiObject. The type of Source is GuiObject .

Being a generic type, GuiObject provides properties and methods common to many interface objects but does not contain all the properties and
methods available for the objects. Some of the properties and methods defined in GuiObject are not implemented on the actual object
represented by GuiObject . For example, when GuiObject represents a menu item, calling the Size:Dimension property has no effect because you
cannot specify the size of a menu item.

GuiObject cannot be used to access object properties other than those listed in GuiObject object properties and methods. Thus, while a GuiObject
may refer to an object that is a push button, you cannot access properties of the push button other than those listed.

Because GuiObiject is a generic type that represents any GUI object, it can be used to disable an edit field or any other user interface object when
it is clicked.

Properties and Methods
The following table lists the properties and methods for GuiObject :

GuiObject object properties and methods

Property: Type (Get Method) Set Method

Background:Color setBackground(Color)

Enabled:Boolean
Focus:Boolean
Font:Font
Foreground:Color
HpsID:String
Location:Point
ShortHelp:String

Size:Dimension

Type:Integer

Visible:Boolean

setEnabled(Boolean)
setFocus()

setFont(Font)

setForeground(Color)
setHpsID(String)
setLocation(Point)
setShortHelp(String)
setSize(Dimension)
(Read only)

setVisible(Boolean)

Additional Action Methods

GuiObject supports methods related to focus. The hasFocus() method is used to determine if the object currently has focus. (It is recommended
that you use the Focus property instead of hasFocus() method). The setFocus() method is used to set focus to the object.

Thin Client Support
The following properties are not supported in thin client applications:

Font:Font
Location:Point
Size:Dimension
Focus:Boolean

ShortHelp:String

Example: GuiObject

In the following example, an application has a Query button and an edit field in the window with hpsid, MyEdit must be disabled temporarily when
it is pressed. Use the following event procedure:

proc QueryButtonCick for Cick object QueryButton
(e object type dickEvent)
/1 find the EditField M/Edit, and disable it(the findGui Object
/1 function returns a Gui Object)
thi sRul e. fi ndGui Obj ect ("M/Edit"). set Enabl ed(fal se)
endpr oc

Rule

The Rule object plays a central role in the AppBuilder client (Java, .NET, etc.) because it provides an object interface to AppBuilder Rules
Language rules. The Rule object has no properties, but it does define a number of methods to initiate actions, obtain information, and implement
events.

This section includes:

Rule Methods

[]
® postTo Methods

® Handling Cookies for Thin Client Only
® Events

Rule Methods
The following table lists the methods for the Rule object.

Rule object properties and methods

Property: Type (Get Method)
InputView:View

OutputView:View
LongName:String
ShortName:String
ImpIName:String

For Thick and Thin Clients only:
Instance:String

CallingRule:Rule

ActiveWindow:Window

Window:Window

Rule object additional methods

Additional methods

gueryUserAuthentication():Boolean

setUserAuthentication(userID:String, password:String)

terminate()

trace(message:String<,view|field>)
For Thick and Thin Clients only

findGuiObject(System|D:String):GuiObject

findGuiObject(SystemID:String.type:Integer):GuiObject

postToChild(InstanceName:String, EventName:String):Boolean

postToChild(InstanceName:String, EventName:String, ViewName:View):Boolean

postToChild(InstanceName:String, EventName:String, ViewName:View, Parameter:String):Boolean

postToParent(EventName:String):Boolean

postToParent(EventName:String, ViewName:View):Boolean

postToParent(EventName:String, ViewName:View, Parameter:String):Boolean

postTo(aRule:rule, EventName:String)

postTo(aRule:rule, EventName:String, aView:View)

postTo(aRule:rule, EventName:String, aView:View, Parameter:String)

For Thick Clients Only:

setHelpFile(HelpFileName:String):Boolean

showHelpTopic(HelplD:String):Boolean

For Thin Client Only:

addCookie(CookieName:String,CookieValue:String,AgeSeconds:Integer)

getCookie(CookieName:String):String

getCookie(CookieView:View)

setCookie(CookieView:View,AgeSeconds:Integer)

InputView:View and OutputView:View
The InputView and OutputView properties return references to the input and output views. These properties are in the form of View objects.

For example:

enddcl

L_INPUT_V like TH 'S _RULE_I NPUT_VI EW
map thi sSRULE. InputView to L_I NPUT_V ;

LongName:String

The LongName property gets the long name of the rule.

ShortName:String

The ShortName property gets the short name of the rule.

ImpName:String

The ImpName property gets the implementation name of the rule.

ActiveWindow:Window

The ActiveWindow property returns a reference to the first window found attached to the current rule or its parents when traversing back up the
rule hierarchy. When current rule is within a detached sub-process, the traversal terminates at the root of the detached sub-process, otherwise it
terminates at the application's root rule. Any such window found is known as the active or target window. If no window is found, null is returned.
The reference to the window is returned in the form of a Window object. If the rule displays a window, then Window and ActiveWindow properties
return the same value.

| _acti veW ndow obj ect type W ndow,
enddcl
set | _activeW ndow : = thisRule.ActiveW ndow
if not isCear(l_activeWndow)
trace(" Active window: ", |_activeW ndow Text)
el se
trace(" No active wi ndow")
endi f

Window:Window

The Window property returns a reference to the window, if any, displayed by the rule. The reference is returned in the form of a Window object. If
the rule does not display a window, this method returns a null reference. In order to test for this returned null reference, use the isClear function.

CallingRule:Rule

The CallingRule property returns the current rule's parent rule. Using this method allows to navigate back through the calling tree to help with
many things; tracing the calling context is a good example to aid problem determination. It is not implemented in C#.

queryUserAuthentication():Boolean

The queryAuthentication():Boolean method forces user credentials to be retrieved by whatever mechanism specified by the AUTH_TYPE setting
in the appbuilder.ini file. Any previously retrieved credentials are discarded. The method returns true if new credentials were successfully
retrieved.

setUserAuthentication(userlD:String, password:String)

The setUserAuthentication() method enables you to set the user credentials to authenticate the remote server rules. The same method is invoked
if QUERY_AUTHENTICATION_ON_STARTUP is enabled through the setting in the APPBUILDER.INI file. The AppBuilder communication exits
can override this information when a remote rule is invoked.

terminate()

The terminate() method terminates the rule.
trace(message: String<,view|field>)

The trace(message:String) method traces the message. This method accepts either a View or a Field as an optional second parameter. When the
second parameter is specified, the name and the value of the specified object is appended to the trace message. If a View is specified as the
second parameter, the name and the value of all fields are added as separate lines in the trace output.

findGuiObject(SystemID:String):GuiObject

The findGuiObject() method searches for an object with the given system identifier (HPSID) on the active window. The active window is the
non-detached window most recently opened by a rule or its parents. The reference to the object is returned in the form of a GuiObject , so it can
be directly manipulated using the methods defined in GuiObject . If there is no active window, this method returns a null reference. In order to test
for this returned "null reference, use the isClear function.

For example:

aEditField object type EditField; :
enddcl
map thisrule.findGui Object(' OBJECT_HPSID) to aEditField
if isC ear(aEditField) :
> error scenario <
endi f f

findGuiObject(SystemID:String,type:Integer):GuiObject

Returns GuiObiject, if the object with SystemID matches the type specified or returns null.
Types constants are defined in the Constants class as follows.

Constants. WINDOW Constants.LISTBOX

Constants.BITMAP Constants.MENU

Constants. CHECKBOX = Constants.MENUITEM
Constants.COLUMN Constants.MULTILINEEDIT
Constants.COMBOBOX | Constants.PASSWORDFIELD
Constants.EDITFIELD Constants.POPUPMENU
Constants.ELLIPSE Constants.PUSHBUTTON
Constants.FILEEDITOR Constants.RADIOBUTTON
Constants. GROUPBOX = Constants. RECTANGLE

Constants.LABEL Constants. TABLE

postTo Methods

The postTo methods enable you to send a view to a given window.

postToChild(InstanceName:String, EventName:String):Boolean

This postToChild() method posts the specified event to the child with the specified instance name.
postToChild(InstanceName:String, EventName:String, ViewName:View):Boolean

This postToChild() method posts the specified event and the view to the child with the specified instance name.
postToChild(InstanceName:String, EventName:String, ViewName:View, Parameter:String):Boolean

This postToChild() method posts the specified event, the view, and the parameter to the child with the specified instance name.
postToParent(EventName:String):Boolean

This postToParent() method sends the specified event to the parent window.

postToParent(EventName:String, ViewName:View):Boolean

This postToParent() method sends the specified event and the view to the parent window.

postToParent(EventName:String, ViewName:View, Parameter:String):Boolean

This postToParent() method sends the specified event, the view, and the parameter to the parent window.

postTo(aRule:rule, EventName:String)

This postTo() method sends to itself the specified event. The first parameter of a Rule must be this rule or the long name of the rule posting event.
postTo(aRule:rule, EventName:String, aView:View)

This postTo() method sends to itself the specified event and the view. The first parameter of a Rule must be this rule or the long name of the rule
posting event.

postTo(aRule:rule, EventName:String, aView:View, Parameter:String)

This postTo() method sends to itself the specified event, the view and the parameter string. The first parameter of a Rule must be this rule or the
long name of the rule posting event.

setHelpFile(HelpFileName:String):Boolean

The setHelpFile() method specifies the name of help file that contains the help information for this rule's window. This help file also is used by
windows displayed by all descendent rules of this rule, unless those rules specify their own help files.

', setHelpFile() is not supported in thin client applications.

showHelpTopic(HelplD:String):Boolean

The showHelpTopic() method displays the help topic specified by the help ID from the window's help file. As noted above, if this window has not
specified a help file, it uses the help file of its parent rule. For windows, the help ID must be the long name of the window. For user interface
objects placed on the window, the ID must be the window long name, followed by a dot, followed by the system identifier (HPSID) of the object.

', showHelpTopic () is not supported in thin client applications, neither in .NET applications.

Handling Cookies for Thin Client Only
The Rule object supports these additional methods for thin client only:

addCookie(CookieName:String, CookieValue:String.,AgeSeconds:Integer)
getCookie(CookieName:String):String
setCookie(CookieView:View,AgeSeconds:Integer)
getCookie(CookieView:View)

addCookie(CookieName:String,CookieValue:String,AgeSeconds:Integer)

The addCookie(CookieName:String,CookieValue:String,AgeSeconds:Integer) method allows any valid cookie name as a name (as opposed to
the old setCookie, which allows only the system FIELD names as names of the cookie). With this method, you can have a cookie like
"Company.Dept.Developer" as a hame with dots, etc., as part of the name. The value is any valid string value and the age is the expiry time of the
cookie in seconds. If the expiry time is bigger than 0 the cookie is available for all browser sessions until it expires. If the expiry time is 0 the
cookie is local to the browser session in which it was created and does not expire until that session is closed.

getCookie(CookieName:String):String

The getCookie(CookieName:String) method returns the data associated with the given cookie name.
setCookie(CookieView:View,AgeSeconds:Integer)

The setCookie(CookieView:View,AgeSeconds:Integer) can be used to create client-side HTTP cookie with the names of fields in the view and
values of the fields making up the name-value pair elements of the cookie. The age sets up the expiry time in seconds. As the HTTP cookie does
not support hierarchical data structures, this method uses only FIELDs directly under the given View; all nested views are ignored. If the expiry

time is bigger than 0 the cookie is available for all browser sessions until it expires. If the expiry time is 0 the cookie is local to the browser session
in which it was created and does not expire until that session is closed.

getCookie(CookieView:View)

The getCookie(CookieView:View) retrieves cookie data sent to the web client and is saved on the web client environment for the specified time.
Subsequent requests from this client environment receive the cookie data and the AppBuilder rule invokes getCookie(aView:View) to retrieve the
data. The cookie data with names matching the FIELD names of this view are read into the view. For example:

>
@
g
2
m
e
2
m
2
B
&
os)
o
m
E
<
2

where AB_WEBCLIENT_RULE is the name of the rule, AB_WEBCLIENT_VIEW is the view containing the set of fields to be used as cookie
names and values, and 3600 is the expiry time of the cookies in seconds.

P .

! AB_WEBCLI ENT_RULE. get Cooki e(AB_WEBCLI ENT_VI EW §

where AB_WEBCLIENT_RULE is the name of the rule and AB_WEBCLIENT_VIEW is the view containing the set of fields to be filled with data if
the field names match the cookie names.

Events

The following events can be triggered using the Rule object:

Activate
ChildRuleEnd
CommeEtrror
Converse

Initialize (for Rule)
ParentRuleEnd
Post

RuleEnd

SQLError
Terminate (for Rule)

Activate , ChildRuleEnd , ParentRuleEnd , RuleEnd , and SQLError events exist but currently are never triggered.

The ChildRuleEnd event is triggered when a child rule of the current rule has terminated. The RuleEnd event is triggered when another rule, for
which the current rule has registered an event procedure, terminates.

The rule that ends must be a detached rule that was started using the command:

! use rule < rule_name > detach < rul e_obj ect_name >

where < rule_object_name > is the name of the local variable (defined in the dcl section) which references the rule.

The Converse event on the rule is the same as the Converse event on the window; only one event needs to be registered, either the rule's or the
window's. The Initialize (for Rule) and Terminate (for Rule) events are distinct from those for the Window object. The Post event is triggered when
the rule receives a view that was posted by another rule using one of the two Post methods described in Rule Methods.

System

The System object provides an interface for some system services. Two methods are used to translate long names of AppBuilder entities, such as
rules or views, into corresponding Java class names or Java object names according to the AppBuilder naming conventions. It is not supported
for .NET clients.

System object is not supported in C#.

Constants and Methods

Methods:

longNameToClassName(type:Integer, longName:String) : String
longNameToObjectName(type:Integer, longName:String) : String

Type values:

The following table shows the various system type value

System type values

RULE_TYPE COMPONENT_TYPE
VIEW_TYPE WINDOW_TYPE
VIEWARRAY_TYPE OBJECT_TYPE
SET_TYPE HPSID_TYPE

FIELD_TYPE

longNameToClassName(type:Integer, longName:String) : String

The longNameToClassName method translates the long name of an AppBuilder entity, whose type is specified by the first parameter using one of
the System object constants, into a corresponding Java class name according to AppBuilder naming conventions.
For example:

SET Rul eC assNane : = System | ongNameToC assNanme(Syst em RULE_TYPE, " MY_RULE")
Rul eCal | er . Execut eRul e(Rul eCl assNane)

The type parameter can have only one of the following values: RULE_TYPE, VIEW_TYPE, VIEWARRAY_TYPE, SET_TYPE and
COMPONENT_TYPE; other entities do not generate a class.

longNameToObjectName(type:Integer, longName:String) : String

The longNameToObjectName method translates the long name of an AppBuilder entity, whose type is specified by the first parameter using one
of the System object constants, into a corresponding Java object name according to the AppBuilder naming conventions.
For example:

SET Rul eC assNane : = System | ongNaneTod assNane(Syst em RULE_TYPE, "MY_RULE")
SET Vi ewbj ect Nane : = System | ongNanmeToObj ect Name(Syst em VI EW TYPE, "MY_VI EW)

RuleClassName ++ ViewObjectName forms a reference to a field of generated rule class, which corresponds to the instance of view MY_VIEW

owned by MY_RULE.

The type parameter can be anything except COMPONENT_TYPE. This is because components' classes are never instantiated, and there is no
corresponding property in the rule class. Use HPSID_TYPE for windows' objects that have HPSID, but OBJECT_TYPE for other objects and

aliases.

Window

The Window object plays a central role in the client (Java, .NET, etc.) because it provides an object interface to windows. The Window object has
numerous properties, defines several methods to initiate actions or obtain information, and implements several events.

1, The window panel is set to the resolution of the window at the time the panel is designed. This could differ from the resolution at

execution time, thereby causing unexpected display properties.

This section includes the following topics:

® Properties and Methods

® Events

Properties and Methods

The following table describes the properties and methods for the Window object.

Window object properties and methods

Property: Type (Get Method)
Altered:Boolean

Background:Color

DefaultButton:PushButton

Foreground:Color
FocusedGuiObject:GuiObject

HpsID:String

Location:Point
MenuBar:MenuBar

PopupMenu:PopupMenu

Resizable:Boolean
Size:Dimension
Text:Stringl
Type:integer
Visible:Boolean
Additional Get Method
clearSelection()

getHelpTopic():String

Set Method
setAltered(Boolean)

setBackground(Color)

setDefaultButton(PushButton)

setForeground(Color)

(read only)

(read only)

setLocation(Point)
setMenuBar(aMenuBar:MenuBar)
setPopupMenu(PopupMenu)
setResizable(Boolean)
setSize(Dimension)
setText(String)

(Read only)

setVisible(Boolean)

Additional Set Method

addChild (Object)*

clearAltered()

clearWindowChanges()

printFrame()

ShowMessageBox(messageType:Integer, message:String):Integer

ShowMessageBox(message:String, title:String,
buttonType:Integer, messageType:Integer):Integer*

terminate()

updateDisplay()*

lﬂ The Text property can be used to get/set the Title of the window.

clearSelection()

This method clears selected items of all list boxes and Tables (MCLB) in the window.

DefaultButton:PushButton

This property specifies the default pushbutton for the window.
getHelpTopic():String

This method returns HelpTopic name, if a Helpset is specified.

Resizable:Boolean

The Resizable property specifies whether the window can be resized by the user during execution.

g This property is not supported for thin (HTML) client.

i}

In Java, if a window is resizable, the minimize and maximize buttons appear at the right of the title bar. If the window is not resizable, these
buttons are not available and the window cannot be minimized or maximized.
In C#, if a window is resizable then a resizable border will be drawn, otherwise a three-dimensional border will be drawn.

Additional Action Methods

® The addChild() method adds a programmatically-created object to the window (either GUI Objects or Java Beans).

' Not supported for thin client (HTML). In thin client, GUI objects cannot be dynamically created and added using
addChild. Refer to the System Components Reference Guide for information about using HPS_SET_HTML_FILE and
HPS_SET_HTML_FRAGMENT.

® The terminate() method terminates the current window, allowing the owning rule to return.

Not supported for thin client (HTML).

'
L]

® The updateDisplay() method causes the visible window to immediately repaint itself. This method is useful for replacing the "converse <
window > nowait" statement from the earlier converse-driven versions of the product. If the window has not yet been displayed, call the
setVisible(True) method instead to display the window. The updateDisplay() method is called implicitly when the Visible:Boolean property
is setto True .

® The showMessageBox() method can be in either:

ShowivessageBox(nmessage: String, title: String, buttonType: | nteger, nmessageType: | nteger)

or

where message is the message to show, title is the title for the message box, buttonType is one of the following:

® Constants.DEFAULT_BUTTONS
® Constants.OK_BUTTON

® Constants.OK_CANCEL

® Constants.YES_NO

® Constants.YES_NO_CANCEL

and messageType is one of the following:

Constants.ERROR

Constants.INFORMATION

Constants.WARNING

Constants.QUESTION

Constants.PLAIN

In C#, constant values will be replaced with appropriate enum values, ButtonType will be replaced with MessageBoxButtons, and
messageType will be replaced with MessageBoxIcon.

g Not supported for thin client (HTML).

i}

Events
The following events can be triggered by the Window object:

Close

Converse

Initialize (for Window)
Terminate (for Window)
WindowError
WindowValidation

The Close event is triggered when the user attempts to close the window using the system exit (the X in the upper right corner of the window) or
uses the system hot key (usually Alt+F4). The system does nothing by default. If the system is to shut down, you must explicitly terminate the
window. Refer to the catalog of events (the Close Window with System Menu event, in particular) in the Developing Applications Guide . This
event has no methods or properties.

The Initialize (for Window) event is triggered after the window is created but before it is shown. It is an ideal place to initialize the program's data,
as well as to make any needed adjustments to the visual objects on the window. The Terminate (for Window) event is called while the window is
closing. These events are distinct from those for the Rule object.

The WindowError and WindowValidation events are called when the user attempts to close the window with a push button or menu item for which
validation is enabled. Window validation is used to prevent the window from closing when editable fields contain invalid information, when
mandatory fields are empty, and for any other condition which the application logic concludes is unacceptable.

Thin Client Support
In thin client development, the following events are not supported:
® Close
® WindowError
® WindowValidation
In thin client applications, WindowError and WindowValidation can be done through JavaScript using the extension.js, which can be customized to
include any WindowError/Validation handling procedures.

For thin client applications only, a MessageBox Event is issued when a showMessageBox is called on the window with the MessageType set to
QUESTION . All other types than QUESTION will show a messagebox with a warning icon.

Basic Control Objects

The following table lists the basic control objects for a user interface that can be defined in the Construction Workbench Window Painter as static
objects or during execution using ObjectSpeak in rules source code as dynamic objects.

Control objects

CheckBox FileEditor = MenuBar RadioButton
Column GroupBox = Menultem Rectangle
ComboBox = Label MultiLineEdit TabControl

EditField ListBox PasswordField Table

Ellipse Menu PushButton TabPage

CheckBox

The CheckBox object displays the standard check box object allowing end users to specify a yes/no or on/off condition for a setting. This object

can be created dynamically during execution and added to the window in Rules Language code as described in the following section. For a code

sample, refer to Sample Code.
The following figure shows a sample dialog with check boxes.

Sample dialog with check boxes

EL-' Sample Checkboxes

[~ Allow Full Mame
[2llows Last Mame Only

Constructor and Parameters

The following code is a sample declaration and construction:

del E
aCheckBox obj ect type CheckBox;
enddcl

map NEW CheckBox() to aCheckBox

There are no parameters for this object.

Properties and Methods
'ﬂ Inherits GuiObject and exposes all its properties and methods (not listed below).

The following table lists own properties and methods for the CheckBox object:
Checkbox object properties and methods

Property:Type (Get Method) Set Method
Altered:Boolean setAltered(Boolean)

AutoSelect:Boolean

Datal ink:DataObject setDataLink(DataObject)
ImmediateReturn:Boolean setimmediateReturn(Boolean)
Mnemonic:Char setMnemonic(Char)
MnemonicKeycode:Integer setMnemonicKeycode(Integer)
PopupMenu:PopupMenu setPopupMenu(PopupMenu)
Selected:Boolean setSelected(Boolean)
TabStop:Boolean setTabStop(Boolean)
Text:String setText(String)

DataLink:DataObject

The check box can be linked to a character field of length one (1) that contains an X when the check box is selected, or to a Boolean field that
contains TRUE if the check box is selected.

The DataObject for a check box is Boolean or string.

Set the property as shown in the following example:

Additional Action Methods

The CheckBox object has methods related to focus. The hasFocus() method is used to determine if the object currently has focus. The setFocus()
method is used to request that focus be set to the object.

Events

The following events can be triggered by the CheckBox object:

* Click

® DoubleClick
® FocusGained
® FocusLost

Click
The CheckBox object triggers the Click event when any of the following occur:

The user presses the primary mouse button when the mouse is on the object.
The spacebar is pressed when the object has the focus.

The user presses the object's mnemonic key (Alt+mnemonic key).

The Selected:Boolean property is changed.

A value is mapped into the field data-linked to the object.

The CheckBox object triggers the FocusGained event when the following occur:
® The user tabs into the object or clicks on the object.
The CheckBox object triggers the FocusLost event when the following occur:

® The user tabs out of the object or clicks on another object in the window or on the window itself.

Column

The Column object plays a fundamental role in implementing tables in the client. In general, a Table object owns one or more Column objects.
The Table object has a number of properties that affect the table as a whole, while the Column object contains a number of properties that
determine the appearance and behavior of individual columns. The properties of a column affect all cells within that column.

! The Column object is not a stand-alone object you cannot place a Column object into a window without a Table object.

i}

You can access properties or methods on the table or on individual columns of the table. As with all other visual objects, the names of tables and
columns are the same as their system identifier (HPSID).

The table is data-linked to an occurring view and each column in the table (other than the optional numbering column) is associated with a field in
the hierarchy beneath the occurring view. The complete data link consists of a data link from the table to the occurring view. For each column,
data is linked using a specification of the path from the occurring view to the particular field in the view to which the column is linked. These data
links are specified using Set methods with the following properties:

® < columnname >.FieldPath path from occurring view to field
® < tablename >.ViewLink link to the occurring view

The first is set with the Table object. The second is set with Column object.

Properties and Methods
ﬂ Inherits GuiObject and exposes all its properties and methods (not listed below).

The following table lists the properties and methods for the Column object:

Column object properties and methods

Property:Type (Get Method)
Altered:Boolean
Editable:Boolean
EditLimit:Integer
Error:Boolean

Empty:Boolean
FieldPath:String

Format:Format

HeaderLineCount:Integer

ImmediateReturn:Boolean

Justification:Integer

Mandatory:Boolean

PopupMenu:PopupMenu

SetLink:Set

Width:Integer
Additional Get Method

getHeader():String

getHeader(n:Integer)

getScaledWidth(n:Integer)

getHeader():String

Supported Set Method
setAltered(Boolean)
setEditable(Boolean)
setEditLimit(Integer)
(read only)

(read only)
setFieldPath(String)

setFormat(Format)

(read only)
setimmediateReturn(Boolean)
setJustification(Integer)
setMandatory(Boolean)
setPopupMenu(PopupMenu)
setSetLink(Set)
setWidth(Integer)

Additonal Set Method

addHeader(String)
setHeader(n:Integer, value:String)

removeHeader(n:Integer)
setFieldPath(String Array)

setScaledWidth(n:Integer)

This method returns the header as a string.

getHeader(n:Integer)

This method returns the n th line of header string for a multi-line header.
getScaledWidth():Integer

This method returns the width of the column with respect of current coordinate system.
setFieldPath:String Array

This is the path from an occurring view to a field when linked to an occurring view. This specifies the path in the hierarchy from the view to a

specific field.

For example, if the table is linked to the occurring view MYTABLE_OCC and the column is linked to the field MYTABLE_COLUMNL1 of
MYTABLE_OCC, the field path will be the dynamic array with the value ' MYTABLE_COLUMNL ".

dcl

Col 1_Fi el dPat h obj ect array of varchar(20);

enddcl

Col 1_Fi el dPat h. append(' MYTABLE_COLUWNL')
COL1. set Fi el dPat h(Col 1_Fi el dPat h)

FieldPath:String
This property uses String instead of String Array for FieldPath; the path is separated by dots(.).

In the following example, TABLE_OCC is an occurring view linked to a table, TABLE_VIEWL1 is a child view of TABLE_OCC, and COL_FIELD1 is
a Field of TABLE_VIEW1 and is linked to the column COL1.

ViewLink:Array
This is the link for the list when linked to an occurring view. For a Column, this specifies the occurring view that contains the data to be displayed.
Width:Integer

This property the width of a table column.
The minimum width that can be set for a column in an MCLB is determined by Java, defaulting to 15 in Sun's Java 5.

setScaledWidth(n:Integer)
This method sets the width of the column with respect of current coordinate system.

Additional Action Methods

Each column can have one or more rows of header text. Each row is added by calling the addHeader() method, with the first call to that method
specifying the first line of header text, the second call specifying the second line, and so on.

When the Column is enabled, the setSetLink(Set) method creates a drop-down combo box editor for the column with the values from the set.
When the Column is disabled, it shows a protected edit field that displays the domain value from the set.

ComboBox

The ComboBox object is used to display the standard combo box object that combines an edit area and a drop-down list. The list contains
choices that can be selected and that subsequently appear in the edit area.

Sample combo box

Flatform:

054400 =l
Windowes

Ui

M airiframc

052

If a combo box is painted as DropDown, it is an editable combo box. If a combo box is painted as DropDownlList, it is a non-editable combo box.

A Simple combo box is a combobox where the domain the list of values is permanently displayed (dropped-down), and there is no button attached
to the combobox to display the list of values. Simple comboboxes are not supported in Java, neither in C#.

In a DropDown combo box, the contents of the edit area can be directly modified. In a DropDownList combo box, the contents of the edit area can
be modified only by selecting items in the list. During execution, the combo box can be changed from editable to non-editable using the Editable
property. To make the combo box non-editable at execution time, set the Editable property to False .

In an editable combo box, if text has been entered but not committed to the data link, it can be rolled back by pressing Escape (Esc). Pressing
Enter while focus is on an edit area whose contents have been modified commits the changes to the data link. Moving focus away from the
combo box also commits the changes.

Combo boxes can be linked to character fields, numeric fields (integer or decimal), date fields or time fields. Combo boxes can be more complex
than other window objects because a combo box has two data-links: one for the edit area and one for the list. Furthermore, the list can be linked
to either of two data structures: an occurring view or a set. For a combo box linked to an occurring view, the data link for the list consists of two
parts: the link to the occurring view and the path in the hierarchy from the occurring view to the field itself.

Constructor and Parameters

The following is a sample declaration and construction:

- del E
aConboBox obj ect type ConboBox; i
! enddcl ;
! map NEW ComboBox() to aConmboBox 1

There are no parameters for this object.

Editable objects generated in the rule source code do not have a format object defined. A format object needs to be defined and
passed to the combo box if formatting is required.

Properties and Methods
) Inherits GuiObject and exposes all its properties and methods (not listed below).

The following table lists the properties and methods for the ComboBox object:

ComboBox object properties and methods

Property: Type (Get Method) = Set Method

Altered:Boolean setAltered(Boolean)
AutoSelect:Boolean setAutoSelect(Boolean)
Datalink:DataObject setDataLink(DataObject)

DomainType:Integer

Editable:Boolean setEditable(Boolean)
EditLimit:Integer setEditLimit(Boolean)
Error:Boolean (read only)

Empty:Boolean (read only)

FieldPath:String setFieldPath(String)
Format:Format setFormat(Format)
ImmediateReturn:Boolean setimmediateReturn(Boolean)
Justification:Integer setJustification(Integer)
Mandatory:Boolean setMandatory(Boolean)
PopupMenu:PopupMenu setPopupMenu(PopupMenu)
SetLink:Set setSetLink(Set)
SelectedIndex:Integer setSelectedIndex(Integer)
TabStop:Boolean setTabStop(Boolean)
Text:String setText(String)
ViewLink:Array setViewLink(Array)

ﬂ EditLimit, Empty, and Error are only valid for an editable combo box.

DataLink:DataObject

This is the link for the edit area of the combo box. This property specifies the data field in the application hierarchy to which the edit field is linked.
The DataObject for a combo box is: Date, Decimal, Integer, Shortinteger, String, or Time.
setFieldPath:String Array

This is the path from an occurring view to a field when linked to an occurring view. It specifies the path in the hierarchy from the view to a specific
field.

FieldPath:String

This is the path from an occurring view to a field when linked to an occurring view. It specifies the path in the hierarchy from the view to a specific
field.

SetLink:Set

This is the link for the list when linked to a set. For static combo boxes, it specifies the set from which the values displayed in the combo box are
taken.

ViewLink:Array

This is the link for the list when linked to an occurring view. For dynamic combo boxes, it specifies the occurring view from which the items in the
drop down list are taken.

Additional Action Methods

The ComboBox object has methods related to focus. The hasFocus() method is used to determine if the object currently has focus. The
setFocus() method is used to request that focus be set to the object.

Events

The following events can be triggered by the ComboBox object:

Click
DoubleClick
FieldError
FieldValidation
FocusGained
FocusL ost

! These events are not supported for thin client combo boxes.

i}

The ComboBox object triggers the Click event when any of the following occur:

The user presses the mouse button while the mouse is on the object.
The spacebar is pressed while the object has the focus.

The user presses the object's mnemonic key (Alt+mnemonic key).
The Selected:Boolean property is changed.

A value is mapped into the field data-linked to the object.

The ComboBox object triggers the FocusGained event when the following occurs:
® The user tabs into the object or clicks on the object.
The ComboBox object triggers the FocusLost event when the following occurs:
® The user tabs out of the object or clicks on another object in the window or on the window itself.
Editable combo boxes provide for data validation using the FieldError and FieldValidation events. When an attempt is made to commit data, either

by moving focus or pressing Enter , and the data contains errors, the FieldError event is triggered. If there are no errors, the FieldValidation event
is triggered, allowing the application to verify that the data is acceptable.

EditField

The EditField object displays a rectangular area into which a single line of text can be entered.

When text is entered but not committed to the data link, click Esc to roll it back . Pressing Enter when you focus on an edit field whose contents
have been modified commits the changes to the data link. Moving focus away from an edit field also commits the changes.

The following figure shows a sample dialog with three edit fields. Each field has static text added in front of it.

Edit field dialog

— Sample Edit Fields

E dit field 1: |

Edit field 2: |

Editfield 3 |

The PasswordField object is very similar but displays asterisks (*) instead of the value. For an edit field with multiple lines, refer to the
MultiLineEdit object.

Constructor and Parameters

The following is a sample declaration and construction:

L del E
| aEdi t Fi el d obj ect type EditFiel d; ;
! enddcl ;
! map NEWEditField() to aEditField 1

There are no parameters for this object.

Editable objects generated in the rule source code do not have a format object defined. A format object needs to be defined and
passed to the list box if formatting is required.

Properties and Methods

ﬂl Inherits GuiObject and exposes all its properties and methods (not listed below).

The following table lists the properties and methods for this object.

EditField object properties and methods

Property: Type (Get Method) = Set Method

Altered:Boolean setAltered(Boolean)
AutoSelect:Boolean setAutoSelect(Boolean)
AutoTab:Boolean setAutoTab
Border:Boolean setBorder(Boolean)
Datalink:DataObject setDataLink(DataObject)
Editable:Boolean setEditable(Boolean)
EditLimit:Integer setEditLimit(Integer)
Error:Boolean (read only)

Empty:Boolean (read only)

Format:Format setFormat(Eormat)

ImmediateReturn:Boolean setimmediateReturn(Boolean)
Justification:Integer setJustification(Integer)
Mandatory:Boolean setMandatory(Boolean)
PopupMenu:PopupMenu setPopupMenu(PopupMenu)
SetLink:Set setSetLink(Set)
TabStop:Boolean setTabStop(Boolean)
Text:String setText(String)

Focus:Boolean

This method has no parameters.

AutoTab:Boolean

In an edit field, this indicates whether an automatic tab event is generated at the input of the last character of the maximum allowed limit,
depending on the edit limit value or the length of the data object linked to the field. The default property is False which indicates the focus remains
in the edit field at the input of the last allowable character and the user has to manually generate a shift of focus. This property is used only by
Java runtime.

DataLink:DataObject

An edit field can be linked to a character field, a numeric field (integer or decimal), a date field, or a time field. It is not necessary for an edit field to
have a data link. If it has a data link, the text in the edit field can be accessed either through the Text property or using rules code to access the
data-linked field. If it does not have a data link, the only way to set or query the text in the edit field is with the Text property. The DataObject for
an edit field is Date, Decimal, Integer, Shortinteger, String, or Time.

Additional Action Methods

The setBorder() method is used to draw the border around the edit field that makes it appear either as a three-dimensional box or a
two-dimensional box depending on the 3D property, or to have no border. For example:

When the flag is True , it has a three-dimensional or two-dimensional border around the edit field. When the flag is False , no border is drawn
around the edit field.
This object has methods related to focus. The hasFocus() method determines if the object currently has focus. The setFocus() method requests

that focus be set to the object.
When the EditField is disabled, the setSetLink(Set) method displays the domain value from the set.

Events
The EditField object can trigger the following events:

Click
DoubleClick
FieldError
FieldValidation
FocusGained

FocusLost

This object triggers the Click event when any of the following occur:

® The user presses the primary mouse button when the mouse is on the object.
This object triggers the FocusGained event when the following event occurs:

® The user tabs into the object or clicks on the object.
This object triggers the FocusLost event when the following event occurs:

® The user tabs out of the object or clicks on another object in the window or the window itself.

EditField object provides for data validation using the FieldError and FieldValidation events. When an attempt is made to commit the data either
by moving focus or pressing Enter , and the data contains errors, the FieldError event is triggered.
If there are no errors, the FieldValidation event is triggered, allowing the application to verify that the data is acceptable.

Thin Client Support

Click, DoubleClick, FocusGained, FocusLost events are not supported for thin client EditField.
The FieldError and FieldValidation events are supported through client-side JavaScripts.
Ellipse

An Ellipse object is used to display an ellipse or circle.

Thin Client Support

This is not supported for thin clients (HTML).

Constructor and Parameters

The following is a sample declaration and construction:

- del E
anEl | i pse object type Ellipse;
! enddcl ;
! map NEWE lipse() to anEllipse :

There are no parameters for this object.

Properties and Methods
'ﬂ Inherits GuiObject and exposes all its properties and methods (not listed below).

The following section contains the properties and methods for this object:
Ellipse object properties and methods
The Ellipse class contains no properties or methods except the properties or methods of the parent class.

Events

O
=<

lic
DoubleClick

°

[]
This object triggers the Click event when any of the following occur:

® The user presses the primary mouse button when the mouse is on the object.
FileEditor

The FileEditor object allows end users to view, but not modify, the contents of a text file. The File editor cannot be made Editable.

Properties and Methods

ﬂ Inherits GuiObject and MultiLineEdit and exposes all their properties and methods (not listed below).

The following table lists the properties and methods for this object.

FileEditor object properties and methods

Property: Type (Get Method) = Set Method

Datalink:String setDataLink(String)

WordWrap:Boolean setWordWrap(Boolean)
‘% This is not supported for thin client (HTML).

DataLink:String

For FileEditor , the data link specifies a valid file name to load into the view. The file name can be specified as a full path to the file:

or just the name of the file, if the file is in the class path.

WordWrap:Boolean

This property specifies whether or not the text is wrapped when it reaches the right edge of the edit area. The default value is TRUE .

Events
The FileEditor object triggers the following events:

Click
DoubleClick
FieldError
FieldValidation
FocusLost

FocusGained

GroupBox

A GroupBox object is used to display a rectangle with an optional title in the upper left, that is used to group together other objects, for example,
radio buttons or check boxes.

GroupBox objects with two radio buttons

F:.',- Sample Group Box ;lglﬂ

ender

" Male {~ Female

Constructor and Parameters

The following is a sample declaration and construction:

L del ;
aG oupBox object type G oupBox;
! enddcl i
i map NEW G oupBox() to aG oupBox :

There are no parameters for this object.

Properties and Methods
'ﬂ Inherits GuiObject and exposes all its properties and methods (not listed below).

The following table lists the properties and methods for this object.
GroupBox properties and methods
Property:Type (Get Method) Set Method

Text:String setText(String)

Events

This object generates no events.

Label

The Label object is used to display both non-editable text and graphics in the window. Although the user cannot edit the static text, the text can be
modified with rules code. A Label object cannot be disabled and it cannot receive focus.

Constructor and Parameters

The following is a sample declaration and construction:

¢ dcl i
alLabel object type Label;
! enddcl ;
map NEW Label () to alLabel

There are no parameters for this object.

Properties and Methods
lﬂ Inherits GuiObject and exposes all its properties and methods (not listed below).

The following table lists the properties and methods for this object:
Label object properties and methods

Property: Type (Get Method) Set Method

HorizontalTextPosition:Integer setHorizontal TextPosition(Integer)

Image:String setlmage(String)
Justification:Integer setJustification(Integer)

Mnemonic:Char

MnemonicKeycode:Integer

PopupMenu:PopupMenu

Text:String

VerticalJustification:Integer

VerticalTextPosition:Integer

Property:Type (Get Method)

getJustification():Integer

setMnemonic(Char)
setMnemonicKeycode(Integer)
setPopupMenu(PopupMenu)
setText(String)

setVerticalJustification(Integer)

Set Method

getVerticalTextPosition():Integer
setAutoSize(Boolean)

setVertical TextPosition(Integer)

For a Label , the horizontal justification of the text within the label area is specified by the Justification property, while the vertical justification is
determined by the VerticalJustification property.

VerticalJustification:Integer

For Label objects, the VerticalJustification property specifies vertical justification. Valid values are defined in the Constants class as:
* TOP
® CENTER
®* BOTTOM

The default vertical justification is CENTER.
Events

The Label object triggers the following events:

@]
=<

lic
DoubleClick

) Not supported for thin client.

This object triggers the Click event when any of the following occur:

® The user presses the primary mouse button when the mouse is on the object.
® The user presses the object's mnemonic key (that is, Alt+mnemonic key).

ListBox

The ListBox object is used to display standard list box functionality. It provides a list of items displayed in a rectangular area. If the vertical size of
the area is not sufficient to show all the choices, then a vertical scroll bar automatically appears. The following figure shows a sample list box.

Sample list box

'F'a',- Sample List Box - ||:||£|
one -
Twvo
Three
Faur

List boxes can be linked to character fields, numeric fields (integer or decimal), date fields, or time fields. The data link is specified by a
combination of two properties. The FieldPath property specifies the location of the specific field that contains the items relative to the view. The
ViewLink property specifies occurring view that holds the items to be displayed in the list box.

Constructor and Parameters

The following is a sample declaration and construction:

dcl

enddcl

map NEW Li st Box() to aListBox

aLi st Box object type ListBox;

There are no parameters for this object.

1, Editable objects generated in the rule source code do not have a format object defined. A format object needs to be defined and

passed to the list box if formatting is required.

Properties and Methods

'ﬂ Inherits GuiObject and exposes all its properties and methods (not listed below).

The following table lists the properties and methods for this object:

ListBox object properties and methods

Property: Type (Get Method)

Altered:Boolean
AutoSelect:Boolean
Editable:Boolean
Empty:Boolean
Error:Boolean
FieldPath:String
Format:Format

ImmediateReturn:Boolean

Justification:Integer
Mandatory:Boolean

NextSelectedIndex:Integer

PopupMenu:PopupMenu

SelectedIndex:Integer

SelectionMode:Integer

TabStop:Boolean
ViewLink:Array
Additional Get Method

getFieldPath:String

getNextSelectedIndex:Integer

getNextSelectedIndex(fromindex:Integer):Integer

Set Method
setAltered(Boolean)
setAutoSelect(Boolean)
setEditable(Boolean)
(read only)

(read only)
setFieldPath(String)

setFormat(Format)

setimmediateReturn(Boolean)

setJustification(Integer)
setMandatory(Boolean)

(read only)

setPopupMenu(PopupMenu)

setSelectedIndex(Integer)
setSelectionMode(Integer)
setTabStop(Boolean)
setViewLink(Array)
Additional Set Method

clearSelection()

resetSelectedIindex(index:Integer):Boolean

resetSelectioninterval(Startindex:Integer, Stoplndex:Integer):Boolean

setFieldPath(Value:String)

setSelectionInterval(Startindex:Integer, StopIndex:Integer)

setFieldPath:String Array

This is the path from occurring view to field when linked to an occurring view. It specifies the path in the hierarchy from the view to a specific field.

ViewLink:Array

This is the link for the list when linked to an occurring view. For a list box, it specifies the occurring view that contains the data to be displayed.

Additional Action Methods

This object has methods related to focus. The hasFocus() method determines if the object currently has focus. The setFocus() method requests
that focus be set to the object.

To select a single row, use the setSelectedindex() method to specify the row you want to select. To select a contiguous range of rows, use the
setSelectioninterval() method. Two methods are used to query the currently selected item. The selectedIindex() method returns the index of the
currently selected item. The nextSelectedindex() method returns the selected item following the one specified by the Index parameter.

Events
The ListBox object triggers the following events:

Click
DoubleClick
FieldError
FocusGained

FocusLost

', Not supported for thin client.

The ListBox object triggers the Click event when the selection is changed either by a mouse click or with the up and down arrow keys. It also
triggers the DoubleClick event.
This object triggers the FocusGained event when the following occurs:
® The user tabs into the object or clicks on the object.
This object triggers the FocusLost event when the following occurs:

® The user tabs out of the object or clicks on another object in the window or on the window itself.

Menu

The Menu object displays choices on a menu bar and within a drop-down or popup menu containing additional selections. The following figure
shows a sample menu dialog.

Sample menu

By Syl Mz o = 55
e H=lp
T
Far Sy ik=ir ﬂ
Bletei o)

et [T

Constructor and Parameters
To create a Menu with pull-down items:
Create a MenuBar and add it to the Window using the setMenuBar method.

1. Create a Menu and add it to the MenuBar using the add method.

2. Create each Menultem and add each one to the Menu using the add method.

For example:

dcl

endd

proc
(e o

na|
se

endp

aMenuBar object type MenuBar;
aMenu obj ect type Menu;

aChil d object type Menultem
cl

InitProc for Initialize object

bject type InitializeEvent)
map new MenuBar to aMenuBar
map new Menu to aMenu

set aMenu.text := "File'
aMenu. set Mhenonic(' F')

p new Menultemto aChild

t aChild.text :="COpen'

aChi |l d. set Mhenonic(' O)

TEST_W NDOW set MenuBar (aMenuBar)
aMenuBar . add(aMenu)

aMenu. add(achi | d)

roc

TEST_W NDOW

There are no parameters for this object.

Properties and Methods

Li]

Inherits GuiObject and exposes all its properties and methods (not listed below).

The following table lists the properties and methods for this object.

Menu object properties and methods

Property: Type (Get Method) Set Method

Accelerator:Accelerator

Checked:Boolean setChecked(Boolean)

CheckMandatoryFields:Boolean

Count:Integer (read only)

lgnoreValidation:Boolean

Mnemonic:Char setMnemonic(Char)

MnemonicKeycode:Integer

setAccelerator(Accelerator)

setCheckMandatoryFields(Boolean)

setlgnoreValidation(Boolean)

setMnemonicKeycode(Integer)

Selected:Boolean setSelected(Boolean)
Text:String setText(String)
Style:Integer (Read only)

Validation:Boolean

setValidation(Boolean)

Additional Action Method

add(ltem:Menultem)

addSeparator()

add(Menu)

getltem(integer):guiObject

getltemCount()Integer

Additional Action Methods

The Menu object has two additional methods. The add() method appends Menultems to the menu. The addSeparator() method appends
separators.

Events
The Menu object triggers the following events:

® Click

MenuBar

The MenuBar object displays a menubar as part of the Menu object. In Java, MenuBar is not a GuiObject but a container for Menus and
Menultems. In C#, MenuBar and Menultem are the same, therefore MenuBar is GuiObject as well.

Constructor and Parameters

The following is a sample declaration and construction:

" del E
aMenuBar object type MenuBar; :
i enddcl ;
! map NEW MenuBar () to aMenuBar :

There are no parameters for this object.

Methods

The following methods are supported for this object:

map bar. get Menu(i ndex) to aMenu

bar . Add(Menu)
map bar. get MenuCount () to anlnt

Events

This object does not trigger any events.

Menultem

The Menultem object is used to display a menu choice as part of either the Menu object or the PopupMenu object. Menu items can be associated
with a key combination that triggers the action associated with the menu item when pressed. The key combination is called an accelerator and is
specified using the Accelerator property.

Constructor and Parameters

The following is a sample declaration and construction:

dcl
aMenul t em obj ect type Menultem H
i enddcl ;
! map NEW Menultem() to aMenultem 1

There are no parameters for this object.

Properties and Methods

ﬂ Inherits GuiObject and exposes all its properties and methods (not listed below).

The following table lists the properties and methods for this object.

Menultem object properties and methods

Property: Type (Get Method) Set Method

Accelerator:Accelerator setAccelerator(Accelerator)

Checked:Boolean setChecked(Boolean)

CheckMandatoryFields:Boolean = setCheckMandatoryFields(Boolean)

Count:Integer (read only)
lgnoreValidation:Boolean setlgnoreValidation(Boolean)
Mnemonic:Char setMnemonic(Char)
MnemonicKeycode:Integer setMnemonicKeycode(Integer)
Selected:Boolean setSelected(Boolean)
Text:String setText(String)

Style:Integer (Read only)
Validation:Boolean setValidation(Boolean)

Additional Action Method
add(ltem:Menultem)
addSeparator()
getltem(integer):guiObject

getltemCount()Integer

Additional Action Methods

The Menultem object has two additional methods. The add() method appends Menultems to the menu item. The addSeparator() method appends
separators.

Accelerator:Accelerator

This property specifies a key combination that triggers a menu item's Click event without navigating the menu hierarchy, also referred to as hot
keys . Valid values may be specified in the Constants class or the Accelerator class.

Checked:Boolean

This property specifies whether a menu item is displayed with a check mark. This property is equivalent to the Selected:Boolean property. It is
provided for backwards compatibility with previous versions of the product.

For backward compatibility, when a checked Menultem is clicked it will not toggle the checkmark but fires a clickevent (in Java, checked
Menultems will toggle when clicked). You must write code to uncheck the Menultem.

A new appbuilder.ini setting is added to support the java functionality under the section [CCOMPATIBILITY],
TOGGLE_CHECK_MENU_ONCLICK. The value for the ini key should be TRUE to support java functionality.

Style:Integer

This is a read-only property.
Returns one of the following values:

® Constants.PLAIN_MENUITEM
® Constants. CHECKBOX_MENUITEM

Events

The following event is triggered by this object:

® Click
Menultem triggers the Click event when the user selects the menu item or when the user presses the accelerator key combination associated with
that menu item.

MultiLineEdit

The MultiLineEdit object displays the standard multi-line edit field object, a rectangular area into which multiple lines of text can be entered. If the
text is too long to display within the rectangular area, horizontal scrolling is automatically enabled. For a single-line edit field, refer to the EditField
object.

When text is entered but not committed to the data link, it can be rolled back by pressing the Escape (Esc). Pressing Enter while focus is on an
edit field with modified contents causes the changes to be committed to the data link. Moving focus away from the field also causes the changes

to be committed.

MultiLineEdit has two methods. The hasFocus() method is used to determine if the object currently has focus. The setFocus() method is used to

request that focus be set to the object.

Properties and Methods

Iﬂ Inherits GuiObject and exposes all its properties and methods (not listed below).

The following table lists the properties and methods for this object.

MultiLineEdit object properties and methods

Property: Type (Get Method) Set Method

Altered:Boolean
AutoSelect:Boolean

Datalink:DataObject

Editable:Boolean

EditLimit:Integer
Empty:Boolean

Error:Boolean

ImmediateReturn:Boolean

InsertBreak:Boolean

InsertTab:Boolean

Mandatory:Boolean

PopupMenu:PopupMenu

TabStop:Boolean
Text:String

WordWrap:Boolean
Additional Get Method

DataLink:DataObject

This is the link for the edit area of the multi-line edit. This property specifies the data field in the application hierarchy to which the edit field is

linked.

setAltered(Boolean)
setAutoSelect(Boolean)
setDataLink(DataObject)
setEditable(Boolean)
setEditLimit(Integer)

(read only)

(read only)
setimmediateReturn(Boolean)
setinsertBreak(Boolean)
setinsertTab(Boolean)
setMandatory(Boolean)
setPopupMenu(PopupMenu)
setTabStop(Boolean)
setText(String)

setWordWrap(Boolean)

setTabStop:Boolean

The DataObject for a multi-line edit is String .

InsertBreak:Boolean

This property specifies whether pressing Enter in a multi-line edit field inserts a line break into the text or triggers the default push button.

InsertTab:Boolean

This property specifies whether pressing the Tab key in a multi-line edit field inserts a tab character into the text or transfers focus to another
control. If InsertTab is True , focus can still be transferred with Ctrl+Tab .

WordWrap:Boolean

For multi-line edit fields, this property specifies whether the text is wrapped when it reaches the right edge of the edit area. The default value is
True .

If the WordWrap property is set to True , text automatically wraps when it reaches the right edge of the edit area. If InsertBreak is set to True ,
pressing Enter causes a line break character to be entered into the text. If you want the user to be able to activate the default push button when
focus is on the multi-line edit, set InsertBreak to False .

If InsertTab is True , pressing Tab causes the tab character or several space characters to be inserted in the text. If InsertTab is False , pressing
Tab transfers focus to the next object. If InsertTab is True , Ctrl+Tab can be used to transfer focus.

Additional Action Methods

This object has methods related to focus. The hasFocus() method is used to determine if the object currently has focus. The setFocus() method is
used to request that focus be set to the object.

Events

The MultiLineEdit object triggers the following events:

Click
DoubleClick
FieldError
FieldValidation
FocusGained

FocusLost

s Not supported for thin client applications.

__]

This object triggers the Click event when any of the following occur:
® The user presses the mouse button while the mouse is on the object.
® The user presses the object's mnemonic key (Alt+mnemonic key).
® The Selected:Boolean property is changed.
® Avalue is mapped into the field data-linked to the object.
This object triggers the FocusGained event when the following occurs:
® The user tabs into the object or clicks on the object.
This object triggers the FocusLost event when the following occurs:
® The user tabs out of the object or clicks on another object in the window or on the window itself.
MultiLineEdit provides for data validation using the FieldError and FieldValidation events. When an attempt is made to commit the data either by

moving focus or pressing Enter , and the data contains errors, the FieldError event is triggered. If there are no errors, the FieldValidation event is
triggered, allowing the application to verify that the data is acceptable.

PasswordField

The PasswordField object is very similar to the EditField object. The difference is that a password field displays only asterisks regardless of the
data in the field. A Password field is implemented as a separate PasswordField object in the Java client to take advantage of the extra security
provided by Java for password fields.

For additional information, see the section on EditField.

Constructor and Parameters

The following is a sample declaration and construction:

- del E
aPasswor dFi el d obj ect type PasswordFi el d;
! enddcl ;
! map NEW PasswordField() to aEditField :

There are no parameters for this object.

Properties and Methods

ﬂl Inherits GuiObject and EditField and exposes all their properties and methods.

Events

The PasswordField object triggers the same events as the EditField object.

PushButton

The PushButton object is used to display standard push-button functionality. The following figure shows a sample push-button dialog.

Sample push buttons

%, Sample Push Buttons

Do you like these push buttons?

Yes I

=101 x|

Constructor and Parameters

The following is a sample declaration and construction:

dcl

enddcl

map NEW PushButton() to aPushButton

aPushBut t on obj ect type PushButton;

There are no parameters for this object.

Properties and Methods

ﬂ Inherits GuiObject and exposes all its properties and methods (not listed below).

The following table lists the properties and methods for this object.

PushButton object properties and methods

Property: Type (Get Method)

CheckMandatoryFields:Boolean

HorizontalTextPosition:Integer

lgnoreValidation:Boolean

Image:String

Mnemonic:Char

Set Method
setCheckMandatoryFields(Boolean)
setHorizontalTextPosition(Integer)
setlgnoreValidation(Boolean)
setimage(String)

setMnemonic(Char)

MnemonicKeycode:Integer setMnemonicKeycode(Integer)

Pressed:Boolean (read only)
PopupMenu:PopupMenu setPopupMenu(PopupMenu)
TabStop:Boolean setTabStop(Boolean)
Text:String setText(String)
Validation:Boolean setValidation(Boolean)
VerticalTextPosition:Integer setVerticalTextPosition(Integer)

Additional Set Method

setVerticalTextTolmagePosition:Integer

s getTabStop is not supported in C#.

__]

VerticalTextPosition:Integer

This specifies the vertical position of the text.

HorizontalTextPosition:Integer
This specifies the horizontal position of the text.

1, The VerticalTextPosition and HorizontalTextPosition methods and properties rely on a bitmap. There is no way to associate a
bitmap with a label object. Hence these methods will not work.

Events
The PushButton object triggers the following events:
® Click
® FocusGained
® Focuslost
This object triggers the Click event when any of the following occur:
® The user presses the mouse button while the mouse is on the object.
®* The spacebar is pressed while the object has the focus.
® The user presses the object's mnemonic key (Alt+mnemonic key).
This object triggers the FocusGained event when the following occurs:
® The user tabs into the object or clicks on the object.

This object triggers the FocusLost event when the following occurs:

® The user tabs out of the object or clicks on another object in the window or on the window itself.

g FocusLost and FocusGained events are not supported for thin client applications.

i}

RadioButton

The RadioButton object is used to display the standard radio button functionality. You can also use the CheckBox object for turning a particular
setting either on or off.

Sample radio buttons

5, sample Radio Buttons 10| x|

™ Usze Account Mumber for D
{+ Use Full Mame for I

" Do Mot Use Ay D

Constructor and Parameters

The following is a sample declaration and construction:

L del
aRadi oButt on obj ect type Radi oButton;
! enddcl

! map NEW Radi oButton() to aRadi oButton

There are no parameters for this object.

. You cannot select a radio button on an HTML servlet if the radio button does not have a link to a field.

Properties and Methods
ﬂ Inherits GuiObject and exposes all its properties and methods (not listed below).

The following table lists the properties and methods for this object.
RadioButton object properties and methods

Property: Type (Get Method) Set Method

Altered:Boolean setAltered(Boolean)
Datalink:DataObject setDataLink(DataObject)
ImmediateReturn:Boolean setimmediateReturn(Boolean)
Mnemonic:Char setMnemonic(Char)
MnemonicKeycode:Integer setMnemonicKeycode(Integer)
PopupMenu:PopupMenu setPopupMenu(PopupMenu)
Selected:Boolean setSelected(Boolean)
TabStop:Boolean setTabStop(Boolean)
Text:String setText(String)

DataLink:DataObject

Radio buttons are linked to character (string) fields. When a radio button is selected, the system identifier (HPSID) for the button is placed in the

data-linked character field.
The DataObiject for a radio button is String.

Additional Action Methods

This object has methods related to focus. The hasFocus() method is used to determine if the object currently has focus. The setFocus() method is
used to request that focus be set to the object.

Events

The RadioButton object triggers the following events:

Click
DoubleClick
FieldError
FocusGained

FocusLost

This object triggers the Click event when any of the following occur:

The user presses the primary mouse button when the mouse is on the object.
The spacebar is pressed when the object has the focus.

The user presses the object's mnemonic key (that is, Alt+mnemonic key).
The Selected:Boolean property is set to True.

A value is mapped into the field data-linked to the object.

This object triggers the FocusGained event when any of the following occur:
® The user tabs into the object or clicks on the object.
This object triggers the FocusLost event when any of the following occur:

® The user tabs out of the object or clicks on another object in the window or the window itself.

H These events are not supported for thin client.

i}

RadioButton provides for data validation using the FieldError event. When an attempt is made to commit the data either by moving focus or
pressing Enter , and the data contains errors, the FieldError event is triggered.

Rectangle
A Rectangle object is used to display a rectangle or square.

Support

g This is not supported for thin (HTML) clients.

i}

Constructor and Parameters

There are no parameters for this object. The following is a sample declaration and construction:

dcl
aRect angl e obj ect type Rectangl e; i
! enddcl ;
! map NEW Rectangl e() to aRectangle 1

Properties and Methods
'ﬂ Inherits GuiObject and exposes all its properties and methods (not listed below).

The following table lists the properties and methods for this object.

Rectangle object properties and methods

The Rectangle class contains no properties or methods except the properties or methods of the parent class.

Events

@]
=

® Clic
® DoubleClick

This object triggers the Click event when any of the following occur:

® The user presses the primary mouse button when the mouse is on the object.

TabControl

The TabControl object allows user to group controls into multiple pages and to switch between these tab pages.
A tab control can be created statically by using Window Painter, or can be created dynamically at runtime. To create dynamically a tab control, it
is created a TabControl object, then individual tab pages are added using the addPage() method.

Properties and Methods
'ﬂ Inherits GuiObject and exposes all its properties and methods (not listed below).

The following table lists the properties and methods for this object.

TabControl object properties and methods

Property Set Method

Count:Integer (read only)
MultipleRows:Boolean setMultipleRows(flag:Boolean)
Orientation:Integer setOrientation(value:Integer)

SelectedIndex:Integer

SelectedTab:TabPage
TabStop:Boolean setTabStop(Boolean)
Additional Get Method Additional Set Method

addPage(page:TabPage)
getPage(index:Integer): TabPage

insertPage(index:Integer, page:TabPage)

removePage(page:TabPage)

removeAt(index:Integer)

setEnabledPage(index:Integer, value:Boolean)

addPage(page:TabPage)

Adds a tab page to the tabcontrol.
getPage(index:Integer):TabPage

Gets the TabPage at the given index.
insertPage(index:Integer, page:TabPage)

Adds a tab page to the tabcontrol at the given index.
removePage(page:TabPage)

Removes a tab page from the tabcontrol.
removeAt(index:Integer)

Removes a tab page from the tabcontrol at the given index.

setEnabledPage(index:Integer, flag:Boolean)

Enables or disables a tab page at the given index.

setMultipleRows(flag:Boolean)

If the flag is true, tab pages will be shown in multiple rows, otherwise it will be shown in a scrollable single row of tabpages.
setOrientation(value:Integer)

Sets the orientation of the tab pages to TOP or BOTTOM.

Events

The TabControl object triggers the following events:

* TABPAGEDeselected
* TABPAGESelected

Table

The Table object is used to display a standard table with multiple rows and columns. In the Window Painter (and in previous versions of this
product), it is referred to as a multicolumn list box (MCLB) or spreadsheet. The Table object supports the concept of virtual rows. That is, it can be
associated with a data source that contains more rows than can be displayed at one time. Thus, the row numbers reflect the row numbers in the
database rather than the actual row numbers on the displayed table.

Sample table with three columns

'F‘..',- Sample Table

(] Mame Project
B |ZGYBTIS APPB_REP_SRY FS :l
7 |ZGEONES APPBE_RULE_DTL_ACT DEY
8 |IGIMAZG APPB_RULE_DTL_DIS DEY J
9 |ZIGIOKZIS APPB_RIULE_DTL_IMG DEY
10 |ZGZPBZS APPB_SS_LB_DIS CEY
11 |ZGYBPZIE APPB_SS_MCLE_ACT F=
12 |ZGYALLS APPB_SS_MCLB_DIS F3
13 |ZGYBaIs APPB_SS_MCLB_IMG F=
14 |ZGIFPZS APPBE_SS_MCLB_ WAL FS
13 |ZGIMIZS APPBE_STD_DT_FROM_CHAR DEY LI

When using ObjectSpeak to manipulate tables, tables are implemented using both Table and Column objects. In general, a Table object
possesses one or more Column objects. The Table class has a number of properties that affect the table as a whole. The Column class contains
a number of properties that determine the appearance and behavior of individual columns.

You can set properties or methods on the table or on individual columns of the table. As with all other visual objects, the names of tables and
columns are the same as their system identifier (HPSID).

Use these steps to dynamically construct a table:

*Create a Table object.

1. Create one or more Column objects.
2. Add them to the Table using the Table's addColumn() method.

This method appends the specified Column object to the right of the table. For tables created in the Window Painter, the Column objects are
automatically created and added to the table by the generated Java code.

By default, the background color of Numbering column and Header is the scrollbar's color. The default background and foreground colors of the
Header can be overridden using the setHeaderForeground(Color) and setHeaderBackground(Color) methods.

For information about scrolling, refer to Smooth Scrolling in a Table Object.

Properties and Methods
'ﬂ Inherits GuiObject and exposes all its properties and methods (not listed below).

The following table lists the properties and methods for this object.

Table object properties and methods

Property: Type (Get Method) Set Method
Altered:Boolean setAltered(Boolean)
AutoSelect:Boolean setAutoSelect(Boolean)
BackBuffer:Integer setBackBuffer(Integer)

BackGrndColor:Color

Border:Integer

BorderStyle:Integer setBorderStyle(Integer)
CurrentColumn:Integer

CurrentRow:Integer

DatabaseSize:Integer (read only, set only through (Integer, Integer))
Editable:Boolean setEditable(Boolean)
ElevatorPosition:Integer (read only)

Empty:Boolean (read only)

Error:Boolean (read only)

FirstVisibleRow:Integer setFirstVisibleRow(Integer)

ForeGrndColor:Color

HeaderBackground:Color setHeaderBackground(Color)
HeaderFont:Font setHeaderFont(Font)
HeaderForeground:Color setHeaderForeground(Color)
HeaderHeight:Integer setHeaderHeight(Integer)
ImmediateReturn:Boolean setimmediateReturn(Boolean)
Justification:Integer setJustification(Integer)
LastVisibleRow:Integer setLastVisibleRow(Integer)
Lines:Integer setLines(integer)
Mandatory:Boolean setMandatory(Boolean)
NextSelectedindex:Integer (read only)
NumberingColumn:Boolean setNumberingColumn(Boolean)
PopupMenu:PopupMenu setPopupMenu(PopupMenu)
RowHeight:Integer setRowHeight(Integer)
RowSelect:Boolean setRowSelect(Boolean)
ScrollableOccurs:Integer (read only)
ScrollLock:Boolean setScrollLock(Boolean)

ScrollBars:Integer setScrollBars(Integer)

SelectedIndex:Integer setSelectedindex(Integer)

SelectedRowCount:Integer

SelectionMode:Integer setSelectionMode(Integer)
TabStop:Boolean setTabStop(Boolean)
ViewLink:Array setViewLink(Array)

setVirtualListBoxSize (read-only)

VisibleOccurs:Integer (read only)

Additional Get Method Additional Set Method
addColumn(ColObj:Column)
clearSelection()

convertToPhysical(Integer):Integer
disableTopAndBottomEvents(Boolean)

getColumn(index:Integer):Column

getColumnCount():Integer

getFirstVisibleOccurence():Integer

getLastVisibleOccurence():Integer

getListLink():Array

getNextSelectedPhysicallndex():Integer

getNextSelectedIndex(fromindex:Integer):Integer

getNextSelectedIndex():Integer

getOccurs():Integer

getScaledHeaderHeight():Integer

getScaledRowHeight():Integer

getSelectedPhysicallndex():Integer

getSelectedVirtuallndex():Integer

getVisibleRows():Integer

isAutoSelect:Boolean

isRowSelect:Boolean

nextSelectedindex(fromindex:Integer):Integer
resetSelectedindex():Integer
resetSelectioninterval(Startindex:Integer, Stopindex:Integer)
setListLink(Array)
setMoreData(Boolean)
setMoreRows(n:Integer, flag:Boolean)
setScaledHeaderHeight(Integer)
setScaledRowHeight(Integer)
setSelectionInterval(Startindex:Integer, Stopindex:Integer)
setVirtualListBoxSize(TopVirtualRow:Integer, VirtualTableSize:Integer)

setStyleClass(cssClassName:String)

setCellStyleClass(row:Integer, col:Integer, cssClassName:String)

setRowStyleClass(row:Integer, cssClassName:String)

setColumnStyleClass(col:Integer, cssClassName:String)

The table itself is data-linked to an occurring view and each column in the table (other than the optional numbering column) is associated with a
field in the hierarchy beneath the occurring view. The complete data link consists of a data link from the table to the occurring view and for each
column, a specification of the path from the occurring view to the particular field in the view to which the column is linked. These data-links are
specified using the set methods with the following properties:

® <tablename >.ViewLink ? link to an occurring view
® < columnname >.FieldPath ? path from an occurring view to a field

The first is set with the Table object. The second is set with Column object.

FirstVisibleRow:Integer
This property specifies the first visible row in the table.
getColumn(index:Integer):Column

This method returns the column at the given index or null if not found (index in 1 based index).

getColumnCount():Integer

This method returns the number of columns in the table.

HeaderBackground:Color

This property specifies the color of the background of the header row of the table.

HeaderForeground:Color

This property specifies the color of the foreground of the header row of the table.
HeaderHeight:Integer

This property specifies the height, in pixels, of the header row of the table.
LastVisibleRow:Integer

This property specifies the last visible row in the table.

Lines:Integer

This property specifies the horizontal and vertical lines in the table.
The values for this property can be one of the following:

® Constants.NO_LINES

® Constants.HORIZONTAL_LINES

® Constants.VERTICAL_LINES

® Constants.HORIZONTAL_AND_VERTICAL_LINES

NumberingColumn:Boolean

This property specifies whether a column should be automatically added in the left-most position of a table to display the (virtual) row number. The
default maximum width of the numbering column is five times the average character width.

If NumberingColumn is True , then a column which contains (virtual) row numbers is added at the extreme left of the table. The absence or

presence of the numbering column does not effect the index number of the remaining column, the left-most non-numbering column always has a
column index of 1.

RowSelect:Boolean

This property specifies whether an entire table row is selected when a cell in that row is selected. If RowSelect is True , then clicking anywhere on
a row causes the entire row to be selected; otherwise, only the cell that is clicked is selected.

SelectedRowCount:Integer

This is a read-only property. It returns an integer indicating the number of selected rows in a table (multicolumn list box), or 0 if none. For

example,

dcl
nuntel ect edRows i nt eger; i
! enddcl
! set nunBel ect edRows : = { MCLB_HPSI D}. Sel ect edRowCount i

g This is not supported in thin client applications.

i}

setVirtualListBoxSize (read-only)
This method specifies the dimensions of a virtual list box. The method can be called in R/O mode too.

setStyleClass(cssClassName:String),
setCellStyleClass(row:Integer, col:Integer, cssClassName:String),
setRowStyleClass(row:Integer, cssClassName:String),
setColumnsStyleClass(col:Integer, cssClassName:String)

Thise methods specify a css class for a table, a table cell, a table row and a table column. The method can be called in HTML mode only.

ViewLink:Array

This is the link for the Table when linked to an occurring view. For a Table, this property specifies the occurring view that contains the data to be
displayed.

Additional Action Methods

Use the addColumn() method when constructing a Table to append the specified Column object to the right of the table.

When the disableTopAndBottomEvents method is called with a value of True , HPS_LB_BOTTOM and HPS_LB_TOP events are not initiated.
The setMoreRows method is used to simplify incremental smooth scrolling. In this case the actual database size is not known, so smooth scrolling
is activated by incrementing the virtual size of the table by n rows on every DataRequired event. If this method is called with setMoreRows(1,
True), on every DataRequired event, the virtual size of the table is incremented by 1 row more than the current virtual bottom limit. This enables
smooth scrolling. When a fetch returns less than the occurring size of rows, the scroll down event can be disabled by calling
setMoreRows(remaming rows, False). If dynamic views are not used, the incremental scrolling is re-enabled when scrolling up , past the virtual
top limit. For information on scrolling, refer to Smooth Scrolling in a Table Object.

The SelectedIndex methods are used to query the currently-selected rows or cells. The getSelectedindex() method returns the index of the
currently selected row. To select a single row, use setSelectedIndex() to specify the row you want to select. To select a contiguous range of rows,
use the setSelectionInterval() method. Currently these methods refer to the display row number, where the topmost displayed row has an index of
1. Use the clearSelection() method to clear the selection.

For a description of the getElevatorPosition(), setFirstVisibleRows(), setLastVisibleRows(), and setVirtualListBoxSize() methods, see Smooth
Scrolling in a Table Object.

Events

The Table object triggers the following events:

CellClick
CellDoubleClick
CellFocusGained
CellFocusLost
Click
DataRequired
DoubleClick
EnterKeyPressed
FieldError
FieldValidation
HeaderClick
RowFocusGained
RowFocusLost

The Table object triggers a number of events. When the table needs more data, the DataRequired event is triggered. When a cell gains focus, the
CellFocusGained event is triggered; when it loses focus, the CellFocusLost event is triggered.

The Table object also triggers the Click and DoubleClick events when the user clicks or double-clicks on the table. The parameters of the event
provide information about the row and column where the click or double-click occurred.

When the contents of a cell are changed and focus is shifted away from the cell or Enter is pressed while the focus is in the changed cell,
field-level validation occurs. If the user has entered syntactically erroneous data in the field, the FieldError event is triggered. Otherwise, the
FieldValidation event is triggered, allowing the application to validate the contents of the field.

! Thin client only supports the DoubleClick event.

i}

Smooth Scrolling in a Table Object

Several methods play a role in smooth scrolling in a Table object. Smooth scrolling refers to fetching data when needed from a data source and
placing it in the occurring view to which the table and columns are linked. When a table needs data that is not already in the occurring view, it
triggers the DataRequired event. The DataRequired event procedure calls getElevatorPosition() to determine what virtual row should be placed in
the top of the occurring view. Once the data has been fetched and placed in the occurring view, then setVirtualListBoxSize() is called to specify
which virtual row was actually placed in the top of the occurring view and the total number of virtual rows in the data source. The
setFirstVisibleRow() method specifies that a virtual row, other than the one at the top of the occurring view, is the top displayed row.

There are many different ways of smooth scrolling, for instance:

® Count(*) method* ? The database size is known at the beginning, or the database count is done before the fetch to determine the actual
database size. The advantage of this is that the table's scrollbar shows the actual database size; the disadvantage is that the database
count is expansive.

® Incremental method ? The database size is not known, so set the virtual size of the table to either the current size plus the increment
after each fetch (if the database has more data than displayed in the table) or the database size when no more data to be fetched. The
disadvantage is that the table's scrollbar never shows the actual database size.

® Dynamic views ? Another method is to combine dynamic views with one of the other two methods. The advantage is that the table
grows every time fetch and append is done, and scrolling backward (up) does not generate a data-required event.

For more details and examples, see:

® Incremental Smooth Scrolling with setMoreRows
® Incremental Smooth Scrolling with Dynamic Views

Incremental Smooth Scrolling with setMoreRows

Incremental scrolling can be simplified by using the setMoreRows(n,flag) method. For a detailed description, refer to the setMoreRows method
topic in Additional Action Methods. The following sample code demonstrates incremental smooth scrolling using this method.

® List Display Rule
® Fetch Rule

List Display Rule

Rule : AB_SMOOTH SCROLL_INC DIS - list display rule
Version : AppBuilder 3.1

This Rul e denpbnstrates snooth scrolling using <ntlb>. set MreRows(x, flag) and <ntl b>. set BackBuf fer(n)
for | NCREMENTAL scrolling.

For | NCREMENTAL scrolling, the database size is not known (count(*) not allowed), so the fetch rule
uses a variable to identify if nore data are available after the fetch;

initially call setMreRows(increnent, true) to enable snooth scrolling and on the last fetch call

set Mor eRows(renmi ni ng rows, false) to disable scroll DOM events.

set BackBuf f er (n)
where n: nunber of rows to fetch backward

set MoreRows(x, flag)

where x: is integer and denotes increment or nunber of rows in the |last fetch,

flag: when true, the virtual size is incremented x tines on every DataRequiredEvent and when fal se
virtual size is set to virtual top + x - 1 to disable further scrolling down

Steps for using set MoreRows(rows,type)
for increnental scrolling

1. call the method

<ntl b>. set BackBuf f er (x)

2. Fetch next block and nap

if nore data available then call the nethod
<ntl b>. set Mor eRows(1, true)

el se call the nethod

<ncl b>. set MoreRows(x, fal se)

3. On Every DataRequiredEvent

a. Get Next block and append

b. On the last fetch call the nethod set MoreRows(n, false) where n is the remaining rows

dcl

BackBuf fer Amt smallint;
enddcl

/1 Fetch the database for the next block of data and

// map it to the occurring view of MCLB.

/1 The fetch rule returns -1 for nore data available than the fetch
/1 size or the remaining nunber of rows if it is the |ast block.

/Il 1. Get data from database fromindex in from ndex.

/1 2. Map to MCLB occurring view.

/1 3. If the AB_MORE _DATA > 0

/1 stop scroll down with setMreRows(AB_MORE_DATA, false)

proc Get Next Bl ock(from ndex snallint)

/'l Fetch next block fromthe index fromindex

map from ndex

to AB_ELEV_PGCS of AB_MERULE_NOCOUNT_SQL_FET_|I

use rul e AB_MERULE_NOCOUNT_SQ._FET

//Map fetch out viewto occurring view of MCLB

map AB_MERULE D of AB_MERULE NOCOUNT_SQL_FET_O

to AB_SMOOTH SCROLL_I NC_OCC of AB_SMOOTH_SCROLL_I NC_W
if AB_MORE_DATA of AB_MERULE_NOCOUNT_SQL_FET_O > 0
/1 Touched dat abase bottom

//No nore rows DOMwards

MERULE_MCLB. set Mor eRows (AB_MORE_DATA of
AB_MERULE_NOCOUNT_SQL_FET_Q,

fal se)

endi f

endpr oc

/1 This procedure gets called when a window is initialized
/Il the first time before shown.

Il Here:

/1 1. Call setMreRows(inc, true) to start snooth scrolling.
/1 2. Set BackBuffer anount.

/1 3. Call getNextBlock to get first block.

proc InitEventProc for initialize object AB_SMOOTH SCROLL_I NC
(e object pointer to InitializeEvent)

/1 Starts increnmental scrolling incr=1

MERULE_MCLB. set Mor eRows (1, true)

/1 Conpute back buffer - the nunber of record back fromfirst
/1 visible record to include in the view. This is so if the
/] user goes back a little he does not have to fetch data

/] outside of his view

map (MERULE_MCLB. Scrol | abl eCccurs - MERULE_MCLB. Vi si bl eCccurs) / 2
t o BackBuf f er Ant

MERULE_MCLB. set BackBuf f er (BackBuf f er Ant)

/'l Fetch next bl ock of data and map

Get Next Bl ock(1)

endpr oc

/1 This procedure is called every time user scrolls pass
/1 the current virtual limt.

Il Here we

/1 1. If e.TypeString = ' Qut O Range' Fetch,

/1 and map next bl ock of data.

proc Dat aEvent Proc for DataRequired object MERULE_MCLB
(e object pointer to DataRequiredEvent)

if(e. TypeString = ' Qut Of Range')

Get Next Bl ock(e. TopVi rt ual Row)

endi f

endpr oc

Click object EXIT

/1 dick Event Procedure for the Pushbutton EXIT.

// Terminate the wi ndow here.
(e object pointer to dickEvent)

proc ExitProc for

AB_SMOOTH_SCROLL_I NC. termi nate
endpr oc

*>

Rul e : AB_MERULE | NC_SQL_FET - Fetch Rule

This rul e uses personal repository table MERULE.
Create a user nanmed HPSFWY and give full permission
to your personal repository database.

Fetch by nare.

dcl

L_COUNT smal l'int;

L_ROWCOUNT smal | int;

L_OCCURSI ZE snml | int;

L_SEARCH FI ELD |i ke AB_SEARCH_NAME;
enddcl

> Map input data to |ocal variables <

map AB_SEARCH NAME of AB_MERULE_SEARCH KEY of AB_MERULE_| NC_SQL_FET_I
to L_SEARCH_FI ELD

map occurs(AB_MERULE_D)

to L_OCCURSI ZE

> Select all records neeting search criteria into cursor <
sql asis

decl are MERULEL cursor for

sel ect A. SHORTNAME,

A. NAME,

A. REMOTEMAI NTENANCED,

A. REMOTEMAI NTAI NEDBY,

A. PROJECT

from HPSFWY. MERULE A

where A NAME > :L_SEARCH FI ELD
and A. LATEST = 'X

and A DELETION =" '

order by A. NAME

endsql

sql asis

open MERULE1

endsql

/1 if cursor fails return failure

if SQLCODE of SQLCA <> 0

map FAI LURE i n RETURN_CODES

to AB_RET_CODE of AB MERULE | NC SQ._FET_O

return

endi f

> Fill the occurring view <

do from1l to L_OCCURSI ZE i ndex L_COUNT
sql asis

fetch MERULEL

into : AB_MERULE_DATA. AB_VERULE_SHORTNAME,
: AB_MERULE_DATA. AB_MERULE_NAME,

: AB_MERULE_DATA. AB_MERULE_REM MAI NT_DT,

: AB_MERULE_DATA. AB_MERULE_REM MAI NT_BY,

: AB_MERULE_DATA. AB_MERULE_PRQJECT

endsql

whil e SQLCODE of SQLCA = 0

map AB_MERULE DATA

to AB_MERULE D of AB_MERULE_ I NC_SQL_FET_Q(L_COUNT)
enddo

QL_FET O

ET_O

Q_F

(9]
2
w o, 3 °
z m I !
¢ 2 0
o Q_ .)
< 3 o oF
S m_ 1W S_
< i n_vw_ 2
L F g9 g
w g DW“ s mw
N ° __ WA e _W
D - ZE o —E oz
o om O < .. .Im X o
c < [=% a_ @UA
T ol %4 3w Q.W..m
I .mtn & mm 0
- — . — c
v m.Sm.o.. 4 ° o ‘mim
S - BT 1
ey)] - O
W Nw_m _M,..WMIn m“ mmm -
- 232 235 5 Q.SMf @
- o Q _ 0T w O .— — n —
~gE€28%c585358 5.8 =
= —gE- s~8§% =—€2% 3

cl ose MERULE1
endsql

For an example of smooth scrolling using system components, refer to the section on smooth scrolling in the System
Components Reference Guide.

TabPage

Tabpage is the container for the GuiObjects that can be added into a tab control. A tab page cannot be displayed directly into a window, it should
be the part of a tab control GuiObjects can be added into the tab page using the add() method.

Property:Type Set Method
Disabledimage:String setDisabledimage(String)
Image:String setlmage(String)
Title:String setTitle(String)
Additional Get Method = Additonal Set Method
addimage(String)

setHpsld(String)

DisabledIlmage:String

Sets or gets the image for the tab page when it is disabled.
Image(String name)

Sets or gets the image for the tab page.

Title(String)

Sets or gets the title of the tab.

addChild(GuiObject)

Adds a GuiObject into the tab page.

Dynamic-Only Control Objects

Dynamic-Only Control Objects

The controls for a user interface, that can be defined only during execution time using ObjectSpeak syntax in Rules source code (dynamic-only
objects) are:

MessageBox
PopupMenu
Timer
TreeView
TreeNode

MessageBox

The MessageBox object is used to display a message box on the screen. To use a message box, an instance of MessageBox must first be
created using the new operator, as illustrated below. Then properties are set to specify the message, title, buttons, and icon. Finally, the
showMessageBox() method is called to display the message box. When the user closes the message box, the Show method returns. If there is
more than one button, the return value of showMessageBox() indicates which button was pressed.

Sample message box

"‘:‘,- Sample MessageBox

(7) DoYouwantto Continue?

[+

| Cancell

* %

Constructor and Parameters

The following is a sample declaration and construction:

dcl

enddcl

SaveMessageBox obj ect type MessageBox;
MessageBoxRet urn | nteger;

map NEW MessageBox() to SaveMessageBox

There are no parameters for this object.

Properties and Methods

The following table lists the properties and methods for this object.

MessageBox object properties and methods

Property: Type (Get Method)
Argumentl:String
Argument2:String
Argument3:String
ButtonType:Integer
Locale:Locale
Message:String
MessageType:Integer
Parent:Window

Title:String

Argumentl:String

This is the first string that can be substituted into the optional argument of a message in a message box.

Argument2:String

This is the second string that can be substituted into the optional argument of a message in a message box.

Argument3:String

This is the third string that can be substituted into the optional argument of a message in a message box.

ButtonType:Integer

This property specifies the button or buttons that are displayed in a message box. Valid values are defined in the Constants class as:

* DEFAULT_BUTTONS

Set Method
setArgument1(String)
setArgument2(String)
setArgument3(String)
setButtonType(Integer)
setLocale(Locale)
setMessage(String)
setMessageType(Integer)
setParent(Window)
setTitle(String)
Additional Action Method

show() :Integer

OK_BUTTON
OK_CANCEL
YES_NO
YES_NO_CANCEL

For example, if the message box should have Yes, No, and Cancel buttons, set ButtonType to YES_NO_CANCEL, as shown in the code in the

Example: Message Box.
The ButtonType property is not supported for thin client applications.

Message:String
This property specifies the message to be displayed in a message box. Up to three substrings can be inserted into the message. The substrings

are specified by the Argumentl, Argument2, and Argument3 properties. Argumentl is substituted at the location of %1 in the message, and
similarly for the other arguments; this is illustrated in the Example: Message Box.

MessageType:Integer

This property specifies the type of icon that is displayed in a message box. Valid values, as defined in the Constants class, are as follows:
®* ERROR

* INFORMATION
* PLAIN

® QUESTION

* WARNING

1. Java thin clients support only INFORMATION and QUESTION message box types. These are the only types available when
using message box functionality in JavaScript.

Parent:Window

This property specifies the parent window.
The Parent property is not supported for thin client applications.

Title:String

This property specifies the title (or caption) for a message box or window.
The Title property is not supported for thin client applications.

Additional Action Methods

If the message box has more than one button, then the application should use the return value of the show() method to decide what to do. The
showMessageBox() method returns one of the following values (defined in Constants):

OK
YES

NO
CANCEL

An INFORMATION message box has an OK button.
A QUESTION message box has an OK and a Cancel buttons.

Thin Client Support

Title, ButtonType, and Parent properties are not supported for thin client.

Events

The MessageBox object does not trigger any events.

Example: Message Box

This example shows a declaration section that contains local variables needed for the code and the code to create, configure, and display the
message box. It then shows the logic for responding to the user's choice. Include the code within either an event procedure or a standard
procedure.

dcl
SaveMessageBox obj ect type MessageBox;
MessageBoxRet urn | nt eger;

enddcl

> create a message box <

map new MessageBox to SaveMessageBox

> set nessage box properties < :
SaveMessageBox. Set MessageType(Const ant s. QUESTI ON) i
SaveMessageBox. Set But t onType(Const ants. YES_NO_CANCEL) :
SaveMessageBox. Set Titl e(' Save File') H
SaveMessageBox. Set Message(' Save the file named %4?") !
SaveMessageBox. Set Ar gurment 1(' SAMPLE. XM.')

> di spl ay nessage box <
map SaveMessageBox. Show t o MessageBoxRet urn

> respond to user's choice <
CASECF MessageBoxRet urn
CASE (Const ants. YES)
> save the file and exit the application <
CASE (Const ants. NO
> do not save the file, and exit the application <
CASE (Const ants. CANCEL)
> do not save the file, and return to the application <
ENDCASE

PopupMenu

The PopupMenu object is used to display a menu that appears when the secondary mouse button is clicked. This object does not generate any
events but the menu items that are added to it trigger Click events when they are clicked.

Sample popup menu

&, Sample Popup Menu - 0] x|

Isamme W AN |

Copy
Paste

‘I, The PopupMenu is not supported for thin client applications.

Properties and Methods

The following table lists the properties and methods for this object:

PopupMenu object properties and methods

Action Methods
add(ltem:Menultem)

addSeparator()

PopupMenu:PopupMenu

This method sets the popup menu that is displayed for objects on a window and the window itself, typically by clicking the right mouse button or
secondary mouse button.

If a given user interface object does not have a popup menu, but the window does, right clicking on the object causes the window's popup menu
to be displayed.

If you want only one popup menu for the window and all its objects, just define a popup for the window.

A PopupMenu can be added to nearly any of the user interface objects by using their PopupMenu property (or the setPopupMenu() method). A

PopupMenu can also be added to the window itself.

Additional Action Methods
The add() method appends menu items to the popup menu. The addSeparator() method appends separators.
Example: Creating Popup Menus

The following code creates a popup menu that implements the standard Cut, Copy, and Paste operations. It declares local variables for the popup
menu, as well as the menu items that appear on the menu. It then defines a procedure which builds the popup menu.

Note that as each menu item is created, an event procedure (or handler) for it is defined. The window Initialize Event procedure calls this
procedure and then adds the popup menu to an edit field. Finally, the event procedure that actually handles click events generated from the
popup menu is defined. The event procedure is defined in such a way that it handles events triggered from all the menu items in the application
(since it specifies that it is for type Menultem rather than for a particular menu item).

> decl are | ocal variables <
dcl
St andar dPopupMenu obj ect type PopupMenu;
Cut Menul tem
CopyMenul t em
Past eMenul t em obj ect type Menultem
> forward decl are event procedure for popup nenu <
MenuC ick proc for dick type Menultem (e object type dickEvent);
enddcl

> procedure to build standard popup nenu <
proc Bui | dPopupMenu

> create popup nenu <

map new PopupMenu to standar dPopupMenu

> create Cut nenu item <

map new Menultemto Cut Menultem

Cut Menul t em set HpsI D(" Cut I t ent")

Cut Menul t em set Text (" Cut")

Cut Menul t em set Mhenpnic('t")

Handl er Cut Menul t em(Menud i ck)

> create Copy nmenu item <

map new Menultemto CopyMenultem
CopyMenul t em set Hpsl D(" Copy! t ent")
CopyMenul t em set Text (" Copy")
CopyMenul t em set Mhenonic(' C)
Handl er CopyMenul t en(Menud i ck)

> create Paste menu item <

map new Menultem to PasteMenultem
Past eMenul t em set Hpsl D(" Past el t ent')
Past eMenul t em set Text (" Paste")

Past eMenul t em set Mhenoni c(' P')

Handl er Past eMenul t em(Menud i ck)

> add nmenu itens to popup nenu <

st andar dPopupMenu. add(Cut Menul t em)

st andar dPopupMenu. add(CopyMenul t em)

st andar dPopupMenu. add(Past eMenul t em)
endpr oc

> window initialization event procedure <
proc MainWndow nitialize for Initialize object MAI N W NDOW
(e object type InitializeEvent)

> create the popup nenu <

Bui | dPopupMenu

> assign the popup menu to sone edit fields <
NaneFi el d. Set PopupMenu(St andar dPopupMenu)
Dat eFi el d. Set PopupMenu(St andar dPopupMenu)
Ti neFi el d. Set PopupMenu(St andar dPopupMenu)
endpr oc

> click event handler for Menultem objects <
proc MenuCick for dick type Menultem
(e object type dickEvent)
CASECF e. Hpsl D
CASE ' Cutltem
> cut the selected text <
CASE ' Copyl t eni
> copy the selected text <
CASE ' Past el t em
> paste text fromclipboard <
ENDCASE
endpr oc

Timer
The Timer object is used to notify the application?once or repeatedly?that a specified time has elapsed. The notification is in the form of a Timer

event. Timer s are non-visual objects at runtime; that is, they do not appear on the window. Timer s are typically created dynamically at runtime,

as shown in the sample code below.
Timers must be created with the new keyword and mapped to a local variable of type Timer, as illustrated in the code below. The name of the

window must be passed to the Timer constructor method that follows the new keyword.

! The Timer object is not supported for the thin client.

i}

Properties and Methods

The following table lists the properties and methods for this object.
Timer object properties and methods

Property:Type (Get Method) Set Method

Enabled:Boolean

Visible:Boolean setVisible(Boolean)
Delay:Integer setDelay(Integer)
HpsID:String setHpsID(String)
Repeats:Boolean setRepeats(Boolean)
Running:Boolean (see Note below table)

Additional Action Methods
start()

stop()

s Running is a read-only property and the set method is not supported.

__]

Delay:Integer

This property specifies the time, in milliseconds, between successive Timer events generated by the Timer control.

Enabled

This is a read-only property and returns TRUE when Timer is enabled. Timer is enabled (or generates a Timer event) only when the window of the
Timer is enabled.

Repeats:Boolean

This property specifies whether a timer triggers repeatedly or just once. By default, a timer triggers repeatedly.

Running:Boolean

This property specifies whether a timer is enabled and, therefore, running. This is a read-only property.

Additional Action Methods

The start() method starts the timer, and the stop() method stops it. If the timer triggers only a single event, there is no need to call stop().
Events

The Timer object triggers the following event:

® Timer

The Timer object generates only the Timer event. To cause the timer to trigger just once, set the Repeats property to False . The time interval

between successive timer events is specified with the Delay property; units are in milliseconds. This also represents the time between when the
start() method is called and when the first event is triggered. The time interval is approximate.

Example: Creating Event Procedures for Timers

dcl i
Updat eTi mer obj ect type Tiner;
enddcl
> event procedure for Tinmer events < i
proc TinmerProc for Tinmer object UpdateTi ner
(e object type TinerEvent)
> updat e whatever needs to updated! < :
> add code here < 5
> stop the timer when appropriate < i
> Updat eTi mer. Stop < :
endpr oc :
> respond to Update button click by starting timer < :
proc UpdateButtondick for Cick object UpdateButton 1
(e object type dickEvent)
> create a tinmer <
map new Ti mer (MAIN_W NDOW to UpdateTi mer :
> set time interval to 1 second (1000 millisec) <
Updat eTi ner . Set Del ay(1000) !
*> specify that timer should repeat until the Stop i
method is called <* :
Updat eTi ner . Set Repeat s(Tr ue) i
> start the tiner < H
Updat eTi ner . Start H
*> dynamical ly add event procedure to handle !
timer events <*
Handl er Updat eTi mer (Ti mer Proc)
endpr oc

TreeView

The TreeView object displays a hierarchical collection of labeled items, each represented by a TreeNode. To use a tree view, an instance of
TreeView must first be created using the new operator and (optionally) filled with TreeNode objects, as illustrated below.

‘I, The TreeView class is not supported by Java or thin client applications.

Sample TreeView

TreeView control

Example: Creating TreeView

The following code creates a tree view and fills it with nodes.

dcl

> treeview objects <

TRVW obj ect type TreeView,
TRND obj ect type TreeNode;
TRND2 obj ect type TreeNode;
enddcl

> create TreeView <

map new TreeVi ew(' TRVW EXAMPLE') to TRVW

> create TreeNode and add it to TreeView <

/] Create a root node and attach it to the treeview
map new TreeNode(' ROOTNODEL') to TRND

TRND. Set Text (' Root1')

TRVW Add(TRND)

/1l Create a root sibling node and attach it to the treeview
map new TreeNode(' ROOTNODE2') to TRND2

TRND2. Set Text (' Root 2')

TRVW Add(TRND2)

Properties and Methods

'ﬂ Inherits GuiObject and exposes all its properties and methods (not listed below).

The following table lists own properties and methods for the TreeView object:

TreeView object properties and methods

Property:Type Get Method Set Method
LabelEdit:Boolean getLabelEdit:Boolean setLabelEdit(Boolean)
Imagelndex:Integer getimagelndex:Integer setimagelndex(Integer)

PopupMenu:PopupMenu getPopupMenu:PopupMenu setPopupMenu(PopupMenu)

Selectedlmagelndex:Integer = getSelectedimagelndex:Iinteger = setSelectedimagelndex(Integer)

SelectedNode:TreeNode getSelectedNode:TreeNode setSelectedNode(TreeNode)

Text:String getText:String setText(String)

LabelEdit:Boolean

The property gets or sets a value indicating whether the label text of the tree nodes can be edited.

Imagelndex:Integer

The property gets or sets the image-list index value of the default image that is displayed by the tree nodes.

Selectedimagelndex:Integer

The property gets or sets the image list index value of the image that is displayed when a tree node is selected.

SelectedNode:TreeNode

The property gets or sets the tree node that is currently selected in the tree view control.

Additional Action methods

Additional Action Method

Add(TreeNode)

AddBmpTolmageList(String)
Clear()

Collapse()

CollapseAll()
Count():Integer

Expand()

ExpandAli()
Find(String):TreeNode
Insert(Integer, TreeNode)

Remove(String)

Add(TreeNode)

The method adds tree node to the object.

Clear()

The method clears the list of tree nodes of the object.
Collapse()

The method collapses selected tree node of the object.
CollapseAll()

The method recursively collapses all tree nodes of the object.
Count():Integer

The method returns count of tree nodes of the object.
Expand()

The method expands selected tree node of the object.
ExpandAll()

The method recursively expands all tree nodes of the object.
Find(String):TreeNode

The method finds tree node of the object by its HpsID.
Insert(Integer, TreeNode)

The method inserts tree node to the given position in the list of tree nodes of the object.
Remove(String)

The method finds tree node of the object by its HpsID and removes it.
Events

The TreeView object triggers the following events:

® NodeClick

® NodeDoubleClick

® BeforeLabelEdit

® AfterLabelEdit

* BeforeNodeCollapse
® AfterNodeCollapse
® BeforeNodeExpand

* AfterNodeExpand
® BeforeNodeSelect
® AfterNodeSelect

TreeNode

The TreeNode represents a node of a TreeView. To use a tree node, an instance of TreeNode must first be created using the new operator and
added to TreeView object, as illustrated in the TreeView code example (also see TreeView look example).

Both TreeNode and TreeView classes are containers of tree nodes. Thus, tree nodes can be added to TreeNode object in the same manner as
they are added to TreeView object (see TreeView code example).

!, The TreeNode class is not supported by Java or thin client applications.

Properties and Methods

The following table lists own properties and methods for the TreeNode object:

TreeNode object properties and methods

Property:Type Get Method Set Method
Background:Color setBackground(Color)
Font:Font setFont(Font)
Foreground:Color setForeground(Color)
HpsID:String setHpsID(String)
Imagelndex:Integer getimagelndex:Integer setimagelndex(Integer)

PopupMenu:PopupMenu getPopupMenu:PopupMenu setPopupMenu(PopupMenu)

Selectedimagelndex:Integer = getSelectedimagelndex:Integer = setSelectedimagelndex(Integer)

Text:String getText:String setText(String)

Imagelndex:Integer

The property gets or sets the image list index value of the image displayed when the tree node is in the unselected state.

Selectedimagelndex:integer

The property gets or sets the image list index value of the image that is displayed when the tree node is in the selected state.
Additional Action methods

Add(TreeNode)

Clear()

Collapse()

CollapseAll()
Count():Integer

Expand()

ExpandAli()
Find(String):TreeNode
Insert(Integer, TreeNode)

Remove(String)

Add(TreeNode)

The method adds tree node to the object.

Clear()

The method clears the list of tree nodes of the object.

Collapse()

The method collapses selected tree node of the object.

CollapseAll()

The method recursively collapses all tree nodes of the object.
Count():Integer

The method returns count of tree nodes of the object.

Expand()

The method expands selected tree node of the object.

ExpandAll()

The method recursively expands all tree nodes of the object.
Find(String):TreeNode

The method finds tree node of the object by its HpsID.

Insert(Integer, TreeNode)

The method insers tree node to the given position in the list of tree nodes of the object.
Remove(String)

The method finds tree node of the object by its HpsID and removes it.
Events

The TreeNode object does not trigger any event.
Supporting Objects

Other objects that support the user interface objects in ObjectSpeak are:

Accelerator
Color
Constants
Dimension
Font
Formats (Derived)
GlobalEvent
Locale
Point
Setltem

Set

Accelerator

The Accelerator object is used to allow key combinations that can be assigned to menu items, so that when the key combination is pressed, the
menu item is triggered.

', Accelerator object is not supported in thin client.

There are no predefined Accelerator objects: an Accelerator object must be created explicitly in order to use it. To create it, specify a character
(such as N) and one or more modifiers (SHIFT, CTRL, ALT). Alternatively, specify a virtual key (such as VK_F4, which represents the F4 key) and
one or more modifiers. If multiple modifiers are used, they must be numerically added together.

Constants and Methods
The following table lists the constants and methods for this object:

Accelerator constants and methods

Modifier Description
SHIFT Shift key
CTRL Ctrl key
ALT Alt key

Virtual Key Description

VK_F1 F1 key
VK_F2 F2 key
VK_F3 F3 key
VK_F4 F4 key
VK_F5 F5 key
VK_F6 F6 key
VK_F7 F7 key
VK_F8 F8 key
VK_F9 F9 key

VK_F10 F10 key
VK_F11 F11 key

VK_F12 F12 key

accelerator(Char :Character; Modifiers:Integer) Constructor method, refer to the example for usage.

accelerator(VirtualKeyCode:Integer; Modifiers:Integer) =Constructor method, refer to the example for usage.

KeyCode:Integer (read only)
KeyChar:Integer (read only)
Modifiers:Integer (read only)

Example: Assigning an Accelerator

When using these constants, you must indicate that they are defined in either the Accelerator class or the Constants class.
To assign an accelerator of Ctrl+N to a menu item that creates new files:

NewiVenul t em Set Accel er at or (
new Accel erator(' N, Accelerator.CTRL))

i Newivenul t em Set Accel er at or (H
! new Accel erator (Accel erator. VK _F1, :
i Accelerator. CTRL + Accel erator.ALT)) i

Notice that the CTRL and ALT modifiers are added together in order to specify that both Ctrl and Alt must be pressed with the F1 key. The above
example also illustrates that the accelerator constants are defined in the Constants class as well as the Accelerator class.

Color
The Color object is used to specify the foreground and background colors of objects.
Constructor and Parameters

You can create new Color objects with specified RGB (red, green, and blue) components, as shown in the following code sample:

NaneFi el d. Set For egr ound(new Col or (128, 128, 255))
col or(Red: I nteger; Green:lnteger; Blue:lnteger)

dcl

Cust onCol or object type Col or;

enddcl

map new Col or (128, 128, 255) to CustontCol or
NaneFi el d. Set For egr ound(Cust ontCol or)

Addr essFi el d. Set For egr ound(Cust onCol or)

See Constructor and Parameters for Font for a discussion of dynamic font creation.
When using predefined colors, indicate that they are defined in the Color class, as shown in this example:

NameField.SetForeground(Color.RED)

Constants and Methods
The following table lists the constants and methods for this object:

Color object constants and methods

BLACK WHITE
DARKBLUE BLUE
DARKGREEN GREEN
DARKCYAN CYAN
DARKRED RED
DARKMAGENTA MAGENTA

DARKYELLOW YELLOW

DARKGRAY GRAY
LIGHTGRAY PINK
BROWN TURQUOISE
RGB:Integer

Color(Integer, Integer, Integer)
getBlue():Integer
getGreen():Integer
getRed():Integer

RGB:Integer

This allows you to get the RGB() value of the color. The RGB() value can be used to create a Java color or to compare two color objects. Here is
an example of these uses:

dcl
br ownCol or object type 'java.aw.Color';
enddcl
map new 'java.awt . Col or' (Col or. BROAWN. RGB()) to brownCol or
if brownCol or. RGB() = Col or. BROM. RGB()
trace(' color matches');
endi f
Color(Integer, Integer, Integer)
This method is a constructor taking red, green, and blue as integers.
getBlue():Integer
This method gets the blue value.
getGreen():Integer
This method gets the green value.

getRed():Integer

This method gets the red value.

Constants

The Constants object defines useful integer constants that can be used within the rule.
Constants

The following table provides a list of the constants.

Constants methods

ACCEPT OK_CANCEL
ALL_FIRST_UPPER_CASE OUT_OF RANGE
ALT PLAIN
ASYNC_EVENT* PLAIN_MENUITEM
BORDER_DIALOG QUESTION
BORDER_NONE ROLLBACK
BORDER_SIZEABLE SETDOMAIN
BOTTOM SHIFT

CANCEL SHOW_ALWAYS
CENTER SHOW_AS_NEEDED
COORDINATE_CHAR SHOW_NEVER
CHECKBOX_MENUITEM SINGLE_RANGE_SELECTION
COORDINATE_PIXEL SINGLE_SELECTION
CTRL SYSTEM_EVENT*
DEFAULT_BUTTONS TOP
DEFAULT_CASE upP

DOWN UPPER_CASE

ERROR USER_EVENT*
FIRST_UPPER_CASE VERTICAL_LINES

HORIZONTAL_AND_VERTICAL_LINES | VIEWDOMAIN

HORIZONTAL_LINES VK_F1
INFORMATION VK_F10
INTERFACE_EVENT* VK_F11
IN_ERROR VK_F12
LANDP_EVENT* VK_F2
LANDP_REQUEST_EVENT* VK_F3
LANDP_SYSTEM_EVENT* VK_F4
LEFT VK_F5
LISTBOX_BOTTOM VK_F6
LISTBOX_TOP VK_F7
LOWER_CASE VK_F8
MULTIPLE_RANGE_SELECTION VK_F9

NO WAIT
NOWAIT WARNING
NO_LINES YES

oK YES_NO
OK_BUTTON YES_NO_CANCEL
RIGHT

Entries marked with an asterisk are small Integer type constants. All other constants are Integer type.

GuiObject Type Constants
GuiObject type constants

BITMAP MENU
CHECKBOX MENUITEM
COLUMN MULTILINEEDIT
COMBOBOX PASSWORDFIELD
EDITFIELD POPUPMENU
ELLIPSE PUSHBUTTON
FILEEDITOR RADIOBUTTON
GROUPBOX RECTANGLE
LABEL TABLE

LISTBOX WINDOW

Format Type Constants

DATE_FORMAT
DECIMAL_FORMAT
LONGINT_FORMAT
SHORTINT_FORMAT
STRING_FORMAT

* TIME_FORMAT

Usage

To map the value to a field in a view and pass it to other rules, create a Field of data type Smallint or Integer.
For example:

dcl

SaveMessageBox obj ect type MessageBox;

MessageBoxRet urn | nt eger;

enddcl

> create a message box <

map new MessageBox to SaveMessageBox

> set nmessage box properties <

SaveMessageBox. Set MessageType(Const ant s. QUESTI ON)
SaveMessageBox. Set But t onType(Const ants. YES_NO_CANCEL)
SaveMessageBox. Set Titl e(' Save File')

SaveMessageBox. Set Message(' Save the file named %4?")
SaveMessageBox. Set Ar gunent 1(' SAMPLE. XM.")

> di splay nessage box <

map SaveMessageBox. Show t o MessageBoxReturn

> map the value back to the calling rule <

map MessageBoxReturn to smallint_field of rule_ouput_view

Dimension

The Dimension object is used to specify the height and width of any visible GUI object (in integer precision) including a windows. In particular, the
Size:Dimension property of a visible object is of type Dimension.

Normally the values of width and height are non-negative integers. The constructor that allows you to create a Dimension does not prevent you

from setting a negative value for these properties. If the value of width or height is negative, the behavior of some methods defined by other
objects is undefined.

. Dimension object is not supported in thin client.

]

Constructor and Parameters

The Dimension object constructs a Dimension and initializes it to the specified width and height.
Dimension(int width, int height)

Properties and Methods

The following table lists the properties and methods for this object.

Dimension properties and methods

Property:Type (Get Method) Set Method

Height:Integer setHeight(Integer)
Width:Integer setWidth(Integer)

Height:Integer

This is the height component of a Dimension object. Dimension objects are used to specify, via the Size:Dimension property, the height and width
of all visible objects, including the window itself. Use this property to query or set the height component of the Dimension.

Width:Integer

This property specifies the width of a Dimension object. The width of the column is set and queried with this property. Use this property to query or

set the width component of the Dimension.
Example: Resizing an Edit Field

To resize an edit field when a push button is pressed, use the following code:

proc ResizeButtondick for Cick object ResizeButton
(e object type dickEvent)

NaneFi el d. Set Si ze(new Di nensi on(300, 100))

endpr oc

dcl

nyEdi t Di nensi on obj ect type Di mension;

enddcl

proc InitProc for Initialize object TEST_DI MENSION (e object type InitializeEvent)
map new di mensi on(25,40) to nyEditDi nension EDI T_HPSI D. set Si ze(nyEdi t Di nensi on)
endpr oc

Font

The Font object specifies the font used to display text.

!, Font object is not supported for thin client.

Constructor and Parameters

You can create new Font objects with specified font names, styles, and sizes using the following code sample:

NameField.SetFont(new Font(‘Arial' , Font.BOLD, 14))

A Font object can be assigned to a local variable to use multiple times.

nmyG oupBox. set Font (G oupBoxFont)

- del

1 GroupBoxFont object type Font;

i enddcl

map new Font (' Arial' , Font.BOLD, 14) to G oupBoxFont

When using predefined fonts, indicate that they are defined in the Font class.
Font styles can be: FONT.PLAIN, FONT.BOLD, FONT.ITALIC, or FONT.BOLD+FONT.ITALIC.

Constants and Methods

Font constants and methods

The following table lists the constants and methods for this object:

BOLD ROMAN18
ITALIC ROMAN24
MODERN8 = SWISS8
MODERN10 SWISS10
MODERN12 SWISS12
PLAIN SWISS14

ROMANS SWISS18

ROMAN10 @ SWISS24
ROMAN12 SYSTEMFONTS8

ROMAN14

Font properties and methods

The following table lists the properties and methods for this object:

Property:Type (Get Method)

displayName :String getFont(FontName:String):Font
etStyle():Integer

getSize():Integer

The displayName is the logical name of the font (the name parameter used to construct the font) or the name set by the user using the property.

getFont(FontName:String):Font

This method returns a predefined font (fonts defined in the fonts.ini).
For example, if TIMES is defined in font.ini as:

[TI MES]
Java=sanserif, 12

{ set nyFont := Font.getFont("TIMES")

getStyle():Integer

Returns the current style. This is a combination of Font.PLAIN, Font.BOLD, Font.ITALIC.

getSize():Integer
Returns the size of the font.

Example: Specifying the font class

Indicate the font class when using predefined fonts, as shown here:

i NaneFi el d. Set Font (Font . SW SS14) 5

Formats (Derived)

These derived formats inherit all the properties from the Format object.

DecimalFormat
LongIntFormat
IntFormat
ShortIntFormat
FloatFormat
DoubleFormat
DateFormat
TimeFormat
TimestampFormat
StringFormat

LongiIntFormat class is used to format LonglInt data type (64-bit integer), IntFormat class is used to format Int Format data (32-bit integer), and
ShortIntFormat class is used to format Shortint data(16-bit integer). The other format classes are FloatFormat, DoubleFormat, DecimalFormat,
DateFormat, TimeFormat, TimestampFormat and StringFormat, which are associated with decimal, date, time, and string data types.

For a list of valid formatting symbols, refer to the Rules Language Reference Guide .
Properties and Methods
The following table lists the properties and methods for the derived format objects:

Derived format properties and methods

Property: Type (Get Method) Set Method

These are available for numeric types:

DecimalFormat, LongIntFormat, IntFormat,

ShortintFormat, DoubleFormat, FloatFormat
setMinimum(Shortinteger)
setMinimum(Integer)
setMinimum(Decimal)
setMinimum(Double)
setMaximum(Shortinteger)

setMaximum(Integer)

setMaximum(Decimal)

setMaximum(Double)
Currency:Boolean setCurrency(Boolean)
This is available for string types:
StringFormat
Case setCase(Integer)

The setMinimum() and setMaximum methods set the range for a numeric field. For example, the value range of a field can be set to a minimum of
0 and a maximum of 100, and values less than O or greater than100 will result in an error.

The setCase() method for a string sets the case of the characters in the string (uppercase or lowercase). The following constants can be used
with the setCase method:

UPPER_CASE - All characters are uppercase

LOWER_CASE - All characters are lowercase
ALL_FIRST_UPPER_CASE - The first letter of every word is uppercase
FIRST_UPPER_CASE - Only the first letter of the first word is uppercase
DEFAULT_CASE - Use the case as entered and this is the default

For example:

dcl

strFormat object type StringFornat;

enddcl

map new StringFormat to strFornat

strFormat . set Case(Const ant s. FI RST_UPPER_CASE)
GlobalEvent

The GlobalEvent object is used for posting an event to which applications can subscribe. Global eventing is supported in Java (thick) clients only,
but not in C# clients.

Properties and Methods

The following property is supported for this object:
post(Rule InstanceName:String):Boolean

For example, an ObjectSpeak method post could be used on the GlobalEvent object using

THRESHHOLD_MET. post ()

where THRESHHOLD_MET is the name of the Physical Event object under a Rule.

On the subscribing end, the application can use either an event procedure or a Converse Event to handle the event. If the pre-defined system
view, HPS_EVENT_VIEW, is attached to the subscribing Rule, an event listener is automatically added to the Rule and a ConverseEvent is
triggered on receiving this event. The EVENT_NAME of the HPS_EVENT_VIEW has the name of the event.

Locale

The Locale object is used to specify the information about country and language. Also, see the Locale:Locale property.

Constructor and Parameters

The default constructor creates a System locale object (the same as HpsLocale.SYSTEM). The method name is Constructor .

Locale()

The user-configurable constructor allows you to specify the language and country code and creates a Locale object. This constructor creates a
Locale from the parameters for Language, a two-digit ISO language code (en for English, for example), and Country, a two-digit ISO country code

(US for United States, for example).

Locale(aLanguage:String, aCountry:String)

Properties and Methods

The following Locale objects are predefined:

Locale pre-defined objects

ALBANIA
ARGENTINA
AUSTRALIA
AUSTRIA
BELGIUM

BRAZIL
CANADA_FRENCH
CANADA_ENGLISH
CHINA
CZECHOSLOVAKIA
DENMARK
FINLAND

FRANCE
GERMANY
GREECE
HONGKONG
HUNGARY
ICELAND

IRELAND

ITALY

JAPAN

LUXEMBOURG
NETHERLAND
NEW_ZEALAND
NORWAY

POLAND
PORTUGAL
ROMANIA
SINGAPORE
SOUTH_AFRICA
SOUTH_KOREA
SPAIN

SWEDEN
SWITZERLAND
TAIWAN
THAILAND
THAILAND_BUDDHIST
TURKEY
UNITED_KINGDOM
UNITED_STATES
YUGOSLAVIA

SYSTEM

The following table lists the read-only properties for this object:
Locale properties and methods

Property: Type (Get Method) Description

Country :String Gets country name

CurrencySymbol :String Gets symbol used for currency

DateSeparator :Char Gets separator (delimiter) for date format display
DecimalSeparator :Char Gets separator (delimiter) for decimal point
DefaultDateFormat :String Gets default date display format
DefaultTimeFormat :String Gets default time display format

Language :String Gets language for display

ThousandsSeparator :Char Gets separator for thousands

TimeSeparator :Char Gets separator (delimiter) for time format display

Point

The Point object is used to specify the location (in integer precision) of any visible GUI object, including a window, in (x, y) coordinate space. In
particular, the Location:Point property of visible objects is of type Point. For a window, the X and Y coordinates are relative to the upper left corner
of the screen. For user interface objects (such as edit fields) the coordinates are relative to the upper left corner of the part of the window below
the title and menu bar.

!, Point object is not supported in thin client.

Constructor and Parameters

This object constructs and initializes a point at the specified (x, y) location in the coordinate space.
Point(int x, int y)

Properties and Methods

Here are the properties and methods for this object:

Point properties and methods

Property: Type (Get Method) = Set Method

X:Integer setX(Integer)
Y:Integer setY(Integer)
X:Integer

This is the horizontal position (x coordinate) property of a Point object. Point objects are used in the Location:Point property to specify the location
of any object, including the window itself. The X property is used to query or set the x-component of the location.

Y:Integer

This is the vertical position (y coordinate) property of a Point object. Point objects are used in the Location:Point property to specify the location of
any object, including the window itself. The Y property is used to query or set the y-component of the location.

Example: Repositioning an Edit Field

Use the following code to reposition an edit field when a push button is pressed:

proc MoveButtondick for dick object MyveButton
(e object type dickEvent)

NaneFi el d. Set Locati on(new Poi nt (200, 200))
endpr oc

dcl i
nyEdi t Locati on object type Point; :
enddcl
proc InitProc for Initialize object TEST DI MESION (e object type InitializeEvent)
map new Point (125, 40) to nyEditLocation 1
EDI T_HPSI D. set Locati on(myEdi t Locat i on)
endpr oc

Setltem

A Setltem object is used to dynamically create or update Rules Language SET elements, also known as set items. See also Set.
Constructors and Parameters

The following statements create Setltem objects:

Setltem(display: String, encoding: DataObject)

Specifies a new set item display.

Setltem(display: String, encoding: DataObject, state: Integer)

Specifies a new set item state.

Setltem(display: String, encoding: DataObject, text: String, state: Integer)

Specifies new set item text.
By including different parameters, you can create new Setltem objects in three ways. These parameters are:

® The display parameter, which specifies a new set item display

® The encoding parameter, which specifies new set item encoding

® The state parameter, which specifies a new set item state. The default value for this parameter is ENABLED.
® The text parameter specifies new set item text. The default value for this parameter is an empty (null) string.

Examples of use:

dcl

newl tem OBJECT TYPE Setltem

enddcl

MAP NEW Set | t em(" di spl ay”, "encoding") TO new tem

MAP NEW Set | t em("di spl ay”, "encoding", Setltem DI SABLED) TO new tem

MAP NEW Set I tem("di splay", "encoding", "text", Setltem ENABLED) TO newltem

roperties and Constants

state:Integer
This property reflects the set item state, which is the way an item appears in associated GUI control. Set item can be in one of three states:
® Enabled (default)
® Non-selectable. The item does not display in the drop-down list but displays if the encoding was entered programmatically. This is a type
of read-only set item.
® Disabled. The item cannot be selected and is not displayed. It is as though the item does not exist in the set.

The three corresponding constants in Setltem are:

® ENABLED
®* NONSELECTABLE

* DISABLED

Example of use:

! new tem set State(Set!tem DI SABLED) §

Methods

getEncoding(): DataObject
Returns encoding of the set item.
getDisplay(): String

Returns display of the set item.
getText(): String

Returns text of the set item.

Set

A Set object is used to update Rules Language SETs dynamically. Use this object to add new elements, access set items at runtime, and to read
and change their attributes.

New sets cannot be created at runtime. A Set object is constructed automatically for each set entity attached to the rule and has a the same name
as the set entity long name.

Properties

Count:Integer

Returns the number of items in the set.

For example:
i DaL
SI OBJECT TYPE Setltem
I, N | NTEGER;
ENDDCL

MAP nySet. Get SetltemAt (1) TO SI
TRACE(" | NDEX= ", 1," | TEM DI SPLAY: ", SI. Get Di spl ay())

! DO FROM 1 TO nySet. Count | NDEX |
! ENDDO

Methods

addSetltem(item: Setltem)

Adds specified and previously created set item to the set. Encoding of item must be of the same type as the set or of convertible type (see
Convertible types). No checking for duplicates is performed.
For example:

nmySet . addSet | t en{ new Set | ten(display, encoding))

i MAP NEW Set | ten(di splay, encoding) TO new tem !
i nySetl.addSet!|tenm(new tem
! nySet 2. addSet | tem(new t em :

addSetltem(display: String, encoding: DataObject)

Adds a new set item to a set.

addSetltem(display: String, encoding: DataObject, state: Integer)

Adds a new set item with a state parameter specified.

addSetltem(display: String, encoding: DataObject, text: String, state: Integer)

Adds a new set item with a text parameter specified.

These methods add a new set item to the set. The display parameter specifies new set item display. The encoding parameter specifies new set
item encoding. The state parameter specifies new set item state. The text parameter specifies new set item text. If addSetltem is used without a
state parameter specified, it defaults to Setltem.ENABLED. If addSetltem without text parameter is used, it defaults to empty string.

Encoding given must be of the same type as the set or of convertible type (see Convertible types). If type of given encoding is not completely
equal to set type (but is convertible), this encoding is converted to set type. No checking for duplicates is performed.

getSetltem(encoding: DataObject) : Setltem
This method searches within the set for a set item with specified encoding. If several set items exist with the same encoding, the first one found is

returned. Setltem object is returned if a set item with this encoding is found; otherwise, a null reference is returned. Use the isClear function to test
if the method returns null reference.

getSetltemFromDisplay(display: String) : Setltem
This method searches within the set for a set item with a specified display. If several set items exist with equal displays, the first one found one is

returned. Setltem object is returned if a set item with this display is found; otherwise, a null reference is returned. Use the isClear function to test if
the method returns null reference..

getSetitemAt(index:Integer) : Setltem

This method returns the set item with the specified index. Null reference is returned if the index is greater than the number of set items. Use the
isClear function to test if the method returns null reference.

refresh()

This method updates GUI control associated with the set. Use this method after adding new items or changing a status of one or several set
items.

Example

Assume a rule has attached set of type INTEGER with name account_type.

DCL

di spl ay, encodi ng VARCHAR(40);

t ext VARCHAR(2000);

newSet (100) VI EW CONTAINS display, encoding, text;

set Si ze, i | NTEGER

item OBJECT TYPE Setltem

ENDDCL

SQL ASI S

/lquery a set from database, popul ate newSet view and setSi ze
ENDSQL

DO TO set Si ze | NDEX |

account _type. addSet | t en{ newSet . di spl ay,

I NT(newSet . encodi ng)

)

/Il OR

/'l account _type.addSet | ten(NEW Set | t en(newSet . di spl ay,
/1 I NT(newSet . encodi ng))

ENDDO

account _type.refresh()

Convertible types

Source Type Target Type Converted Type Comments
INTEGER DEC(n, m) DEC(10, 0) No data loss if n >= 10.
INTEGER SMALLINT SMALLINT Possible data loss.

SMALLINT DEC(n, m) DEC(5, 0) No data loss if n >= 10.

SMALLINT INTEGER INTEGER No data loss.
DEC SMALLINT SMALLINT Possible data loss.
DEC INTEGER INTEGER Possible data loss.

Any character type = Any character type Equal to target type = Possible data loss if target character data type is shorter than source.

Java Batch Objects

Batch objects are used to support batch client applications on the Java platform. This section discusses the Rul e object and events for
ObjectSpeak batch objects.

The only class of objects in batch ObjectSpeak is the Abstract Class Objects.

. For information on how to create these objects using the Window Painter, refer to the Window Painter tool topic in the
Development Tools Reference Guide.

Abstract Class Objects
The following objects are the Abstract Class (high-level) batch objects available in ObjectSpeak:

® Rule
® System

Rul e

The Rul e object plays a central role in the AppBuilder Java batch because it provides an object interface to AppBuilder Rules Language rules.
The Rul e object has no properties, but it does define a number of methods to initiate actions, obtain information, and implement events.

This section includes:

® Rul e Methods
® Events

Rul e Methods

The following table lists the methods for the Rul e object.
Rule object methods

guer yUser Aut henti cati on() : Bool ean
set User Aut henti cation(user!|D: String, password: String)

trace(message: String<, object:view OR object:field>)

quer yUser Aut henti cati on(): Bool ean

The quer yAut henti cati on() : Bool ean method queries for the name of the user and verifies permissions.

set User Aut henti cation(user|D: String, password: String)

The set User Aut hent i cati on() method enables you to set the user credentials to authenticate the remote server rules. The same method is
invoked if QUERY_AUTHENTICATION_ON_STARTUP is enabled through the setting in the APPBUILDER.INI file. The AppBuilder
communication exits can override this information when a remote rule is invoked.

trace(nmessage: String<, object:view OR object:field>)
The trace(nmessage: Stri ng) method traces the message. This method accepts either a View or a Field as an optional second parameter.

When the second parameter is specified, the name and the value of the specified object is appended to the trace message. If a View is specified
as the second parameter, the name and the value of all fields are added as separate lines in the trace output.

Events
The following events can be triggered using the Rul e object:

® CommeError - not supported in C#
® SQLError - not supported in C#

System

The Syst emobject provides an interface for some system services. Two methods are used to translate long names of AppBuilder entities, such
as rules or views, into corresponding Java class names or Java object names according to the AppBuilder naming conventions.

It is not supported in C#.

Constants and Methods

Constants

Type values:
The following table shows the various system type values.

Syst emtype values

RULE_TYPE COVPONENT_TYPE
VI EW TYPE W NDOW TYPE

VI EMARRAY_TYPE OBJECT_TYPE
SET_TYPE HPSI D_TYPE

FI ELD_TYPE

Methods:

| ongNaneToC assNane(type: I nteger, |ongNane: String) : String

| ongNanmeToObj ect Nane(type: I nteger, |ongNanme:String) : String

| ongNaneToCl assNane(type: | nteger, |ongNane:String) : String

The | ongNaneTod assNare method translates the long name of an AppBuilder entity, whose type is specified by the first parameter using one
of the Syst emobject constants, into a corresponding Java class name according to AppBuilder naming conventions.

For example:

SET Rul ed assName : = System | ongNameToCd assName(Syst em RULE_TYPE, "My_RULE")
i Rul eCal | er. Execut eRul e(Rul el assNane) H

The t ype parameter can have only one of the following values: RULE_TYPE, VI EW TYPE, VI ENARRAY_TYPE, SET_TYPE and
COVPONENT_TYPE; other entities do not generate a class.

| ongNaneToObj ect Nane(type: I nteger, |ongNane:String) : String

The | ongNaneToObj ect Nane method translates the long name of an AppBuilder entity, whose type is specified by the first parameter using one
of the Syst emobject constants, into a corresponding Java object name according to the AppBuilder naming conventions.

For example:

SET Rul eC assNane : = System | ongNameToC assNanme(System RULE_TYPE, "MY_RULE")
. SET Vi ewbj ect Nanme : = System | ongNaneToObj ect Nane(System VI EW TYPE, "MY_VI EW) :

Rul e assName ++ Vi ewObj ect Nane forms a reference to a field of generated rule class, which corresponds to the instance of view MY_VI EW
owned by MY_RULE.

The type parameter can be anything except COMPONENT_TYPE. This is because components' classes are never instantiated, and there is no
corresponding property in the rule class. Use HPSI D_TYPE for windows' objects that have HPSI D, but OBJECT_TYPE for other objects and
aliases.

Events

Events

This topic gives detailed information on all the events that are generated for Java-based ObjectSpeak and describes the event objects that are
passed into the event procedures.

Each event procedure has only one parameter. The name of this parameter is the name of the event followed by the word Event . For example,
the parameter for the Click event is called ClickEvent .

Event parameters are objects and, as such, have properties. Many of these properties are read-only ? that is, you can query their value but not
assign a value to them. For convenience, non-read-only properties have corresponding set methods.

Events that are not supported for thin clients (HTML) are noted. Migration samples for all the events are provided at < AppBuilder
>\samples\java\ospk.zip

For more information on the error checking and validating events, refer to Data Validation.

Data Validation

Data Validation

AppBuilder ObjectSpeak enables you to validate data when windows are created in an application. Data validation uses events to notify the
application that data is invalid or missing. AppBuilder provides both field-level and window-level validation.

® Field-level Validation verifies that a field contains syntactically-valid data that is acceptable to the application.
® Window-level Validation permits a window to be closed only if all the mandatory fields contain data and the data in all fields contains valid
syntax.

Field-level Validation

Field-level data validation occurs when:

® The data in an editable field changes and focus is shifted away from the field
®* The end user presses Enter while an editable field has focus

The following figure describes the logic used to validate fields and windows.

Validation Flow Diagram

f"lfm rhanffd .

i zimcs fizld
e of sy
+ I
]] R
Attempt tz efanmsi" data
el ik o dedalik p— B eeneerenees - FialdErrar
i e, avent
N
A N
- ~— ‘*\ ey
,.-*",: ,?M o Lu:Fs FigldErros ™, - .
ST et ", c'mrt :-m.,cl:*.m/c/ {_.—""-f Rolback T,
B .,af T teGuEstec? hli
T m_ e KM /,f
- P
LY
f'/-;ﬂ - Nl
HuE ile
ot -
o > |
R P 3
T i Finld iz in erroy
Sl muchovizoal mror coss we speiliec],
Dizpéay dafault meszace box if repestad,
e [
l igu}
L
Py
Felgvaicsion | Reje e FOlbSCE e ;
avart o, :I:LfJblsiI:Lf?__'____f’ i
[T
Mocent Rolloack
+ P __,_,,-”“\\\M
Ciean erry afate ,-f’ Iz smmediata .
[if neczzzany . feEurn fieldy -
oy
H\T/{#
N5
¥ ¥
) . - “
Imimedinte: Rzturn » Done)]‘ ------
Corverse event N,

Field-level validation occurs in two stages:

Triggering the FieldError Event - when data in the field contains syntax errors, the system triggers the FieldError event.

1. Triggering the FieldValidation Event - if the data is syntactically correct, the system maps the data to the data-linked data object (if
applicable) and triggers the FieldValidation event.

If a field contains errors, end users can return the field to the last known valid value by pressing Escape (Esc) while the field has focus.
Field-level data validation occurs for the following objects with editable fields:

ComboBox
EditField
MultiLineEdit
PasswordField
Table

Triggering the FieldError Event

The FieldError event is triggered if the field contains errors, allowing the application to specify:

® |f the application should roll back the data to the last known acceptable value or leave the field in error. Use the Rollback:Boolean
property to specify the required action. The default value is False and the data is not rolled back.

® |f the application should display a message box describing the error. Use the ShowMessage:Boolean property to specify the action. By
default, the value is True and the system shows the message box.

The FieldError event contains the following important properties:

® HpsID:String Returns the system identifier (HPSID) of the field in error.
® Source:GuiObject Provides a reference to the field so that its properties can be accessed and its methods called, as necessary.

Example: FieldErrorEvent

The following is a sample FieldErrorEvent procedure for an edit field named StartDate, which is data-linked to a Date field in the application
hierarchy:

proc for FieldError object StartDate

(FI dErr object type Fiel dErrorEvent)
set FldErr. Rol |l back = TRUE

Trace (' HpsID =", FIdErr. Hpsld)

Trace (' Source HpsID =", Fldr. Source. Hpsl d)
Trace (' ShowMessage =', Fl dErr. ShowMessage)
endpr oc

This procedure is called if the end user enters an invalid date into the StartDate field, and it responds by rolling the data back to the last known
acceptable value.

Triggering the FieldValidation Event

The FEieldValidation event is triggered when an editable field loses focus or when the end user presses Enter while a field has focus if there are no
syntax errors. It allows the application to specify if data should be:

® Accepted
® Rolled back to the last known acceptable value
® Considered in error

For example, a field containing an interest rate may have a value that is syntactically correct. In other words, it contains a valid numeric format,
but is invalid because the specified interest rate is not within a pre-defined range.

This event also allows you to specify that the application display a message box describing the error. Use the ShowMessage:Boolean property to
specify the required action. By default, the system shows the message box.

H If the data is accepted or rolled back, no message box is shown, regardless of the value of ShowMessage.

i}

The FieldValidation event contains the following important properties:

® HpsID:String ? Returns the system identifier (HPSID) of the field in error.
® Source:GuiObject ? Provides a reference to the field allowing you to access its properties and call its methods, if necessary.

The data is mapped to an existing data link before the FieldValidationEvent is initialized, allowing data to be examined within the event procedure
or changed with a map statement.

Example: FieldValidation Event

The following is a sample FieldValidation event procedure for an edit field named "Interest" that is data-linked to a Decimal field in the application
hierarchy:

proc for FieldVvalidation object Interest

(e object type FieldvalidationEvent)
i f (MAIN_W NDOW VI EW Amount < 10000) and :
(MAI N_W NDOW VI EW I nterest < 10) f
> display a message box <
Di spl ayMessageBox(' Higher interest is required) :
*> indicate that data is not acceptable; field :
is nowin error <* :
e. Set Response(Constants.|N_ERROR) :
> suppress the default nessage box < H
e. Set ShowmvessageBox(Fal se) !
endi f H
endpr oc

When the end user modifies the data in the Interest field and moves the focus to another field, the system calls this event procedure.

This procedure examines the loan amount. If the loan amount is less than $10,000 and the specified interest rate is less than 10%, the event calls
a procedure to display a message box indicating that a higher interest rate is required. It then specifies that the data in the field should be
considered in error.

Depending on the settings in the APPBUILDER.INI configuration file, the field displays the error condition by changing the foreground or
background color, or both, of the edit field.

Window-level Validation

Window-level validation occurs when the end user clicks a button or selects a menu item whose Validation:Boolean property is True or the
lgnoreValidation:Boolean property is False . Window-level validation allows the application to verify that the end user has specified all the required
information and that the information in the various fields is acceptable.

Validation Flow Diagram describes the logic used to validate fields and windows.

Window-level validation occurs in three stages:

Triggering the WindowError Event - The system examines all fields with Mandatory:Boolean property set to True to ensure that they contain
data. If any mandatory fields are empty, then the system triggers a WindowError event. If all mandatory fields contain data, the system
proceeds to the second stage.

1. Triggering the WindowError Event - The system examines the fields to ensure that the data is syntactically correct. If there are syntax
errors, the system triggers a WindowError event.

2. Triggering the WindowValidation Event - If the data syntax is correct, the system triggers a WindowValidation event. This allows the
application to verify the data.

If window-level validation fails for any reason, then the Click event of the button or menu item is not triggered, thereby preventing the button or
menu item from triggering events.

By using the Validation:Boolean property, you can routinely check mandatory fields as part of window-level validation.

For backwards compatibility, push buttons and menu items in the AppBuilder Java client contain not only the Validation:Boolean property, but also
two Boolean properties: IgnoreValidation:Boolean and CheckMandatoryFields:Boolean. These validation properties perform slightly different
tasks:

® Validation:Boolean - always checks mandatory fields.
® lgnoreValidation:Boolean - only checks mandatory fields if the CheckMandatoryFields:Boolean is True .

Triggering the WindowError Event

The system triggers the WindowError event when:

® Any mandatory fields are empty (if MandatoryError():Boolean is True)
® Any fields contain data errors (if FieldError():Boolean is True)

This event also contains a ShowMessage:Boolean property that specifies if a message box describing the error displays. By default, the system
shows the message box.

Triggering the WindowValidation Event
The system triggers the Window\Validation event when:

® All mandatory fields contain data and no fields contain errors.
This event defines the following results:

® The required action if the application accepts the data. Use the Accept():Boolean property to specify the resulting action. If the application
accepts the data, the push button or menu option triggers a Click event.

®* That a message box display describing data errors. Use the ShowMessage:Boolean property to specify the resulting action. By default,
the system shows the message box.

', If the data is accepted, no message box is shown, regardless of the value of ShowMessage .

__]

User-Interface Properties

User-Interface Properties implemented by the Java user interface objects discussed in previous sections are described in this topic.

ObjectSpeak Events
Events in ObjectSpeak include:

ObjectSpeak events

Activate FieldValidation SQLError
CellFocusGained | FocusGained Terminate (for Rule)
CellFocusLost FocusLost Terminate (for Window)
ChildRuleEnd HeaderClick Timer

Click Initialize (for Rule) WindowError

Close Initialize (for Window) = WindowValidation
CommeError MessageBox

Converse PageSelect

DataRequired ParentRuleEnd

DoubleClick Post

EieldError RuleEnd

Activate

This event is triggered on an existing instance of a detached rule if another attempt is made to detach that rule with the same instance name.
This event has no methods or properties.

Example: Activate Event

The following is an example of the syntax:

> exanpl e of Wndow ActivateEvent <
proc for Activate object APPB_SS MCLB DI S
! (e object type ActivateEvent)
endproc

CellFocusGained

This event is triggered when a table cell gains focus. Various properties on the event can be used to obtain information about the cell that gained
focus.

Properties

The following table describes event properties for CellFocusGained.

CellFocusGained event properties

Property and Type Description

Column:Column This provides an object reference to the Column object that contains the cell clicked on. Properties and methods of the
Column object can be called to obtain additional information or to perform operations.

Columnindex:Integer = This is the order number of the column, where the leftmost column is 1, the one to its right is 2, and so on. The
numbering column (if present) is not included in the numbering. Thus if there is a numbering column, the column to its
immediate right is 1.

HpsID:String This returns the system identifier (HPSID) of the object that generated the event.

Physicallndex:Integer = This indicates the index (or occurrence number) of the row that contains the cell in the occurring view to which the table
is data-linked.

Source:GuiObject This is a reference to the Table object that generated the event, typed as a GuiObject.

Virtuallndex:Integer This indicates the virtual row number for the row that contains the cell.

Support

This event is not supported for thin (HTML) clients. It is only supported for Java (thick) clients.

Example: CellFocusGained Event

The following is an example of the syntax:

Proc for Cell FocusGai ned object TestMlb (Ml bFocusGai ned object type Cel | FocusGai nedEvent)

Trace (' Colum HpsID ="' |, Ml bFocusGai ned. Col utm. Hpsi d)
{ Trace ('HpsID ="' , Ml bFocusGai ned. Hpsi d)
i Trace (' Source HpsID ="' , DMl bFocusGai ned. Sour ce. Hpsi d) 1
Trace (' Physicallndex ="' , Ml bFocusGai ned. Physi cal | ndex)
| Trace (' Colunmlndex = ', Ml bFocusGained. Col unml ndex)
i Trace ('Virtuallndex ="', Ml bFocusGained. Virtual | ndex) H
EndPr oc i

CellFocusLost

This event is triggered when a table cell loses focus. Various properties of the event can be used to obtain information about the cell that lost
focus.

Properties

The following table describes event properties for CellFocusLost.

CellFocusLost event properties

Property and Type Description

Column:Column This provides an object reference to the Column object that contains the cell clicked on. Properties and methods of the
Column object can be called to obtain additional information or to perform operations.

Columnindex:Integer = This is the order number of the column, where the leftmost column is 1, the one to its right is 2, and so on. The
numbering column (if present) is not included in the numbering. Thus if there is a numbering column, the column to its
immediate right is 1.

HpsID:String This returns the system identifier (HPSID) of the object that generated the event.

Physicallndex:Integer = This indicates the index (or occurrence number) of the row that contains the cell in the occurring view to which the table
is data-linked.

Source:GuiObject This is a reference to the Table object that generated the event, typed as a GuiObject.

Virtuallndex:Integer This indicates the virtual row number for the row that contains the cell.

Support

This event is not supported for thin (HTML) clients. It is only supported for Java (thick) clients.

Example: CellFocuslLost Event

The following is an example of the syntax:

Trace (' Colum HpsID = ' , Ml bFocusLost. Col umm. Hpsi d)
Trace ('HpsID ="' , Ml bFocusLost . Hpsi d)

Trace (' Source HpsID ="' |, Ml bFocusLost . Sour ce. Hpsi d)
Trace (' Physicallndex ="' , Ml bFocusLost. Physi cal | ndex)

Trace (' Columlndex ="', Ml bFocusLost. Col unml ndex)
Trace ('Virtual Index ="', Ml bFocusLost. Virtual | ndex)
EndPr oc

ChildRuleEnd

This event is triggered to a parent rule when a child rule terminates. (See ParentRuleEnd.)
ChildRuleEnd is not supported in C#.

Properties
The following table describes event properties for ChildRuleEnd.
ChildRuleEnd event properties

Property and Type Description

Instance:String This returns the instance name of the child rule that ended.

LongName:String This is the long name for the child rule.

OutputView:View This returns the output view of the child rule. This view can be mapped to any other view.

Example: ChildRuleEnd Event

The following is an example of the syntax:

> exanpl e of Rule ChildRul eEndEvent <

proc for ChildRul eEnd object Rule_A

(evt Chi | dRul eEnd obj ect type Chil dRul eEndEvent)
dcl

myChar char (32);

nyl nteger | nteger;

Vi ew nyVi ew contai ns nyChar, nylnteger;
enddcl

trace("Instance: ",evtChildRul eEnd. | nstance)
trace("LongNane: ", evt Chil dRul eEnd. LongNane)
set nyView : = evt Chil dRul eEnd. Qut put Vi ew
trace("myChar: ", myChar)

trace("nylnteger: ", char(nylnteger))

endpr oc

proc aaa FOR Chil dRul eEnd obj ect CUST_DI S

(evt Chi | dRul eEnd obj ect type Chil dRul eEndEvent)
set CUST_DI S. CUST_I NFO : =

evt Chi | dRul eEnd. Qut put Vi ew

endpr oc

If the child rule was detached with the INSTANCE clause, as shown in this code:

Proc for Cell FocusLost object TestMlb (Ml bFocusLost object type Cell FocusLost Event)

then the Instance property contains the specified instance name; otherwise, it contains the long name of the rule that ended.

Click
This event is triggered if the user clicks the mouse button when the mouse is over a user interface object. It also occurs in the following situations:

® The Enter key is pressed when the window has a default push button.

® The spacebar is pressed when a check box, radio button, or push button has the focus.

® The user presses the mnemonic key for a push button, radio button, or check box. The mnemonic is the underlined character in the text;
pressing Alt and a mnemonic character is equivalent to clicking on the object with the mouse and thus triggers the Click event.

The user clicks on a menu item or presses the accelerator key combination (if any) associated with the menu item.

The user selects an item in a list box or combo box by pressing an arrow key.

The user selects a cell in a table by clicking with the mouse button or (if already in the table) by pressing an arrow key.

The Selected property of a radio button is set to True .

The value of the Selected property of a check box is changed.

Data is mapped to a field data-linked to a radio button or check box.

Clicking on a radio button changes the data link associated with it when it is changing state (selected from unselected or vice versa).
Clicking on check box changes the data link associated with it.
The Click event is not supported for thin client EditField.

Properties

The following table describes event properties for Click Event.

Click event properties

Property and Type Description

Column:Column When triggered by a table, this provides an object reference to the Column object that was clicked on (to which the
object is data-linked). Properties and methods of the Column object can be called to obtain additional information or to
perform operations.

Columnindex:Integer =~ When triggered by a table, this provides the order number (index) of the column that was clicked on, where the
left-most column is 1, the one to its right is 2, and so on. The numbering column (if present) is not included in the
numbering. Thus, if there is a numbering column, the column to its immediate right is 1.

HpsID:String This returns the system identifier (HPSID) of the object that generated this event. If this event is triggered by a table
cell, the HpsID property contains the system identifier (HPSID) of the table (not the cell).

Physicallndex:Integer = When triggered by a table, this provides the occurrence number (index) of the row in the occurring view clicked on (to
which the object is data-linked).

Source:GuiObject This is a reference to the table object that generated the event, typed as a GuiObject. This provides an object reference
to the object that triggered the event. This reference can be used to manipulate the object. If this event is triggered by a
table cell, the Source property returns an object reference to the table itself (not the cell). The reference has the type of
GuiObject.

Virtuallndex:Integer When triggered by a table, this provides the virtual row number (index) for the row that was clicked on.
If the event is triggered by a table cell, the Column:Column, Columnindex:Integer, Physicallndex:Integer, and Virtuallndex:Integer properties

contain information about the row and column of the cell that generated the event. If the event is not triggered by a table, these properties are not
used.

Example: Click Events

This example shows a Click event procedure that responds to only one object, namely the check box whose system identifier (HPSID) is
'CHECK_1".

[1111117777773dick Event Procedure by a Single Goject///11111111111
/| Checkbox CHECK_1 Event dick
Proc for dick object CHECK 1 (CheckBoxClick object type dickEvent)

Trace(' HpsID ="', CheckBoxd i ck. Hpsi d)
Trace(' Source HpslID ="', CheckBoxd ick. Source. Hpsl D)
EndProc

/1 Spreadsheet MCLB_1 Event Cick
Proc for Cick object MCLB_1 (Ml bCick object type dickEvent)

Trace (' Colum ="', Ml bdick. Col um. Hpsi d)

Trace ('HpsID ="' , Ml bdick. Hpsid)

Trace (' Source HpsID ="' , Ml bdick. Source. Hpsi d)
Trace (' Physicallndex ="' , Ml bdick.Physicallndex)
Trace (' Columlndex = ', Ml bd ick. Col uml ndex)
Trace ('VirtualIndex ="', Mlbdick.Virtual | ndex)
EndPr oc

This example shows a Click event procedure that is triggered by all similar objects (such as push buttons) and demonstrates how the HpsID
property on the ClickEvent parameter can be used to determine which button was pressed.

I1117777777dick Event Procedure by Type of the OGoject////111111111]
/1 Checkbox CHECK 1 Event dick
Proc for dick Type CheckBox (CheckBoxClick object type dickEvent)

Trace(' HpsID = ', CheckBoxd i ck. Hpsid)
Trace(' Source HpsID = ', CheckBoxd ick. Source. Hpsl D)
EndPr oc

/1 Spreadsheet MCLB_1 Event Cick
Proc for Cick Type Table (Tabledick object type CickEvent)

Trace (' Colum =", Ml bdick. Col um. Hpsi d)
Trace ('HpsID =" , Ml bdick. Hpsid)
Trace (' Source HpsID ="' , Ml bd i ck. Source. Hpsi d)
Trace (' Physicallndex ="' , Ml bdick. Physicallndex)
Trace (' Columlndex ="', Ml bdick. Col uml ndex)
Trace ('Virtuallndex ="', MIlbdick.Virtual | ndex)
EndPr oc

Close

The Close event is triggered when the user attempts to close a window using either the system exit or the shortcut key. By default, the system exit
does nothing because many business applications do not want events created by the user to cause changes. So, to allow the system exit to close
the window, you must define the procedure to explicitly terminate the window by calling the Close event. Then, when the system exit is clicked,
the Close event is generated and the system terminates the window based on that event.

This event has no methods or properties.

This event is not supported in the thin client development.

Support

This event is not supported for thin (HTML) clients, only for Java (thick) clients.

Example: Close Events

> exanpl e of Wndow O oseEvent < i
proc for Close object APPB_SS MCLB
(evt d ose object type O oseEvent)
> normal for this to then trigger the term nate event < :
thisrule. Termnate
endproc

You can also define this procedure:

proc Cl oseProcedure for C ose type w ndow

(evtC ose object type O oseEvent)

(You can add ot her business logic here, such as an if-then clause if you want to check anything before
closing.)

wi ndownane. t ermi nate

endpr oc

where O oseProcedure is a nane you define for a procedure and wi ndownane is the object nane for the

wi ndow obj ect .

CommError
The CommError event is used in conjunction with HPS_COMM_ERROR_RULE system rule. Refer to Rule for the information about rules. For

further information on the HPS_COMM_ERROR_RULE, see the Deploying Applications Guide .
CommError event is not supported in C#.

Properties

The following table describes event properties for CommError.

CommeError event properties

Property Type Description

abort Boolean Enable this flag to terminate the application on this communication error. This overrides any other setting and
the application exits. It is disabled by default and setting it to true enables it.

callCommErrorRule Boolean @ Enable this flag to invoke the HPS_COMM_ERROR_RULE on exit from this event. By default this is enabled
and the rule is called.

Exception Object This is the exception object with all the details of the error. Refer to Exception Properties.

LocalErrorCode Integer Error code from the client side. This is set when there is an error in client-side processing or the
communication error of the request or response.

Message String The error message as a string.
RemoteErrorCode Integer The error code from the server side.

RemoteRuleName = String Name of the remote rule that failed to execute.

Exception Properties

The following table describes exception properties for CommError.
CommeError Exception Properties

Name Type | Description
callingRuleld String | The client rule name

commErrorView View An AppBuilder view that has various fields listed below. This is useful to map data to other views for error
processing.

commErrorCode Integer = The error code
errorlD Integer = The error ID
loginName String The user ID if given

protocolErrorCode | Integer The communications error code

serverError Integer = The error code from the server
serviceNameld String The short name of the remote rule
targetMachine String The server host name

targetProtocol String The protocol used for communication

targetServer String The target sever ID

tranld Integer A unique transaction ID
viewLength Integer = The view length
workstationld String The client host name

Example: CommError Window Event

Here is an example of the syntax:

> exanpl e of Rule CommErrorEvent <
proc for CommError Type Rule

(eCommErr object type ConmErrorEvent)
> Trace CommErrorEvent properties <

trace(' eConmErr. abort: ', eCommErr. abort)
trace(' eCommErr.call ConmErrorRule: ', eCommErr. cal | ConmError Rul e)
trace(' eCommErr. Local Error Code: ', eCommErr. Local Error Code)
trace(' eConmErr. Message: ', eCommErr. Message)
trace(' eConmErr. Renot eError Code: ', eCommErr. Renot eEr r or Code)
trace(' eCommErr. Renot eRul eNane: ', eCommErr. Renot eRul eNarne)
> Trace CommError Exception properties <
trace(' eCommErr. Exception.callingRuleld: ', eCommErr. Exception.callingRul el d)
trace(' eCommErr. Excepti on. conmError Code: ', eCommErr. Excepti on. conmErr or Code)
trace(' eCommErr. Exception.errorlD: ', eCommErr. Exception.errorlD)
trace(' eComrErr. Exception. | ogi nNane: ', eCommErr. Exception. | ogi nNanme)
trace(' eConmErr. Exception. protocol Error Code: ', eCommErr. Excepti on. protocol Error Code)
trace(' eConmErr. Exception.serverError: ', eConmErr. Exception. serverError)
trace(' eConmErr. Exception. serviceNaneld: ', eComErr. Exception. servi ceNanel d)
trace(' eConmErr. Exception. target Machine: ', eComErr. Exception.target Machi ne)
trace(' eConmErr. Exception.targetProtocol: ', eCommErr. Exception.targetProtocol)
trace(' eCommErr. Exception.targetServer: ', eCommErr. Exception.target Server)
trace(' eCommErr. Exception.tranlD: ', eComnmErr. Exception.tranl D)
trace(' eCommErr. Exception. view,ength: ', eCommErr. Excepti on. vi ewlLengt h)
trace(' eCommErr. Exception. workstationld: ', eCommErr. Exception. workstationld)
endpr oc

Converse

The Converse event is triggered when a user interface action occurs that would have caused the converse window statement to return in legacy
applications. This event is triggered by the window, not by other user interface objects.

'ﬂ This event is used to provide backwards compatibility and should not be used for new applications.

To use the Converse event to port existing applications, define a Converse event procedure, and include the logic that followed the converse
window statement in the converse window loop. The Converse event object that is passed to the Converse event procedure has a number of
read-only properties that make available the same information provided in the predefined system view HPS_EVENT_VIEW.

If HPS_EVENT_VIEW is attached to the rule in the application hierarchy, then HPS_EVENT_VIEW is updated with the appropriate information
before the Converse event is triggered. Your application code can then obtain the information it needs from the properties of the Converse event
or from HPS_EVENT_VIEW.

Properties

The following table describes event properties for Converse.

Converse event properties

Property and Description
Type
EventParam() This returns a string that contains the name of the event, such as 'HPS_PB_CLICK', 'HPS_IMMEDIATE_RETURN', and

:String 'HPS_MENU_SELECT".

EventQualifier()
:String

EventSource() This returns the system identifier (HPSID) of the user interface object on which the action occurred which triggered the
:String event.

EventType()
:Integer

EventView()
:String

EventParam() :String

This returns an optional, event-specific string that contains additional information.
This string can be empty.

EventQualifier() :String

This returns an optional, event-specific string that contains additional information.
This string can be empty.

EventSource() :String

This provides the system identifier (HPSID) of the user interface object on which the action occurred that triggered the event. For example, for an
HPS_PB_CLICK event, this property provides the system identifier (HPSID) of the push button that was clicked.

EventType() :Integer

This returns the type of event of the predefined system view HPS_EVENT_VIEW, as one of the following values (as defined in the Constants
class):

® SYSTEM_EVENT

®* INTERFACE_EVENT

® USER_EVENT

® ASYNC_EVENT

* LANDP_EVENT

* LANDP_REQUEST_EVENT
®* LANDP_SYSTEM_EVENT

EventView() :String

This returns the name of an optional, event-specific view that contains additional information.
This string is empty if no view is provided.

Example: Converse Event

> exanpl e of Wndow ConverseEvent <
proc for Converse type W ndow
(evt Conver se object type ConverseEvent)

trace(' evt Converse. Event Param ', evtConverse. Event Param
trace(' evt Converse. EventQualifier: ', evtConverse.EventQualifer)
trace(' evt Converse. Event Source: ', evtConverse. Event Source)
trace(' evt Converse. Event Type: ', evtConverse. Event Type)

trace(' evt Converse. EventView ', evtConverse. Event Vi ew)

endpr oc

DataRequired

The DataRequired event is triggered by the Table object when it requires different data mapped into its data-linked occurring view. It needs this
information to respond to the user's request to scroll data. This event is used to implement the Smooth Scrolling in a DataRequired Event. It can
be used to instruct the table to automatically update its display and to specify to the table what data has been placed in the occurring view.

Smooth Scrolling in a DataRequired Event

The Smooth Scrolling option scrolls the page from one link to another rather than jumping to it directly. This can prevent user disorientation,
particularly in a large document. There are two ways to implement smooth scrolling. The first approach is similar to that used in previous versions

of the product; it requires you to explicitly call the setVirtualListBoxSize() method, and optionally the setFirstVisibleRow() method. In another more
efficient approach, the table calls these methods automatically.

Both of these approaches share the requirement that the program logic must obtain the appropriate data from the data source and place it in the
data-linked occurring view. The program logic knows which data is needed by the TopVirtualRow property of DataRequired event. It requires you
to explicitly call the setVirtualListBoxSize() method, and, optionally, the setFirstVisibleRow() method. In the second approach, these methods are
called automatically by the table itself. In both approaches, the DataRequired event procedure must fetch the appropriate data and place it in the
data-linked occurring view.

In the first approach, when DataRequired event is triggered, its event procedure calls the table's ElevatorPosition() method to determine which
virtual row should be placed in the top of the occurring view. Once the data has been fetched and is placed in the occurring view, the table's
setVirtualListBoxSize() method is called to specify what virtual row was actually placed in the top of the occurring view and the total number of
virtual rows in the data source. Optionally, the tables setFirstVisibleRow() method can be called to specify that a row other than that at the top of
the occurring view should be displayed at the top of the table. The table is then updated with the appropriate data.

A more efficient way to implement smooth scrolling is to make use of the TopVirtualRow and Refresh properties of the DataRequired event. If,
after fetching the data into the data-linked occurring view, the event procedure sets the event's Refresh property to True , then there is no need
for the event procedure to call setVirtualListBoxSize() and setFirstVisibleRow() ?these methods are automatically called by the table itself. When
this event is triggered, the TopVirtualRow property is initialized with the virtual row index of the data that needs to be displayed at the top of the
table. At this point, the event procedure for the event fetches the data and places it into the data-linked occurring view.

There is another way to implement smooth scrolling that is more compatible with previous versions of the product. In this approach, when this
event is triggered, its event procedure calls the table's ElevatorPosition() method to determine which virtual row should be placed at the top of the
occurring view. Once the data has been fetched and is placed in the occurring view, the table's setVirtualListBoxSize() method is called to specify
what virtual row was actually placed in the top of the occurring view and the total number of virtual rows in the data source. The table is then
updated with the appropriate data.

For an example of smooth scrolling using system components, refer to the section on smooth scrolling in System Components Reference Guide .

Properties
The following table describes event properties for DataRequired.

DataRequired event properties

Property and Type Description

Direction():Integer This is a read only property representing the scrolling direction. It can have one of the following values:Constants.UP,
Constants.DOWN.

HpsID:String This returns the system identifier (HPSID) of the object that generated the event.

Refresh():Boolean This indicates whether the table should automatically update its display.

Source:GuiObject This is a reference to the object that generated the event, typed as a GuiObject.

TopVirtualRow:Integer | On input, this contains the virtual index of the row that must be displayed at the top of the table. On output, this must
contain the virtual index of the first row in the data-linked occurring view. (Output value is significant only if Refresh is
True.)

TypeString:String This returns a string to indicate the type of event.

The HpslID:String property of DataRequired event specifies the system identifier (HPSID) of the table which is requesting data. The TypeString
property specifies the kind of action that resulted in the need for additional data.

The Refresh():Boolean property indicates if the table should automatically update the new top virtual row. If you want a new top row other than the
current one, set the event property TopVirtualRow before setting this method. If Refresh is True , the table updates the new top row automatically
by calling setVirtualListBoxSize and FirstVisibleRow when the DataRequired event procedure exits. If Refresh is False , you must include code,
within the DataRequired event procedure, to cause the display to be updated. This code consists of a call to the table's setVirtualListBoxSize()
method and, optionally, the setFirstVisibleRow() method. By default, Refresh is set to False . We recommend that you allow the table to
automatically update these values.

When the event procedure is first invoked, the TopVirtualRow:Integer property is pre-initialized with the virtual index of the row that must be
displayed at the top of the table. When the event procedure exits, TopVirtualRow must contain the virtual index of the first row in the data-linked
occurring view if Refresh is set to True .

If the application does not use a back buffer to include rows at the top of the occurring view that are before the row to be displayed at the top of
the displayed table, then the input and output values of TopVirtualRow are identical. However, if a back buffer is used, then the input and output
values are different.

If the virtual table size (which determines the position of the thumb in the table's vertical scroll bar) is considered to change as a result of the data
fetch, the table's setVirtualListBoxSize() method must be called explicitly in the event procedure, even if Refresh is True .

The TopVirtualRow property has different meanings on input and output. On input, when the event procedure is first invoked, TopVirtualRow is
pre-initialized with the virtual index of the row that must be displayed at the top of the table. The output value of TopVirtualRow is significant only if
Refresh is True when the event procedure exits. If it is set to True , then on output TopVirtualRow must contain the virtual index of the first row in
the data-linked occurring view.

Refresh():Boolean

This indicates whether the table should automatically update its display.

Direction():Integer

This is a read only property representing the scrolling direction. It can have one of the following values: Constants.UP or Constants.DOWN.

Example: Table DataRequiredEvent

1 *> exanpl e of Tabl e Dat aRequi redEvent <* !
proc for DataRequired object OBJ_LB
! (e object type DataRequiredEvent)
i endproc

DoubleClick

The DoubleClick event is triggered if the user double-clicks the mouse button when the mouse is over a user interface object. It is triggered by
most common user interface objects, with the notable exception of check boxes and push buttons.
The DoubleClick event is not supported for thin client EditField.

Double-clicking on an object also triggers ClickEvent, if ClickEvent is defined for that object. The order of events generated are
ClickEvent, DoubleClickEvent.

Properties

The following table describes properties for DoubleClick.

DoubleClick properties

Property and Type Description

Column:Column When triggered by a table, this provides an object reference to the Column object that was clicked on (to which the
object is data-linked). Properties and methods of the Column object can be called to obtain additional information or to
perform operations.

Columnindex:Integer =~ When triggered by a table, this provides the order number (index) of the column that was clicked on, where the leftmost
column is 1, the one to its right is 2, and so on. The numbering column (if present) is not included in the numbering.
Thus if there is a numbering column, the column to its immediate right is 1.

HpsID:String This returns the system identifier (HPSID) of the object that generated the event.

Physicallndex:Integer | When triggered by a table, this provides the occurrence number (index) of the row in the occurring view clicked on (to
which the object is data-linked).

Source:GuiObject This is a reference to the table object that generated the event, typed as a GuiObject.

Virtuallndex:Integer When triggered by a table, this provides the virtual row number (index) for the row that was clicked on.

If the event is triggered by a table cell, the Column:Column, Columnindex:Integer, Physicallndex:Integer, and Virtuallndex:Integer properties
contain information about the row and column of the cell that generated the event. If the event is not triggered by a table, these properties are not
used.

The HpsID:String property of the event can be used to obtain the system identifier (HPSID) of the object that generated the Click event. If this
event is triggered by a table cell, the HpsID property contains the system identifier (HPSID) of the table (not the cell).

The Source:GuiObject property provides an object reference to the object that triggered the event. This reference can be used to manipulate the
object. If this event is triggered by a table cell, the Source property returns an object reference to the table itself (not the cell). The reference has
the type of GuiObject.

Example: DoubleClickEvent

111111/ DOUBLECLI CK Event Procedure by Type of the Ooject/////1111]]
/] Spreadsheet MCLB_1 Event DOUBLECLI CK
Proc for Doubl edick Type Tabl e (Tabl eDoubl eCick object type Doubl edickEvent)

Trace (' Colum = ', Tabl eDoubl ed i ck. Col umm. Hpsi d)

Trace ('HpslID ="', Tabl eDoubl e i ck. Hpsi d)

Trace (' Source HpslI D =', Tabl eDoubl ed i ck. Sour ce. Hpsi d)
Trace (' Physicallndex =", Tabl eDoubl ed i ck. Physi cal | ndex)
Trace (' Col umlndex =', Tabl eDoubl ed i ck. Col unml ndex)
Trace ('VirtualIndex = ', Tabl eDoubl ed i ck. Virtual | ndex)
EndProc

/1 Multilineedit MLE_1 Event DOUBLECLI CK
Proc for Doubledick Type MultiLineEdit (MiltilLineEditDoubledick object type Doubl edickEvent)

Trace(' HpsID =", MiltilLineEditDoubl edick.Hpsid)
Trace(' Source HpsID =", MiltiLineEditDoubl edick. Source. Hpsl D)

111117171117/ DOUBLECLI CK Event Procedure by Every Single Cbject/////11111/111]
/1 Spreadsheet MCLB_1 Event DOUBLECLI CK
Proc for DoubleCick object MCLB_1 (M bDoubl ed ick object type Doubl eCickEvent)

Trace (' Colum ="', Ml bDoubl ed i ck. Col um. Hpsi d)

Trace ('HpsID ="', Ml bDoubl ed i ck. Hpsi d)

Trace (' Source HpslID =", Ml bDoubl ed i ck. Sour ce. Hpsi d)
Trace (' Physicallndex =", Ml bDoubl ed i ck. Physical | ndex)
Trace (' Col umlndex =', Ml bDoubl ed ick. Col uml ndex)
Trace ('Virtual Index ="', Ml bDoubl eCick.Virtual | ndex)
EndPr oc

/1 Miltilineedit MLE_1 Event DOUBLECLI CK

EndPr oc
Proc for DoubleCick object MLE_1 (MiltiLineEditDoubleC ick object type Doubl edickEvent)

Trace(' HpsID =', MiltilLineEditDoubl edick.Hpsid)
Trace(' Source HpslI D =', MiltiLineEditDoubl edick. Source. Hpsl D)
EndPr oc

FieldError

The FieldError event is triggered when an editable field loses focus or when the Enter key is pressed while the field has focus, and the data in the
field is in error. It allows the application to specify whether the data should be rolled back to the last known acceptable value and whether a
message box describing the data should be displayed.

This event is triggered by the following objects:

ComboBox
EditField
MultiLineEdit
PasswordField
Table

To specify whether the data should be rolled back, set the Rollback:Boolean property. To specify whether a message box should be shown if the
field is not rolled back, set the ShowMessage:Boolean property. By default, the data is not rolled back and an error message is not shown. A
setting in the VALIDATION section of APPBUILDER.INI, SHOW_FIELD_ERROR_MESSAGE_BOX_DEFAULT, can be used to configure the
default for ShowMessage .

For more information, see Field-level Validation.

Support

This event is not supported for thin (HTML) clients.
Properties

The following table describes event properties for FieldError.
FieldError event properties

Property and Type Description

Columnindex:Integer When triggered by a table, this provides the order number (index) of the column that was clicked on, where the
left-most column is 1, the one to its right is 2, and so on. The numbering column (if present) is not included in the
numbering. Thus, if there is a numbering column, the column to its immediate right is 1.

HpsID:String Read-only property. This returns the system identifier (HPSID) of the object that generated the event.

Physicallndex:Integer When triggered by a table, this provides the occurrence number (index) of the row in the occurring view clicked on (to
which the object is data-linked).

Rollback:Boolean This indicates whether the data should be rolled back to the last known acceptable value. (The default value is
FALSE.)

ShowMessage:Boolean = This indicates whether a message box describing the error should be shown if the data is not rolled back. (The
default value is FALSE; unless the default is being specified by a setting in appbuilder.ini.)

Source:GuiObject Read-only property. This is a reference to the object that generated the event, typed as a GuiObject.
Virtuallndex:Integer When triggered by a table, this provides the virtual row number (index) for the row that was clicked on.

If this event is triggered by a table cell, the HpsID:String property contains the system identifier (HPSID) of the table itself (not the cell), and the
Source property returns an object reference to the table.

Example: FieldError Event

/1 FieldErrorEvent for EditField

Proc for FieldError object ED T_1(Fiel dErrorEdit object type Fiel dErrorEvent)
Trace('HpsID = ', FieldErrorEdit. Hpsl D)

Trace(' Rol I Back =", FieldErrorEdit.RollBack)

Trace(' Showvessage =', Fiel dErrorEdit. ShowMessage)

Trace(' Source HpslID ="', FieldErrorEdit. Source. Hpsid)

endpr oc

/I Fi el dError Event For MCLB

Proc for FieldError object MCLB 1(FieldErrorMlb object type Fiel dErrorEvent)

Trace(' HpsI D = ', Fiel dError Ml b. Hpsl D)

Trace(' Rol | Back =', Fiel dErrorMl b. Rol | Back)

Trace(' Showmvessage =', Fiel dError Ml b. ShowMessage)
Trace(' Source HpslID ="', FieldErrorMl b. Source. Hpsi d)
Trace(' Col uml ndex ="', FieldErrorMl b. Col uml ndex)
Trace(' Physi cal Index =", FieldErrorMl b. Physi cal | ndex)
Trace(' Virtual Index =, FieldErrorMlb. Virtual |l ndex)

endpr oc

FieldValidation

The FieldValidation event allows an application to validate the data in an editable field when the field loses focus or when the Enter key is
pressed while the field has focus. It is triggered only if there is no intrinsic data or formatting errors. If there are errors, the FieldError event is
triggered.

This event is triggered by the following objects:

ComboBox
EditField
MultiLineEdit
PasswordField
Table

For more information, see Field-level Validation.

Usage

This event allows the application to specify whether the data should be accepted, rolled back to the last known acceptable value, or considered in
error. The default value is ACCEPT .

This event also allows the application to specify whether a message box should be displayed if the data is regarded as "in error". By default, a
message box is shown if the data is in error.

To specify whether the data should be accepted, rolled back, or considered in error, set the Response:Integer property to one of the following
values:

® ACCEPT
®* ROLLBACK
* IN_ERROR

To specify whether a message box should be shown if the field is in error, set the ShowMessage:Boolean property to True or False .
If this event is triggered by a table cell, the HpsID:String property contains the system identifier (HPSID) of the table itself (not the cell), and the
Source property returns an object reference to the table.

Properties

The following table describes event properties for FieldValidation.
FieldValidation event properties

Property and Type Description

Columnindex:Integer When triggered by a table, this provides the order number (index) of the column that was clicked on, where the
left-most column is 1, the one to its right is 2, and so on. The numbering column (if present) is not included in the
numbering. Thus, if there is a numbering column, the column to its immediate right is 1.

HpsID:String Read-only property. This returns the system identifier (HPSID) of the object that generated the event.

Physicallndex:Integer When triggered by a table, this provides the occurrence number (index) of the row in the occurring view clicked on (to
which the object is data-linked).

Response:Integer This indicates whether the data should be accepted, rolled back to the last known acceptable value, or regarded in
error. The default value is accepted.

ShowMessage:Boolean ' This indicates whether a message box describing the error should be shown if the data is not rolled back. (The
default value is TRUE.)

Source:GuiObject Read-only property. This is a reference to the object that generated the event, typed as a GuiObject.
Virtuallndex:Integer When triggered by a table, this provides the virtual row number (index) for the row that was clicked on.
Support

This event is not supported for thin (HTML) clients.

Example: FieldValidation

1 *> exanple of Field FieldvalidationEvent <* !
{ I/ FieldvalidationEvent for EditField ;
Proc for FieldValidation object EDIT_1(FieldValidationEdit object type FieldValidation)
! Trace('HpsID ="', FieldvalidationEdit.HpslD) :
Trace(' Response =', FieldValidationEdit.Response)
| Trace(' ShowMessage =', Fiel dvalidationEdit.ShowMessage)
! Trace(' Source HpsID =', FieldvalidationEdit.Source. Hpsid) !
endpr oc
{ /IFieldvalidationEvent For MCLB
i Proc for FieldVvalidation object MCLB_1(Fiel dvalidationMlb object type FieldValidationEvent) :

Trace(' HpsI D = ', FieldValidationMlb. Hpsl D)

Trace(' Response =', FieldValidationMlb. Response)

Trace(' Showmvessage =', FieldValidationMlb. ShowMessage)
Trace(' Source HpslI D =', FieldValidationMlb. Source. Hpsi d)
Trace(' Col uml ndex =', FieldValidationMlb. Col uml ndex)
Trace(' Physical Index =', FieldValidationMlb.Physicallndex)
Trace(' Virtual Index =", FieldvalidationMlb.Virtuallndex)
endpr oc

FocusGained

The FocusGained event is triggered when a user interface object gains focus.
Tables trigger the CellFocusGained event. They do not trigger the FocusGained event.
The FocusGained event is not supported for thin client EditField.

Properties

The following table describes event properties for FocusGained.
FocusGained event properties

Property and Type Description

HpsID:String This returns the system identifier (HPSID) of the object that generated the event.

Source:GuiObject This is a reference to the object that generated the event, typed as a GuiObject.

The HpslID:String property of the event can be used to obtain the system identifier (HPSID) of the object that gained focus.
The Source:GuiObject property provides a reference to the object that triggered the event in the form of a GuiObject and can be used to
manipulate the object.

Support
This event is not supported for thin (HTML) clients. It is only supported for Java (thick) clients.

Example: FocusGained

> exanpl e of Wndow FocusGai nedEvent <
/'l FocusGai nedEvent for EditField !
Proc for FocusGai ned object EDI T_1(Fi el dFocusGai ned object type FocusGai nedEvent)

Trace(' HpsI D = ', Fi el dFocusGai ned. Hpsl D)
Trace(' Source HpslID ="', Fiel dFocusGai ned. Sour ce. Hpsi d)
endpr oc

FocusLost

The FocusLost event is triggered when a user interface object loses focus.

If the focus is removed from this field temporarily (for example, because another window is activated) this event is not triggered.
Tables do not trigger this event but rather the CellFocusLost event.

The FocusLost event is not supported for thin client EditField.

Properties
The following table describes event properties for FocusLost.
FocusLost event properties

Property and Type Description

HpsID:String This returns the system identifier (HPSID) of the object that generated the event.

Source:GuiObject This is a reference to the object that generated the event, typed as a GuiObject.

The HpslID:String property of the event can be used to obtain the system identifier (HPSID) of the object that lost focus.
The Source:GuiObject property provides a reference to the object that triggered the event in the form of a GuiObject and can be used to
manipulate the object.

Support
This event is not supported for thin (HTML) clients, but is supported for Java (thick) clients.

Example: FocusLostEvent

> exanpl e of Wndow FocusLost Event <
/| FocusLostEvent for EditField !
Proc for FocusLost object EDI T_1(Fi el dFocusLost object type FocusLostEvent)

Trace(' HpsI D = ', Fiel dFocusLost. Hpsl D)
Trace(' Source HpslD =', Fiel dFocusLost. Source. Hpsi d)
endpr oc

HeaderClick

This event is generated when you click on a table column header. The table's data can be sorted depending on the column index, if the property
UsingDefaultSorting is TRUE (the sorting order can be one of Constants. ASCENDING or Constants.DESCENDING, the default is the former).

The following example will sort the table data in DESCENDING order based on the column index:

¢ proc for Headerdick object MCLB_1(e object pointer to Headerd i ckEvent) !
set e.UsingDefaultSorting := true
| set e.SortingOrder := Constants. DESCENDI NG
i endproc

The sorting of Virtual Table is undefined, the smooth scrolling will reset the sorting when DataRequiredEvent is generated. You are advised not to
use default sorting with virtual table sizes(VirtualListBoxSize).

Properties

The following table describes event properties for HeaderClick.

HeaderClick properties

Properties Description

Column:Column The Column object of the table header being clicked on.

Columnindex:Integer column index of the column

HpsID:String HpsID of the table

SortingOrder:Integer order by which the mclb to be sorted if the property UsingDefaultSorting is true
Source:GuiObject source at generated the event

UsingDefaultSorting:Boolean = When this property is true, the table is sorted depending on the property SortingOrder.

Initialize (for Rule)

The rule Initialize event is triggered on entry to a rule each time it is called. If the rule has a window attached, the window Initialize event is
triggered after this event. This event is an ideal location to place code for initialization of data or state information.

'ﬂ Do not make any assumptions regarding the status of the window in the Initialize (for rule) event.

Rule Initialize Event Properties

Property and Type Description

SourceName:String = Returns the name of the Rule object.

Example: Rule Initialize Event

> exanple of Rule InitializeEvent <

proc for Initialize type Rule

(eRulelnit object type InitializeEvent)

trace(' eRul elnit.SourceNane: ', eRul elnit. SourceNane)
endpr oc

Initialize (for Window)

The window Initialize event is triggered after the window and all controls have been created, and after the rule Initialize event. At the time of this
event, while the window exists, it will not be visible. The window will automatically be made visible after this event has occurred. This event is an
ideal location to place code to initialize data structures and call ObjectSpeak methods that set the appearance or behavior of user interface
objects.

Window Initialize Event Properties

Property and Type Description

SourceName:String = Returns the name of the Window object.

Example: Window Initialize Event

> exanple of Wndow InitializeEvent <

proc for Initialize type W ndow

(eWndow nit object type InitializeEvent)

trace(' eWndow nit. SourceNane: ', eW ndow nit. SourceNane)
endpr oc

proc Initialize for Initialize object MAI N W NDOW
(e object type InitializeEvent)

> jnitialize data <

map 0 to NunOf Orders

> call ObjectSpeak nmethods to nmodi fy wi ndow <
NaneFi el d. set For egr ound(Col or. RED)

Cust oner | DFi el d. set Edi t abl e(Fal se)

endpr oc

MessageBox

The MessageBox event is supported in the thin client only. When a showMessageBox method is invoked, a JavaScript message box is displayed
on the Browser screen. Two message types are supported: ERROR and QUESTION.

If the message type is ERROR, the message is displayed, and after acknowledging the message by clicking OK , you can continue with the
current page. If the message type is QUESTION, the response (YES/NO or OK/CANCEL) is sent back to the Server and fired as a MessageBox
on the Window.

> exanpl e of MessageBoxEvent <

proc for MessageBox object W NDOW A

(e object type MessageBoxEvent)

*> e.response will be Constants.OK, Constants.CANCEL, Constants.YES or Constants.NO
<~k

caseof (e.response)

case Constants. K

endcase

endpr oc

The Message Box is asyncronous, meaning that it will not be displayed until the currently active event procedure has completed.
PageSelect
The PageSelect event is fired when the user selects a tab page.

Properties

The following table describes event properties for PageSelect.

PageSelect properties:

Property and Type Description
Source:GuiObject Returns the source object (TabControl).
HpsID:String Returns the system identifier (HPSID) of the tab control.

SelectedPagelndex:Integer = Returns the index of the selected tab page.

ParentRuleEnd

The ParentRuleEnd event is triggered on a detached rule when the parent rule ends. See ChildRuleEnd.
ParentRuleEnd is not supported in C#.

Properties

The following table describes event properties for ParentRuleEnd.

ParentRuleEnd event properties

Property and Type Description

TerminateChild() :Boolean

TerminateChild() :Boolean

Child rules are terminated along with parent rules by default as specified by the CLOSE_DETACHED_RULES_WITH_PARENT setting in the
APPBUILDER.INI file. This property overrides the default from the APPBUILDER.INI file setting.

Example: ParentRuleEnd

> exanpl e of Rule ParentRul eEvent <
proc for ParentRul eEnd type Rule :
(eParent Rul eEnd obj ect type Parent Rul eEndEvent)

trace(' eParent Rul eEnd. Termi nateChild: ',
ePar ent Rul eEnd. Ter mi nat eChi | d)
endpr oc

Post
The Post event is triggered when a rule uses the Post method to post a view to another rule. The event is triggered on the rule that receives the

posted view.
Post event is not supported in C#.

Properties
The following table describes event properties for Post.
Post event properties
Property and Type Description
Internal():Boolean

LongName:String This is the long name for the posting rule.

SourceName():String | This returns the name of the rule that posted the view (the source rule)

SourceObject():Object

Subject():String

View():View This returns a reference to the view that was posted. The view returned by the View property is an untyped view. This
means that it must be mapped either to a view defined in the hierarchy or to a view defined locally in the rule, before its
fields can be accessed.

ViewName This returns the name of the view that was posted.

Internal():Boolean

This determines whether the event originates from an AppBuilder rule.

SourceName():String

This is the instance name of event source.
SourceObject():Object

This is the event source.

Subject():String

This is the event name.

View():View

This is a reference to a view.

Example: PostEvent

> exanpl e of Rul e PostEvent <
proc for Post type Rule
(evt Post object type PostEvent)

trace(' evtPost.Internal: ',evtPost.Internal)
trace(' evtPost.LongNane: ', evtPost.LongNane)
trace(' evt Post. SourceName: ', evt Post. Sour ceNane)
trace(' evt Post. Subject: ', evtPost. Subject)

trace(' evtPost. View ', evtPost.View)
trace(' evt Post. Vi emNane: ', evt Post. Vi ewmNane)

RuleEnd
The RuleEnd event provides notification that a rule has ended. This event is never raised in C#.

Properties

The following table describes event properties for RuleEnd.

RuleEnd event properties

Property and Description

Type

Instance:String This returns the instance name of the rule that ended. If the rule was detached with the INSTANCE clause, (as USE RULE
<rulename> DETACH INSTANCE <instance name>) then the Instance property contains the specified instance name;
otherwise, it contains the long name of the rule that ended.

LongName:String = This is the long name for the calling rule.

OutputView:View = This returns the output view of the rule that ended. This view can be mapped to any other view.

Example: RuleEnd Event

> exanpl e of Wndow Rul eEndEvent <
proc for Rul eEnd type Rule
(eRul eEnd obj ect type Rul eEndEvent)

trace(' eRul eEnd. I nstance: ', eRul eEnd. | nstance)
trace(' eRul eEnd. LongNane: ', eRul eEnd. LongNane)
trace(' eRul eEnd. Qut put View. ', eRul eEnd. Qut put Vi ew)
endpr oc

Here is an example of a RuleEnd event for the OutputView property:

proc aaa for Rul eEnd object CUST_DI S
(e object type Rul eEndEvent)
! map e.QutputView to CUST_INFO of CUST DI'S
endproc

The rule that ends must have been detached from the rule that receives the event, using the following syntax:
use RULE < rule_name > DETACH < rule_object_name >
where < rule_object_name > is the name of the local variable (defined in the dcl section) that references the rule.

SQLError
This event provides SQL error information. In order for this event to be enabled, the Rule must have its "DMBS Usage"property enabled. This also

enables the rule access to the AppBuilder SQLCA system view which may provide additional information about the SQL error.
SQLError event is not supported in C#.

Properties
The following table describes event properties for SQLError.
SQLError event properties

Property and Type Description

Details:View View containing the following properties

ErrorCode:Integer = The SQL code as implemented by the SQL provider

Message:String The SQL message as implemented by the SQL provider
Details:View
This is a view which owns fields related to the SQL error.

ErrorCode:Integer

This is the SQL error code for the event.

Message:String

This is a string representing the SQL message as implemented by the SQL provider.

Example: SQLError Event

> exanpl e of Rule SQLErrorEvent <
proc for SQLError type Rule i
(eSQ.Error object type SQLErrorEvent)

trace(' eSQLError.Details. ErrorCode: ', eSQLError.Details. ErrorCode)
trace(' eSQLError.Details.Sql State: ', eSQLError.Details. Sql State)
endpr oc

Terminate (for Rule)

The rule Terminate event is triggered just prior to the rule exiting. If the rule has a window, this event will be triggered after the window Terminate
event.

'ﬂ Do not make any assumptions regarding the status of the window in the rule Terminate event.

Properties

The following table describes event properties for Terminate (forRule).

Rule Terminate event properties

Property and Type Description

SourceName:String = Returns the name of the Rule object.

Example: Rule Terminate Event

> exanpl e of rule Term nateEvent <

proc for Terminate type Rule

(eRul eTermi nate object type Term nateEvent)

trace(' eRul eTerm nate. SourceNane: ', eRul eTerm nate. Sour ceNane)
endpr oc

Terminate (for Window)

The Window Terminate event is triggered on the window closing. The rule Terminate event is triggered after this event.

Properties

The following table describes event properties for Terminate (for Window).

Window Terminate event properties

Property and Type Description

SourceName:String = Returns the name of the Window object.

Example: Window Terminate Event

> exanpl e of Term nateEvent <

proc for Terminate type W ndow

(eW ndowTer mi nat e obj ect type Term nateEvent)

trace(' eW ndowTer m nat e. Sour ceNane: ', eW ndowTer m nat e. Sour ceNane)
endpr oc

The Timer event is triggered by the Timer object to provide one or more timed notifications at regular intervals. Timer events are normally used to
either delay performing an action for a specified period of time or to repeat an action, such as updating a display field.

Properties

The following table describes event properties for Timer event.

Timer event properties

Property and Type Description
HpsID:String This returns the system identifier (HPSID) of the timer object that generated the event.

Source:GuiObject This is a reference to the object that generated the event, typed as a GuiObject.

Example: Timer Event

> exanpl e of Timer object TinerEvent <

proc for Timer object nyTiner

(eTi mer object type TinerEvent)

trace(' eTimer.HpslD: ', eTiner. Hpsl D)

trace(' eTi mer. Sour ce. Enabl ed: ', eTi ner. Source. Enabl ed)
trace(' evt Ti mer. Sour ce. Focus: ', eTiner. Source. Focus)
endpr oc

WindowError

The WindowError event is triggered when window validation fails either because one or more fields contain errors or because mandatory fields do
not contain any data. Window validation occurs when a push button or menu item with the Validate property set to True is activated.

For more information, refer to Window-level Validation.

This event is not supported in the thin client development, neither in C#.

Properties

The following table describes event properties for WindowError.

WindowError event properties

Property and Type Description
FieldError():Boolean If this event was triggered because a field contains an error, this property is True.
HpsID:String This returns the short name of the window that generated the event, since the window does not have an system

identifier (HPSID).

MandatoryError():Boolean = If a mandatory field has no data, then this property is True.

ShowMessage:Boolean This indicates whether a message box describing the error should be shown if the data is not rolled back. By
default, a message box is shown; the default value is TRUE.

Source:GuiObject This provides an object reference to the object that triggered the event ? in this case, the window itself. This
reference, which has the type of GuiObject, can be used to manipulate the window.

For backwards compatibility with previous versions of this product, the IgnoreValidation:Boolean property on PushButton objects and Menultem
objects can be set to False in order to trigger window validation. Legacy applications can suppress the check on mandatory fields by setting the
CheckMandatoryFields:Boolean property to False in those objects.

MandatoryError():Boolean

This indicates whether window validation failed because mandatory fields are empty.

FieldError():Boolean

This indicates whether window validation failed because one or more fields are in error.

Example:WindowError Event

> exanpl e of W ndowErrorEvent <
proc for W ndowError object OSPK_EVT_W NERR WAD
(W nErr object type W ndowErrorEvent)

Trace (' HpsID =", WnErr. Hpsld)

Trace (' Source HpslID =", WnErr. Source. Hpsl d)
Trace (' FieldError =, WnErr.FieldError)

Trace (' MandatoryError =', WnErr.MandatoryError)
Trace (' ShowMessage =', W nErr. ShowMessage)
endpr oc

WindowValidation

The WindowValidation event allows an application to verify that fields in the window have acceptable data. It is triggered when the user clicks a

push button or menu item whose Validate property is set to True , no fields are in error, and all mandatory fields contain data. If there are errors,
the WindowError event is triggered.

This event allows the application to validate the window data as a whole and prevent the window from closing if the data is unacceptable. For
example, the application can use this event to verify that the data in each field is consistent with data in other fields.

For more information, refer to Window-level Validation.

This event is not supported in the thin client development.

Properties

The following table describes event properties for WindowValidation.

WindowValidation event properties

Property and Type Description
Accept():Boolean This determines whether the fields in the window have acceptable data.
HpsID:String This returns the short name of the window that generated the event, since the window does not have a system

identifier (HPSID).
ShowMessage:Boolean ' This indicates whether a message box should be shown if the data is not accepted. The default value is TRUE.

Source:GuiObject This provides a reference to the object that triggered the event ? in this case, the window itself. The reference has the
type GuiObject and can be used to manipulate the window.

For backwards compatibility with previous versions of this product, the IgnoreValidation:Boolean property on PushButton objects and Menultem
objects can be set to False in order to trigger window validation. Legacy applications can suppress the check on mandatory fields by setting the
CheckMandatoryFields:Boolean property to False in those objects.

This event also allows you to specify whether a message box should be displayed if the data is not acceptable. By default, the message box is
shown. To prevent the message box display, set ShowMessage:Boolean to False .

Accept():Boolean
This specifies whether the data is the window is acceptable. The default value is True .

To specify that the data in the window is not acceptable, set the event Accept property to False . If it is True , then the push button or menu item
that triggered window validation triggers the Click event. If it is False , the Click event is not triggered.

Example: WindowValidation Event

> exanpl e of W ndow W ndowval i dati onEvent <
proc for Wndowval i dati on object OSPK_EVT_W NVAL_WND
(WnVal object type Wndowvalidati onEvent)

Trace (' HpsID =", WnVal. Hpsld)
Trace (' Source HpslID =", WnErr. Source. Hpsl d)
Trace (' ShowMessage =', W nErr. ShowMessage)

if WnVal.Accept() = TRUE
Trace(' WVl aue Acceptable')

el se

Trace(' Val ue not Acceptable')
endpr oc

User-Interface Properties

User-Interface Properties implemented by the Java user interface objects discussed in previous sections are described in this topic.

User-Interface Properties

The Java user interface properties available to ObjectSpeak objects in are listed in alphabetical order in the following table. Each property is then
described in greater detail in the linked subsections.

Object properties

Altered:Boolean Font:Font Rollback:Boolean

AutoSelect:Boolean
BackBuffer:Integer
Background:Color
CallingRule:Rule
CheckMandatoryFields:Boolean
Column:Column
Columnindex:Integer
Currency:Boolean
DatabaseSize:Integer
DisplayMask:String
DisplayPicture:String
DomainType:Integer
Editable:Boolean
EditLimit:Integer
EditMask:String
Empty:Boolean
Enabled:Boolean
Error:Boolean
Focus:Boolean

FocusedGuiObject:GuiObject

Altered:Boolean

Foreground:Color
Format:Format
HeaderLineCount:Integer
HpsID:String
IgnoreValidation:Boolean
Image:String
ImmediateReturn:Boolean
Instance:String
Justification:Integer
Lines:Integer
Locale:Locale
Location:Point
LongName:String
Mandatory:Boolean
Mnemonic:Char
MnemonicKeycode:Integer
OutputView:View
Physicallndex:Integer
PopupMenu:PopupMenu

Response:Integer

RowHeight:Integer
Selected:Boolean
SelectedPagelndex:Integer
SelectionMode:Integer
ShortHelp:String
ShowMessage:Boolean
Size:Dimension
Source:GuiObject
SourceName:String
Style:Integer
TabStop:Boolean
Text:String
TopVirtualRow:Integer
Type:Integer
TypeString:String
Validation:Boolean
Virtuallndex:Integer

Visible:Boolean

For objects that have data links, this indicates whether the data in the field has been altered since the window was first displayed or since the last
call to the window's clearAltered() method.

This property is automatically set to True when the data associated with any GUI object on the window is modified by the user. The application
can query the Altered property to determine whether data needs to be saved. Use the ClearAltered method to set the value to False .

For example, consider a window that has a Save button. When the user clicks Save , the Click event procedure can query the Altered property to
determine whether it actually needs to save the data. If it does save the data, the application should then call the ClearAltered() method and
indicate that there are no more changes that need to be saved.

User-interface objects associated with data, other than windows, have their own Altered property that indicates whether the data has been
modified. The Altered property is automatically set to True when the user modifies the data. Moreover, for every object other than the window, the
Altered property is not read-only, you can both query and assign a value to the property.

A GuiObject is altered only if the data associated with that object is changed. Typing something in an edit field does not alter the edit field until you
tab out of the field and the entered data is validated.

AutoSelect:Boolean

For an edit field, multiline edit, password field, and combo box, this property specifies whether text is automatically selected when the field
receives focus. The default is True, except for multiline edit.

When an editable object gains focus, the text in the edit area is automatically selected if this property is set to True . The default value is True .

When a list box is first shown and no items are currently selected, if this property is True , the first item is selected when receiving focus. Also, if
the list box is already shown and no items are currently selected, and this property is changed from False to True , the first item is selected when
receiving focus.

Table functionality is similar to the list box functionality except that the entire row is selected only if the table's RowSelect property is True ;

otherwise, only the first (non-numbering) cell of the first row is selected. When a Table is first shown, if AutoSelect is True and nothing is currently
selected, the first row is selected (if RowSelect is True) or the first cell in the first row is selected (if RowSelect is False). Also, when the Table is
already shown and no row or cell is currently selected, if AutoSelect is changed from False to True , the first one is selected when receiving focus.

For Tables (also called multicolumn list boxes or MCLBs), when AutoSelect is True :

® You cannot deselect the "select all" of the rows using the keyboard or mouse (but it is possible to deselect it by calling clearSelection).

® The selection moves with focus.

® The setVirtualListBoxSize and dataRequired events preserve any previous selection if it is less than the virtual size. For example,
selecting row 1 and then calling setVirtualListboxSize with 50, 100 preserves the selected row even if that is not in the current virtual
limits.

BackBuffer:Integer

This property represents the number of records back from the first visible record to fetch, when smooth scrolling. The value should be greater than
0 and less than (ScrollabeOccurs - VisibleOccurs). The ideal value should be (ScrollableOccurs - VisibleOccurs) / 2.

Background:Color

This property specifies the background color for the object. If the foreground or background colors are not specified, the table's color is used for
the column. Group boxes have no background color; the background is transparent and displays the background color of the window.

Some objects, such as labels and check boxes, always use the background color of the window or panel. For menu items, this property and
method have no effect. The Color object is used to specify the foreground and background colors of these objects.

CallingRule:Rule

This property specifies the parent rule for a rule, allowing to navigate back through the calling tree.

CheckMandatoryFields:Boolean

This property specifies whether push buttons and menu items verify that all mandatory fields contain data before triggering their associated action.
This property is provided for backwards compatibility with previous versions of the product. We recommend you use the Validation:Boolean
property for new development.

Column:Column

For certain events that occur in tables, this property provides an object reference to the table column in which the event originated. This is a
read-only property.
This applies to CellFocusGained and CellFocusLost events, and to Click and DoubleClick events when they originate in a table.

Columnindex:Integer

For certain events that occur in tables, this property indicates the index of the table column in which the event originated. The left-most column is
1, the one to its right is 2, and so on. The numbering column (if present) is not included in the numbering. Therefore, if there is a numbering
column, the column to its immediate right is 1. This is a read-only property.

This applies to CellFocusGained and CellFocusLost events, and to Click and DoubleClick events when they originate in a table.

Currency:Boolean

This property specifies whether the currency symbol should be displayed when displaying decimal data. The currency symbol can be displayed in
edit fields, table cells, list boxes, and combo boxes, which are data-linked to a decimal.

'ﬂ Only for decimal fields.

DatabaseSize:Integer
This property specifies the size of the database.
DisplayMask:String

This property provides a mask used to format data for display when the focus is not on the field. DisplayMask is a property of the Format object. It
applies to edit fields, combo boxes, list boxes, and table cells.

'ﬂ DisplayMask and DisplayPicture are valid for Decimal and Integer formats and cannot be used for String Formats.

DisplayPicture:String

This property is the same as DisplayMask:String. It is provided for backwards compatibility with previous versions of the product.

DomainType:Integer

This property is read-only and returns the type of domain used by the combo box. The values can be one of Constants. SETDOMAIN or
Constants.VIEWDOMAIN.

Editable:Boolean
This property specifies whether the data displayed in an edit field, multiline edit field, password field, or table column can be edited.

To prevent the text from being edited by the user, but still allow the field to receive focus (perhaps so that text can be copied to the clipboard), set
this property to False .

EditLimit:Integer

This property specifies the number of characters that can be entered into an edit field, multiline edit field, or password field. To limit the amount of
text that can be entered, use the EditLimit property. The default value is zero (0), which specifies there is no limit on the number of characters that
can be entered.

If the field is data-linked to a string or character field, the edit limit is automatically set to the length of the data-linked character field. If a field does
not have a data link, it can contain a maximum of 255 characters.

For thin client applications, the EditLimit is applied only on focus lost or tab out from the input field. Unlike other AppBuilder
clients, processing every key through JavaScript would slow data entry in this case.

EditMask:String

This property specifies which characters can be entered at specific locations in an editable field. EditMask is a property of the Format object
associated with the editable field. It applies to edit fields, combo boxes, list boxes, and table cells.
For valid EditMask character values, refer to Valid EditMask Characters.

Valid EditMask Characters
The valid EditMask characters that can be used in the EditMask:String property are listed in the following table:

Valid EditMask characters

Mask Description Sample Edit Mask Sample Sample Result
Character Input

Digit placeholder
Hit#H# 1234 1234

Digit or space placeholder
9 9999 1234 1234

Decimal separator

99. 99 1234 12. 34
Thousand separator
) 9, 999 1234 1,234
Sign placeholder
- - #itt# -1234 -1234
Time separator
hh: mm ss 123001 12:30: 01

Date separator
/ dd/ MM yy 121001 12/ 10/ 01

Aora

dd

EEE

yy

yyyy

SS

hh

tt

Literal

Li]

Converts all characters that follow to lower case

Converts all characters that follow to upper case

ANSI character from 32-126 or 128-235

Alphanumeric character

Alphabet character only

Single quotes hold a group of literals.

Treat the next character in the mask string as a literal. Use this
character to include #, &, A, or ? characters in the mask. This character
is treated as a literal for masking purposes.

Day of the month

Day of week

Two-digit month

Three-letter month name

Two-digit year

Four-digit year

Minutes

Seconds

Hours

AM/PM

All other symbols are displayed as literals; that is, as themselves.

Empty:Boolean

2277

25777

AAA

??7?

' Today is'
dd/ WM yy

HH\\ - #HH\ \ - Bt

dd/ WM yy

EEE dd/ MM yy

dd/ MW yy

dd/ WM yy

dd/ M\ yyyy

hh: mm ss

hh: mm ss

hh: mm ss

hh:mm ss tt

If the EditMask is set to < or >, all the characters are converted to lowercase or uppercase.

This property indicates whether or not an editable field contains data. This is a read-only property.

Enabled:Boolean

ABCD

abcd

121202

2222222222

121202

170402

04

17Mar 02

170402

170402

123001

123001

123001

123001 AM

Abcd

aBCD

Today is
12/ 12/ 02

222-222-2222

02/ 12/ 12

Ved
17/ 04/ 02

04

17/ Mar/ 02

17/ 04/ 02

17/ 04/ 2002

12:30: 01

12:30: 01

12:30: 01

12:30: 01 AM

This property specifies whether an object is enabled or disabled. Disabled objects cannot be edited or modified, or receive focus.
For Tables, enabling or disabling occurs on a per column basis.

For the Timer object, the Enabled property can be set to False to temporarily prevent the timer from firing. Typical applications do not need to use
the Enabled property - just the start() and stop() methods.

Error:Boolean

This indicates whether the interface object contains data that is in error. This is a read-only property.

Focus:Boolean

This property has no parameters.

FocusedGuiObject:GuiObject

This property returns the guiObject that has focus.

Font:Font

This property specifies the font used to display text in an object that displays text.
For a column object, if the font is not specified, the table's default font is used for the column.

This property is not supported in thin client applications.

Foreground:Color

This property specifies the font color in all objects that display text. If the foreground or background colors are not specified, the table's color is
used for the column. For menu items, this property and method have no effect. The Color object is used to specify the foreground and background
colors of these objects.

Format:Format

This property specifies various formatting information for editable fields, including edit fields, combo boxes, and table cells. It specifies the Format
object associated with the object. The Format object contains information about how to display and edit the text in every cell in the column. The
Format object type and the data link must agree. For objects created in Construction Workbench, the Format object is automatically created and
assigned to the object. Format is not used by combo boxes linked to sets (that is, static combo boxes). Refer to the Format object for more
information.

HeaderLineCount:Integer

This read only property returns the count of header lines for the column.

HpsID:String

This property specifies the system identifier (HPSID) of the object. Each object must have a unique system identifier (HPSID) or unpredictable
behavior may occur. The system identifier must not begin with a number and must not contain special characters (!, @, #, $, %, ", &, *, etc.)

Underscore characters (_) may be used.

The system identifier (HPSID) can be set only once and cannot be changed. Attempting to set this property more than once generates an error.
Trying to set the system identifier (HPSID) to an empty string generates an error.

IgnoreValidation:Boolean
For push buttons and menu items, this property specifies that window validation is not performed before the object's Click event is triggered. This

property is provided for backwards compatibility with previous versions of the product. We recommended that you use the Validation property for
new development.

Image:String

This property specifies the image file name for a Bitmap object in Window Painter. For a push button object, it is the image file name for the
Bitmap of the push button.

Use a forward slash (/) for the file and directory separator. This ensures that your code is portable across platforms.

ImmediateReturn:Boolean

This property specifies whether the control can generate the immediate-return Converse event. If this property is set to True , a Converse event is
generated. For an editable-object, this occurs when the user changes the selection of an object and moves focus to another object. For
non-editable objects, this occurs when the user double-clicks an object.

This property is provided for backwards compatibility and should not be used in new application development. We recommended you use the
ImmediateReturn property and that you do not use the Converse event for new applications. Use the Click, DoubleClick, or FocusLost event to
simulate ImmediateReturn functionality.

Instance:String

This property returns the instance name of a rule.

Justification:Integer

This property specifies the horizontal justification for text in edit fields, password fields, labels, list boxes, combo boxes, and tables. Valid values,
as defined in the Constants class, are:

® LEFT
* CENTER
® RIGHT

The Justification property is used to specify whether the text should be left-justified, centered, or right-justified. By default, text is left-justified. For
a label, the horizontal justification of text within the label area is specified by the Justification property, while the vertical justification is determined
by the VerticalJustification property.

Lines:Integer

This property specifies whether horizontal lines, vertical lines, both, or neither are drawn between cells in a table. Valid values, as defined in the
Constants class, are:

HORIZONTAL_LINES
VERTICAL_LINES
HORIZONTAL_AND_VERTICAL_LINES
NO_LINES

Locale:Locale

This property specifies both a country and a language. Locales are used in conjunction with Format objects, as well as on the Window object.
Refer to the Locale object for a list of the possible values.

Location:Point

This property specifies the position of a window or user interface object, relative to the upper left corner of the window. The property is a Point
object and contains both a horizontal and vertical component.

For convenience, the SetLocation(X, Y) method can be used to specify the position without having to create a Point object. The size and position
of the object can be queried or set using the Size:Dimension and Location properties, respectively. The size and position of a table can be queried
or set using the Size and Location properties.

This property is not supported in thin client applications.

LongName:String

This property specifies the long name for a rule. The long name is stored in UPPERCASE letters. When comparing values to the long name,
ensure that your value is UPPERCASE.

Mandatory:Boolean

This property specifies whether or not a field is mandatory. That is, whether it must contain data before the window closes successfully. It applies
to edit fields, password fields, multiline edit fields, combo boxes, and table columns. If the GuiObject represents an editable field, then the
Mandatory property indicates whether or not the field must contain data before the window is successfully closed.

If Mandatory is set to True , when window-level validation occurs, and mandatory field checking is requested, window validation fails if any of the
cells in the column contain no text. See the Validation:Boolean property.

'ﬂ This property is not supported in the thin client applications through ObjectSpeak. It is supported through client-side javascript.

Mnemonic:Char

This property specifies the mnemonic character for buttons and other objects. Any letter in the English alphabet is valid. For push buttons, when
Alt and a mnemonic key are pressed together, the push button Click event is generated. For a check box, the check box is toggled. For a radio
button, it triggers the radio button. For menus and menu items, it selects or clears a menu item.

'ﬂ Java development does not support NLS characters.

MnemonicKeycode:Integer

This property specifies the mnemonic keycode for buttons and other objects; it is the integer keycode associated with the Mnemonic:Char
character. This is the ASCII equivalent for the key. For push buttons, when Alt and a mnemonic key are pressed together, the push button Click
event is generated. For a check box, the check box is toggled. For a radio button, the radio button is selected or cleared. For menus and menu
items, a menu item is selected or cleared. The following table describes the ASCII codes.

ASCII code equivalents

ASCII ASCII ASCII ASCII ASCII ASCII ASCII
o * o *x e * e * e * e * o *
0 48 9 57 | 73 R 82 a 97 j 106 S 115
1 49 A 65 J 74 S 83 b 98 k 107 t 116
2 50 B 66 K 75 T 84 c 99 | 108 u 117
3 51 C 67 L 76 U 85 d 100 m 109 \Y 118
4 52 D 68 M 7 \Y 86 e 101 n 110 w 119
5 53 E 69 N 78 W 87 f 102 0 111 X 120
6 54 F 70 (@) 79 X 88 g 103 p 112 y 121
7 55 G 71 P 80 Y 89 h 104 q 113 z 122
8 56 H 72 Q 81 Z 90 i 105 r 114
e *x o *

OutputView:View

This property returns the output view of a rule. This view can be mapped to any other view.

Physicallndex:Integer

For certain events that occur in tables, this property indicates the index (or occurrence number) of the row in the occurring view to which the table
is data-linked. This applies to CellFocusGained and CellFocusLost events. It also applies to Click and DoubleClick events when they originate in a
table. This is a read-only property.

PopupMenu:PopupMenu

This property sets the popup menu that can be displayed for objects on a window and the window itself, typically by right-clicking. If a given user
interface object does not have a popup menu but the window does, right-clicking an object causes the window's popup menu to be displayed.
Therefore, if you want only one popup menu for the window and all its objects, define a popup for the window.

Response:Integer

In FieldValidation, this property specifies whether the data should be accepted, rejected, or rolled back to the last known acceptable value. The
default is ACCEPT. Valid values, specified in the Constants class, are:

* ACCEPT
¢ ROLLBACK
* IN_ERROR

Rollback:Boolean

In FieldError, this property specifies whether the data should be rolled back to the last known acceptable value. The default value is False .

RowHeight:Integer

This property specifies the height of a table row.

Selected:Boolean

This property determines if a check box, radio button, check box menu item, or radio button menu item is currently selected. This property
indicates whether a menu item that can display a check mark is currently checked, or whether a menu item that can display a radio button has the
radio button selected. The Checked property is similar to the Selected property, but indicates information only about the checked state.

SelectedPagelndex:Integer

This property returns the index of the selected tab page in a tab control object.

SelectionMode:Integer

This property specifies how rows can be selected for list boxes, combo boxes, and tables. Valid values, as specified in the Constants class, are:
® SINGLE_SELECTION - only one row at a time can be selected

® SINGLE_RANGE_SELECTION - (or extended) a single continuous range of rows can be selected
® MULTIPLE_RANGE_SELECTION - multiple ranges of rows can be selected

ShortHelp:String

This property specifies the text for the tool tip that is displayed when the mouse pointer pauses briefly on the object. If it is set to an empty string,
no tool tip is displayed. It is not supported in C#.

ShowMessage:Boolean

This property specifies whether an error message box should be displayed during FieldValidation and WindowValidation. By default, the message
box is shown if the error condition is not removed. The default value is True .

This applies to the following events:
® FieldError
® FieldVvalidation
°
L]

WindowError
WindowValidation

Size:Dimension

This property specifies the width and height of a window, any visible user interface object, and the window itself. The property is a Dimension
object that contains both a width and height. The Size property of visible objects is of type Dimension.

For convenience, the setSize(width, height) method can be used to specify the width and height without having to create a Dimension object. The
size and position of the object can be queried or set with the Size and Location properties. For example, when a GuiObject represents a menu
item, calling the Size property has no effect because you cannot specify the size of a menu item. Query or set the size and position of a table
using the Size and Location properties.

This property is not supported in thin client applications.

Source:GuiObject

This property provides a reference to the object that triggered the event in the form of a GuiObject. For more information, see the GuiObject topic.
This is a read-only property.

SourceName:String

This property returns the long name of the object associated with the event.

Style:Integer

This property changes a menu item into a selectable menu item or radio button menu item. Valid values, as specified in the Constants class, are:

®* PLAIN
® CHECKBOX
¢ RADIOBUTTON

'ﬂ The style of a menu item can be changed only once in Java.

TabStop:Boolean

This property specifies whether or not you can transfer keyboard focus to a user interface object by pressing the Tab key.

Normally, you can use the Tab key to move focus onto an object, but setting TabStop to False prevents this. Even if TabStop is False, focus can
still be set on the table with the mouse (or programmatically using the setFocus() method) unless the field is disabled.

Text:String

This property specifies the text for labels, edit fields, multiline edit fields, editable combo boxes, and table cells. It specifies the label for group
boxes and table columns and the title for group boxes. Use this property to query or set the text in the edit area. If the edit area does not have a
data link, the Text property is the only way to access the text. If it has a data link, the text in the edit area can be accessed either through the Text
property, or by using rules code to access the data-linked field.

TopVirtualRow:Integer

When the DataRequired event is triggered by a table that requires additional data mapped into its data-linked view, this property specifies the
virtual row that appears at the top of the displayed table.

Type:Integer

This read-only property returns the type of the derived object. The type constants are defined in the Constants class. For example, if the guiObject
is an editfield, the Type property returns Const ant s. EDI TFI ELD. Other examples include:

Const ant s. DATE_FORVAT
Const ant s. DECI MAL_FORNVAT
Const ant s. LONG NT_FORVAT
Const ant s. SHORTI NT_FORVAT
Const ant s. STRI NG_FORVAT
Const ant s. TI ME_FORNVAT

TypeString:String
This specifies the type of event in a DataRequired event. The string is one of the following:

® ListBoxTop
® |istBoxBottom
® QutOfRange

Validation:Boolean

For push buttons and menu items, this specifies whether window validation must be successfully performed before the object's Click event is
triggered. Setting Validation to True is equivalent to setting IgnoreValidation:Boolean to False and CheckMandatoryFields:Boolean to True .

To cause Window-level Validation to occur when an object is clicked, set its Validation property to True . Window-level validation allows the
application to verify that the user has specified all required information, and that the information in the various fields is acceptable.

For backwards compatibility, push buttons and menu items contain not only the Validation property but also two Boolean properties named
IgnoreValidation and CheckMandatoryFields. The Validation property and the IgnoreValidation and CheckMandatoryFields properties represent
two slightly different approaches to validation. If the Validation property is used to enable window validation, the check on mandatory fields is
always performed. However, if IgnoreValidation is used to enable validation, then the check on mandatory fields is done only if
CheckMandatoryFields is True . We recommended you use the Validate property for new applications because checking mandatory fields should
be routinely performed as part of window validation.

Virtuallndex:Integer

For certain events that occur in tables, this property indicates the virtual row number for the row that contains the cell in which the event
originates. It applies to CellFocusGained and CellFocusLost events and also applies to Click and DoubleClick events when they originate in a
table. This is a read-only property.

Visible:Boolean

This property specifies whether a user interface object or window is visible. It can be used to determine if an object in a window or the window
itself is visible and can be used to change the visibility of an object or window. By default, an object is visible but can be hidden. For windows, the
updateDisplay() method is called implicitly whenever the Visible property is set to True . Setting menu items and pop-up menus to be either visible
or invisible is useful when you are constructing language-specific user interfaces.

Java Support Matrix

The tables in this section summarize ObjectSpeak object support for Java application development.

® See Java Support for Events
® See Java Support for Properties
® See Java Support for Methods

Platform support for each entry is noted in the tables as such:

® Jindicates Java (thick) client support
® H indicates HTML (thin) client support
® An asterisk (*) indicates a read-only property

Java Support for Events
See ObjectSpeak Events Java Support Matrix details Java support for ObjectSpeak events. The events are listed alphabetically.

ObjectSpeak Events Java Support Matrix

Events / c/,c/ c E|/lE G|IL/IL M|IM|MP P |RIR/IT|F GIR W MP T
Controls e u a u i
hlo|o |d|Il |[r |a]i |e|n [ufla]|s |a|e|b |o |u|l n e o i
I o (S u h | e |d m
el |mj|i [i b n |l | |s|B |d|c|e [(r [i |2 |o s |p
u t |p|u t t t u m w e
G b F e|Blu|je |i |s |t i |t s |u|r
m s |p m L t o a a b
k o |i I o w 0 t a p
n ele|B i n B n j
B B X n o e g M
| o u g
o] o d e r c e |e
X d t |1
X X E t |e t B n
F o}
d o u
i n
i e X
t
|
d
Activate HJ
CellFocusGained J
CellFocusLost J
ChildRuleEnd HJ
Click J J J J JJ HI J J HI J J

Close

CommError HJ
Converse HJ HJ
DataRequired HJ

DoubleClick J J J J J J HJ

FieldError J J J J J

FieldVvalidation J J J J J

FocusGained J J J J J J J

FocusLost J J J J J J J J

HeaderClick J

Initialize HJ HJ
MessageBoxEvent H
ParentRuleEnd HJ
Post HJ
RuleEnd HJ
SQLError HJ
Terminate HJ HJ
Timer J

WindowError HPJ

WindowValidation HCJ

a. The Rule object is also supported on the Server for the CommError and SQLError events.

b. These events (WindowError and WindowValidation) can be handled through JavaScript on the client-side. A default "extension.js" can be
customized to include processing logic for these events.

c. These events (WindowError and WindowValidation) can be handled through JavaScript on the client-side. A default "extension.js" can be
customized to include processing logic for these events.

Java Support for Properties

See ObjectSpeak Properties Java Support Matrix details Java support for ObjectSpeak object properties listed alphabetically.
The following properties are not supported as ObjectSpeak methods for thin client applications; however, they are supported through client-side
JavaScripts.

CheckMandatory
IgnoreValidation
ImmediateReturn
Mandatory
Validation

ObjectSpeak Properties Java Support Matrix

Properties /
Objects

Accelerator
Altered
Argumentl
Argument2
Argument3
AutoSelect
AutoTab
Background

Border:
Boolean

BorderStyle
ButtonType
CallingRule
Checked
Check
Mandatory
Fields

Column

Column
Index

Country
Currency
DatalLink
Delay

Display
Mask

Display
Picture

Editable
EditLimit

EditMask

HJ

HJ

S3c—0o0

HJ

Xowo o300

HJ

HJ

— ® T o

o—o T~ —am

O nwo ———m

X0 mWDT SO~ Q
XxXom—wn —

HJ

M M M M P P R
e e u a u a
n e |n | s s d
u u t 5 h i
n | i w B 0
t L 0 u B
ule i r t u
m n d t t
B e F 0 t
E i n 0
a d e n
i |
r t d
J
J J J
HJ HJ HJ HJ
J
HJ
J J
HJ HJ HJ
J HJ
J J

®—Q > ® 00

® T T o

HJ

=

—

TOoO O TQO TS0

HJ

soas—

HJ

Elevator
Position

Empty

Enabled Hl J HJ HJ
Error

EventName

EventParam

Event
Qualifier

EventSource

EventType

FieldPath HJ HJ
First

Visible

Row

Focus: J J J
Boolean

Font J J J J J J J
Foreground HJ HJ HJ HJ HIJ HJ HJ
Format HJ HJ HJ

Header
Height

Height
Horizontal
Text

Position

HpsID2 He HR H< J HR H<J HAJ

Ignore
Validation

Image

Immediate HI J J J
Return

InsertBreak

InsertTab

Justification HI J HY J J
Label

Last

Visible

Row

Lines

Locale

Location J J J J J J
Mandatory J J J

Menubar

HJ HJ

HJ

HJ

HJ

H* | HXJ

Hl HJ H) HJ HJ
J J J J
J J |J J J

H*J H*J | J
J
J J
J
J
J
J J
J J

HJ H9)
J
J
HJ
J
H
NN BN

HJ

HJ

H*

HJ

HJ

HJ

HJ

HJ

HJ

HJ

Message

Message
TypeE

Mnemonic

Numbering
Column

Parent®

Physical
Index

Popup

PopupMenu

Repeats
Resizable
Response
Rollback
RowHeight
RowMargin
RowsSelect
Running

Scrollable
Occurs

Selected

Selected
Index

Selected
RowCount

Selection
Mode

SetLink
ShortHelp

Show
Message

Size
Source
Style
TabStop
Text
Top
Virtual
Row
Title
Type

Validation

J

HJ

HJ

HJ

HJ

HJ

HJ

HJ J

HJ

HJ

HJ

HJ

HJ

J J J
HJ
J J |J J J
HJ
HJ
HJ HJ
HJ
J*
HJ
J J J J J J

Hl HJ HJ HI HI J

HJ

Vertical J J J
Justification

Vertical
Text
Position

ViewLink HJ HJ HJ J J J

Virtual
Index

Visible HJ HI HJ J J J H) J J Hl HI HI HI J HJ

Visible HJ
Occurs

Visible

Row

Count

Width J

WordWrap J

a. HpsID is a read-only property in HTML as indicated by the asterisk beside the H notation in the table.

b. Java thin (HTML) clients support only ERROR and QUESTION message box types. Java thin (HTML) clients use message box functionality in
JavaScript and these are the only two types available.

c. Parent is a read-only property similar to HPSID, but it is valid for both Java and HTML clients. You must confirm this once the nc
and servlet.blds are fixed. It is valid for Checkbox, Column, ComboBox, EditField, Ellipse(J), GroupBox, GuiObject, Label, ListBox, MessageBox,
PasswordField, PopupMenu(J), PushButton, RadioButton, Rectangle(J), and Table.

Java Support for Methods

See ObjectSpeak Methods Java Support Matrix details Java support for ObjectSpeak methods listed alphabetically.

ObjectSpeak Methods Java Support Matrix

Methods / c/lc ¢c E/lEG/ILL M|M|MMP PRRT I FIGR|W|M|P T
Objects i e |e a u e
hlo|o [d]|Il |r |a]|s n /n |e u a u a e b olu.l i s |o|i
I |o t u u n | e n s m
el |mji [i b B B I |s|s|d|c|e [r |i d a p
u t [p|u o] a u t m o g e
c b | F e X r i |s|h|i |t w e u r
m s p I |L 0 a a b B
k o |i | t w B t o p
n ele|B e |i B n j X
B B m n o u e M
| o} u g
0 o d e |r |t c e
X d |t |t [I
X X E o|t |e t n
F 0
d n u
i n
i e
t
|
d
add(aMenu:Menu) J | J
add(ltem:Menultem) J

addChild(Object)

addColumn(Col:Column) HJ

addCookie(name:String,
value:String,
age:Integer)
addHeader(String)
addSeparator()
clearAltered()
clearSelection()

clearWindowChanges()

disableTopAndBottomEvents(
Boolean)

findGuiObject(HPSID:String)
:GuiObject

getActiveWindow():Window
getCallingRule():Rule
getColumn()

getCookie(aView:View,
age:Integer)

getimpName(): String
getinputView():View
getltem(index:Integer)
getltemCount()
getLongName():String
getMenu(index:Integer)
getMenuCount()

getNextSelectedIndex()
Integer

getNextSelectedIndex(HJ
Index:Integer):Integer

getOutputView():View

getSelectedIndex():Integer

getShortName(): String

getWindow():Window

hasFocus():Boolean J J J J

postTo(Rule instance,
String Subject):Boolean

postTo(Rule instance,
String Subject,
View):Boolean

postTo(Rule instance,
String Subject,

View,
Parameter):Boolean

postToChild(
InstanceName: String,
Info:View):Boolean

HJ

HJ

HJ

HJ

HJ

HJ

HJ

HJ

HJ

HJ

HJ

HJ

HJ

HJ

HJ

HJ

postToChild(String Instance,
String Subject):Boolean

postToChild(String Instance,
String Subject,
View):Boolean

postToParent(String Subject)
:Bool

postToParent(String Subject,
View):Boolean

postToParent(Info:View)
:Boolean

printFrame()

gueryUserAuthentication()
:Boolean

resetSelectedIndex():Integer
resetSelectioninterval(
Startindex:Integer,
Stopindex:Integer)
selectedIndex():Integer

setBorder():Boolean

setCellStyleClass(row:Integer,
col:Integer,
cssClassName:String)

setColumnStyleClass(col:Integer,

cssClassName:String)

setCookie(aView:View,
age:Integer)

setFirstVisibleRow(
Row:Integer)

setHelpFile(
HelpFileName:String)
:Boolean

setMenuBar(bar:MenuBar)

setMoreRows(n:Integer,
flag:Boolean)

setRowStyleClass(row:Integer,
cssClassName:String)

setSelectedIndex(
Index:Integer)

setSelectedInterval(
Startindex:Integer,
StopIndex:Integer)

setSelectionlInterval(
StartIindex:Integer,
StoplIndex:Integer)

setSetLink(AbfSet)

setStyleClass(cssClassName:String)

setUserAuthentication(
userlID:String,
password:String)

HJ

HJ

HJ

HJ

HJ

HJ

HJ
HJ
HJ
HJ
J

HJ

H

H

HJ
J

HJ

HJ

H

HJ

HJ

H
HJ

HJ

setVirtualListBoxSize(HJ
TopVirtualRow:Integer,
VirtualTableSize:Integer)

show() :Integer HJ

showHelpTopic(HelpID:String) J
:Boolean

showMessageBox(HJ
MessageType:Integer,
message:String):Integer

showMessageBox(HJ
Message:String,

Title:String,

ButtonType:Integer,

MessageType:Integer):Integer

start() J

stop() J
terminate() HJ HJ
updateDisplay() J

Supported Methods for Java Classes

This topic summarizes the supported methods for Java classes declared public in AppBuilder.

Supported Java Classes and Methods

Java Classes and Methods summarizes the supported Java classes and methods for application development. These classes are declared public
so that other parts of AppBuilder can call them.

Java Classes and Methods

Java Class Method

appbuilder.util. AbfDataObject public void map(AbfDataObject f) throws ClassCastException

ﬂ This is a base class for all field types.

public void clear()

public void fireAbfDataChange()

public boolean isNull()

public boolean isClear()

public void addAbfDataChangeListener

public void removeAbfDataChangeListener
appbuilder.util.AbfDate public void map(java.util.Date date) throws AbfDataException

public java.util.Date getJavaValue()
appbuilder.util. AbfArray public get(int idx)

public int getOccurs()

public void firePreAbfDataChange()

public void resize(int newSize)

appbuilder.util.AbfBlob

appbuilder.utiLAbfBoolean

appbuilder.util. AbfDecimal

appbuilder.util. AbfDouble

appbuilder.util. AbfFloat

appbuilder.util.AbfLonglInt

appbuilder.util. Abfint

appbuilder.util. AbfTime

appbuilder.util. AbfTimeStamp

appbuilder.util. AbfShortint

appbuilder.util. AbfString

appbuilder.utiLAbfDataChangeListener

appbuilder.utiL AbfDataChangeEvent

appbuilder.util. AbfSystem

implements java.sql.Clob, java.sql.Blob

public void map(Reader from) throws AbfDataException
public void map(InputStream from) throws AbfDataException
public void map(byte[] from) throws AbfDataException
public void map(char[] from) throws AbfDataException
public void map(String filename)

public char[] getChars() throws IOException

public byte[] getBytes() throws IOException

public String getFilename()

public void map(Boolean value)

public boolean getJavaValue()

public void map(BigDecimal d)

public BigDecimal getJavaValue()

public void map(double value)

public double getJavaValue()

public void map(double value)

public void map(float value)

public double getJavaValue()

public void map(long value)

public long getJavaValue()

public void map(int value)

public int getJavaValue()

public void map(Date date)

public Date getJavaValue()

public void map(Date date)

public Date getJavaValue()

public void map(short value)

public void map(int value)

public short getJavaValue()

public void map(String value)

public String getJavaValue()

public void dataChange(AbfDataChangeEvent evt)
public void preDataChange(AbfDataChangeEvent evt)
public void sizeChange(AbfDataChangeEvent evt)
public AbfDataObject getDataObject()

void init(String appbuilderiniUrl)

public void appTrace(int level, String s)

public static String deriveClassName(int type, String longName) a

public static String deriveObjectName(int type, String longName) b

appbuilder.AbfModule public static AbfStruct start(String ruleClassName, HpsView iView, AbfStruct
oView)

»ﬂ This is a base class of rule types.

public AbfModule getCallingRule()
public AbfStruct run (AbfStruct iView)
appbuilder.AbfClientModule public void post(HpsPostEvent e)

This is a base class for servlet and GUI
rules.

appbuilder.AbfPostEvent public AbfPostEvent (Object source, String sourceName, String subject, HpsView
view)

public AbfStruct getView()
public String getSourceName ()
public String getSubject()

public Object getSourceObject()

public String getParam()

a. Given an object type and it's long name, it returns the generated java class name. The valid types are RULE_TYPE, VIEW_TYPE,
VIEWARRAY_TYPE, SET_TYPE and COMPONENT_TYPE as defined in AbfSystem.

b. Given an object type and it's long name, it returns the generated name of the instance variable. In addition to the types in deriveClassName,
AbfSystem.WINDOW_TYPE, FIELD_TYPE, OBJECT_TYPE can be used.

Supported Methods in CSharp

Supported Methods in C#

This appendix presents a full list of supported methods in C# Objectspeak.

All thin client features of Java are not supported in C# since thin client is not supported.

»ﬂ If an object inherits any class, then all methods and properties of the inherited class are available in the object.

Accelerator

C# support for Accelerator

Constructors

CONSTRUCTOR(ODE_eCHAR, ODE_eLONG)
CONSTRUCTOR(ODE_eLONG, ODE_eLONG)
Properties

ALT

CTRL

KeyChar
KeyCode
Modifiers
SHIFT
VK_F1
VK_F2
VK_F3
VK_F4
VK_F5
VK_F6
VK_F7
VK_F8
VK_F9
VK_F10
VK_F11

VK_F12

ActivateEvent

C# support for ActivateEvent
Properties

Hpsld

Array

C# support for Array

Methods

ELEM(ODE_eINDEX, ODE_eELEM)
ELEM(ODE_eINDEX)
INSERT(ODE_eINDEX)
REPLACE(ODE_eINDEX, ODE_eELEM)
RESIZE(ODE_eELEM)

SIZE()

CellFocusGainedEvent

C# support for CellFocusGainedEvent

Properties
COLUMN

COLUMNINDEX

HPSID
PHYSICALINDEX
SOURCE

VIRTUALINDEX

CellFocusLostEvent

C# support for CellFocusLostEvent

Properties
COLUMN
COLUMNINDEX
HPSID
PHYSICALINDEX
SOURCE

VIRTUALINDEX

CheckBox

C# support for CheckBox

Inherits

GuiObject

Constructors

CONSTRUCTOR()
CONSTRUCTOR(ODE_esString)
Events

CLICK(ODE_eOBJECT)
DOUBLECLICK(ODE_eOBJECT)
FOCUSGAINED(ODE_eOBJECT)
FOCUSLOST(ODE_eOBJECT)
FIELDERROR(ODE_eOBJECT)
Properties

ALTERED - has Set method
AUTOSELECT

DATALINK - has Set method
EDITABLE - has Set method
EMPTY

ERROR

IMMEDIATERETURN - has Set method

MANDATORY - has Set method

MNEMONIC - has Set method
MNEMONICKEYCODE - has Set method
POPUPMENU - has Get/Set methods
SELECTED - has Set method

TABSTOP - has Set method

TEXT - has Set method

ClickEvent

C# support for ClickEvent

Properties
COLUMN
COLUMNINDEX
HPSID
PHYSICALINDEX
SOURCE

VIRTUALINDEX

CloseEvent

C# support for CloseEvent

Properties

HPSID

Color

C# support for Color

Constructors
CONSTRUCTOR(ODE_eLONG, ODE_eLONG, ODE_eLONG)
CONSTRUCTOR(ODE_eOBJECT)
Properties

BLACK

BLUE

BROWN

CYAN

DARKBLUE

DARKCYAN

DARKGRAY

DARKGREEN

DARKMAGENTA
DARKRED
DARKYELLOW
GRAY

GREEN
LIGHTGRAY
MAGENTA
PINK

RED
TURQUOISE
WHITE

YELLOW

Column

C# support for Column

Inherits

GuiObject

Constructors

CONSTRUCTOR()
CONSTRUCTOR(ODE_eSTRING)
Events
FIELDERROR(ODE_eOBJECT)
Properties

ALTERED - has Set method
EDITABLE - has Set method
EDITLIMIT - has Set method

EMPTY

ERROR

FIELDPATH - has Get/Set methods
FORMAT - has Set method
HEADERLINECOUNT - has Get method
IMMEDIATERETURN - has Set method
JUSTIFICATION - has Get/Set methods
MANDATORY - has Set method
POPUPMENU - has Get/Set methods
SETLINK - has Get/Set methods
WIDTH - has Set methods

Methods

ADDHEADER(ODE_eSTRING)
ADDHEADER(ODE_eSTRING, ODE_eLONG)
GETHEADER()

GETHEADER(ODE_eLONG)
GETSCALEDWIDTH(ODE_eLONG)
REMOVEHEADER(ODE_eSTRING)

ODE_eVOID SETHEADER(ODE_eString, ODE_elnt)

SETSCALEDWIDTH

ComboBox

C# support for ComboBox

Inherits

GuiObject

Constructors

CONSTRUCTOR()
CONSTRUCTOR(ODE_eSTRING)
Events

CLICK(ODE_eOBJECT)
DOUBLECLICK(ODE_eOBJECT)
FIELDERROR(ODE_eOBJECT)
FIELDVALIDATION(ODE_eOBJECT)
FOCUSGAINED(ODE_eOBJECT)
FOCUSLOST(ODE_eOBJECT)
SELECT(ODE_eOBJECT)
Properties

ALTERED - has Set method
AUTOSELECT - has Set method
DATALINK - has Set method
DOMAINTYPE - has Get method
EDITABLE - has Set method
EDITLIMIT - has Set method
EMPTY

ERROR

FIELDPATH - has Get/Set methods
FORMAT - has Set method
IMMEDIATERETURN - has Set method
ISAUTOSELECT

JUSTIFICATION - has Get/Set methods

MANDATORY - has Set method
POPUPMENU - has Get/Set methods
SETLINK - has Set method
SELECTEDINDEX - has Set method
TABSTOP - has Set method

TEXT - has Set method

VIEWLINK - has Set method
Methods

GETLISTLINK

SETLISTLINK(ODE_eOBJECT)

CommErrorEvent

C# support for CommErrorEvent

Properties

HPSID

Constants

C# support for Constants

Properties

ACCEPT
ALL_FIRST_UPPER_CASE
ALT

ASYNC_EVENT

BITMAP
BOOLEAN_FORMAT
CANCEL

CENTER
CENTER_JUSTIFY
CHECKBOX
CHECKBOX_MENUITEM
COLUMN

COMBOBOX
COORDINATE_CHAR
COORDINATE_PIXEL
CTRL

DATE_FORMAT

DECIMAL_FORMAT

DEFAULT_BUTTONS
DEFAULT_CASE
DOUBLE_FORMAT
EDITFIELD

ELLIPSE

ERROR

FILEEDITOR
FIRST_UPPER_CASE
FLOAT_FORMAT
GROUPBOX

HOTSPOT
HORIZONTAL_AND_VERTICAL_LINES
HORIZONTAL_LINES
INFORMATION
IN_ERROR

INT_FORMAT
INTERFACE_EVENT
LABEL

LANDP_EVENT
LANDP_REQUEST_EVENT
LANDP_SYSTEM_EVENT
LEFT

LEFT_JUSTIFY

LISTBOX
LONGINT_FORMAT
LOWER_CASE

MENU

MENUITEM
MULTILINEEDIT
MULTIPLE_RANGE_SELECTION
NO

NO_LINES

oK

OK_BUTTON
OK_CANCEL

PANE

PASSWORDFIELD

PLAIN

PLAIN_MENUITEM

POPUPMENU
PROGRESSBAR
PUSHBUTTON
QUESTION
RADIOBUTTON
RADIOBUTTON_MENUITEM
RECTANGLE

RIGHT
RIGHT_JUSTIFY
ROLLBACK

SHIFT
SHORTINT_FORMAT
SINGLE_RANGE_SELECTION
SINGLE_SELECTION
STRING_FORMAT
SYSTEM_EVENT
TABBEDPANE
TABLE
TIME_FORMAT
UPPER_CASE
USER_EVENT
WARNING

WINDOW

YES

YES_NO
YES_NO_CANCEL
VERTICAL_LINES
VK_DELETE

VK_F1

VK_F2

VK_F3

VK_F4

VK_F5

VK_F6

VK_F7

VK_F8

VK_F9

VK_F10

VK_F11

VK_F12

VK_INSERT

ConverseEvent

C# support for ConverseEvent

Properties

HPSID

DataRequiredEvent

C# support for DateRequiredEvent

Properties
DATABASESIZE
HPSID

REFRESH
SETDATABASESIZE
SETREFRESH
SETTOPVIRTUALROW
SOURCE
TOPVIRTUALROW

TYPESTRING

DecimalFormat

C# support for DecimalFormat

Properties

CURRENCY - has Set method
DISPLAYMASK - has Set method
DISPLAYPICTURE - has Set method
EDITMASK - has Set method
MAXIMUMSET

MINIMUMSET

Methods
DECIMALTOSTRING(ODE_eOBJECT, ODE_eSTRING, ODE_eOBJECT)
DISPLAYSTRING(ODE_eOBJECT)
EDITSTRING(ODE_eOBJECT)
SETMAXIMUM(ODE_eOBJECT)

SETMINIMUM(ODE_eOBJECT)

STRINGTODECIMAL(ODE_eSTRING, ODE_eSTRING, ODE_eOBJECT)

Dimension

C# support for Dimension

Constructors

CONSTRUCTOR(ODE_eLONG, ODE_eLONG)
Properties

HEIGHT - has Set method

WIDTH - has Set method

DoubleClickEvent

C# support for DoubleClickEvent

Properties
COLUMN
COLUMNINDEX
HPSID
PHYSICALINDEX
SOURCE

VIRTUALINDEX

DoubleFormat

C# support for DoubleFormat

Properties

CURRENCY - has Set method
DISPLAYMASK - has Set method
DISPLAYPICTURE - has Set method
EDITMASK - has Set method
MAXIMUMSET

MINIMUMSET

Methods
DISPLAYSTRING(ODE_eOBJECT)
DOUBLETOSTRING(ODE_eOBJECT, ODE_eSTRING, ODE_eOBJECT)
EDITSTRING(ODE_eOBJECT)
SETMAXIMUM(ODE_eOBJECT)
SETMINIMUM(ODE_eOBJECT)

STRINGTODOUBLE(ODE_eSTRING, ODE_eSTRING, ODE_eOBJECT)

EditField

C# support for EditField

Inherits

GuiObject

Constructors

CONSTRUCTOR()
CONSTRUCTOR(ODE_eSTRING)
Events

CLICK(ODE_eOBJECT)
DOUBLECLICK(ODE_eOBJECT)
FIELDERROR(ODE_eOBJECT)
FIELDVALIDATION(ODE_eOBJECT)
FOCUSGAINED(ODE_eOBJECT)
FOCUSLOST(ODE_eOBJECT)
Properties

ALTERED - has Set method
AUTOSELECT - has Set method
AUTOTAB - has Set method
BORDER - has Set method
DATALINK - has Set method
EDITABLE - has Set method
EDITLIMIT

EMPTY

ENABLED - has Set method

ERROR

FORMAT - has Set method
IMMEDIATERETURN - has Set method
JUSTIFICATION - has Get/Set methods
MANDATORY - has Set method
POPUPMENU - has Get/Set methods
SETLINK - has Set method
TABSTOP - has Set method

TEXT - has Set method

Ellipse

C# support for Ellipse

Inherits

GuiObject
Constructors
CONSTRUCTOR()
Events
CLICK(ODE_eOBJECT)

DOUBLECLICK(ODE_eOBJECT)

EnterKeyEvent

C# support for EnterKeyEvent

Properties
ENTERKEY
HPSID

SOURCE

FieldErrorEvent

C# support for FieldErrorEvent

Properties

COLUMNINDEX

HPSID

PHYSICALINDEX

ROLLBACK - has Set method
SHOWMESSAGE - has Set method
SOURCE

VIRTUALINDEX

FieldValidationEvent

C# support for FieldValidationEvent

Properties

COLUMNINDEX

HPSID

PHYSICALINDEX

RESPONSE

SETRESPONSE

SHOWMESSAGE - has Set method

SOURCE

VIRTUALINDEX

FileEditor

C# support for FileEditor

Inherits

GuiObject

Constructors

CONSTRUCTOR()
CONSTRUCTOR(ODE_eSTRING)
Events

CLICK(ODE_eOBJECT)
DOUBLECLICK(ODE_eOBJECT)
FIELDERROR(ODE_eOBJECT)
FIELDVALIDATION(ODE_eOBJECT, ODE_eOBJECT)
FIELDVALIDATION(ODE_eOBJECT)
FOCUSGAINED(ODE_eOBJECT)
FOCUSLOST(ODE_eOBJECT)
Properties

ALTERED - has Set method
AUTOSELECT - has Set method
DATALINK - has Set method
EDITABLE - has Set method
EDITLIMIT - has Set method

EMPTY

ERROR

IMMEDIATERETURN - has Set method
INSERTBREAK - has Set method
INSERTTAB - has Set method
MANDATORY - has Set method
POPUPMENU - has Get/Set methods
TABSTOP - has Set method

TEXT - has Set method

WORDWRAP - has Set method

FloatFormat

C# support for FloatFormat

Properties

CURRENCY - has Set method
DISPLAYMASK - has Set method
DISPLAYPICTURE - has Set method
EDITMASK - has Set method
MAXIMUMSET

MINIMUMSET

Methods
DISPLAYSTRING(ODE_eOBJECT)
EDITSTRING(ODE_eOBJECT)
FLOATTOSTRING(ODE_eOBJECT, ODE_eSTRING, ODE_eOBJECT)
SETMAXIMUM(ODE_eOBJECT)
SETMINIMUM(ODE_eOBJECT)

STRINGTOFLOAT(ODE_eSTRING, ODE_eSTRING, ODE_eOBJECT)

FocusGainedEvent

C# support for FocusGainedEvent

Properties
HPSID

SOURCE

FocusLostEvent

C# support for FocusLostEvent

Properties
HPSID

SOURCE

Font

C# support for Font

Constructors

CONSTRUCTOR(ODE_eOBJECT)
CONSTRUCTOR(ODE_eSTRING, ODE_eLONG, ODE_eFLOAT)
Properties

BOLD

DISPLAYNAME

FONT

FONTNAMES

ITALIC

MODERN10

MODERN12

MODERNS

PLAIN

ROMAN10

ROMAN12

ROMAN14

ROMAN18

ROMAN24

ROMANS8

SIZE

STYLE

SWISS10

SWISS12

SWISS14

SWISS18

SWISS24

SWISS8

SYSTEMFONTS8
Methods
GETFONT(ODE_eOBJECT)
GETFONTNAMES(ODE_eOBJECT)
GETSIZE(ODE_eFLOAT)

GETSTYLE(ODE_eLONG)

Format

C# support for Format

Properties

DISPLAYMASK - has Set method
DISPLAYPICTURE - has Set method
EDITMASK - has Set method
Methods
DISPLAYSTRING(ODE_eOBJECT)

EDITSTRING(ODE_eOBJECT)

GroupBox

C# support for GroupBox

Inherits

GuiObject

Constructors

CONSTRUCTOR()
CONSTRUCTOR(ODE_eSTRING)
Properties

TEXT - has Set method

GuiObject

C# support for GuiObject

Properties

BACKGROUND - has Set method
ENABLED - has Is/Set methods
FOCUS - has Has method

FONT - has Get/Set methods
FOREGROUND - has Set method
HPSID - has Set method
LOCATION - has Set method
SHORTHELP - has Set method
SIZE - has Set method

TYPE

VISIBLE - has Is/Set methods
Methods

SETFOCUS()
SETSIZE(ODE_eLONG, ODE_eLONG)

SETLOCATION(ODE_eLONG, ODE_eLONG)

HeaderClickEvent

C# support for HeaderClickEvent

Properties

COLUMN

COLUMNINDEX

HPSID

SORTINGORDER - has Set method

SOURCE

USEDEFAULTSORTING - has Set method

InitializeEvent

C# support for InitializeEvent

Properties

HPSID

IntFormat

C# support for IntFormat

Properties

CURRENCY - has Set method
DISPLAYMASK - has Set method
DISPLAYPICTURE - has Set method
EDITMASK - has Set method
MAXIMUMSET

MINIMUMSET

Methods
DISPLAYSTRING(ODE_eOBJECT)
EDITSTRING(ODE_eOBJECT)
INTTOSTRING(ODE_eOBJECT, ODE_eSTRING, ODE_eOBJECT)
SETMAXIMUM(ODE_eOBJECT)
SETMINIMUM(ODE_eOBJECT)

STRINGTOINT(ODE_eSTRING, ODE_eSTRING, ODE_eOBJECT)

IWindow

C# support for IWindow

Events

CLOSE(ODE_eOBJECT)
CONVERSE(ODE_eOBJECT)
ENTERKEY(ODE_eOBJECT)
INITIALIZE(ODE_eOBJECT)
TERMINATE(ODE_eOBJECT)
WINDOWERROR(ODE_eOBJECT)
WINDOWVALIDATION(ODE_eOBJECT)
Properties

ALTERED - has Is/Set methods

CLIENTSIZE

CLIENTSIZESET - has Is method
DEFAULTBUTTON
FINDFOCUSEDGUIOBJECT
FOCUSEDGUIOBJECT

FOCUSOWNER - has Get method
HELPTOPIC - has Get method

MAXIMIZABLE - has Is/Set methods
MENUBAR

MINIMIZABLE - has Is/Set methods
POPUPMENU - has Get/Set methods
RESIZABLE - has Is/Set methods

TEXT - has Set method

TITLE - has Set method

Methods

ADDCHILD(ODE_eOBJECT)
CLEARALTERED()

CLEARSELECTION()
CLEARWINDOWCHANGES()
GETABFMENUBAR()
GETDEFAULTPUSHBUTTON()
GETSCALEDCLIENTSIZE()

PRINTFRAME()
SETABFMENUBAR(ODE_eOBJECT)
SETDEFAULTPUSHBUTTON(ODE_eOBJECT)
SETSCALEDCLIENTSIZE(ODE_eOBJECT)
SHOWMESSAGEBOX(ODE_eSTRING, ODE_eSTRING, ODE_eLONG, ODE_eLONG)
SHOWMESSAGEBOX(ODE_eSTRING, ODE_eLONG)
TERMINATE()

UPDATEDISPLAY()

Label

C# support for Label

GuiObject
Constructors
CONSTRUCTOR()
Events

CLICK(ODE_eOBJECT)

DOUBLECLICK(ODE_eOBJECT)

Properties

HORIZONTALTEXTPOSITION - has Set method
IMAGE - has Set method

JUSTIFICATION - has Get/Set methods
MNEMONIC - has Set method
MNEMONICKEYCODE - has Set method
POPUPMENU - has Get/Set methods

TEXT - has Set method
VERTICALJUSTIFICATION - has Get/Set method
Methods

SETAUTOSIZE(ODE_eBOOL)

SETVERTICALTEXTPOSITION(ODE_eLONG)

ListBox

C# support for ListBox

Inherits

GuiObject

Constructors

CONSTRUCTOR()
CONSTRUCTOR(ODE_eSTRING)
Events

CLICK(ODE_eOBJECT)
DOUBLECLICK(ODE_eOBJECT)
FIELDERROR(ODE_eOBJECT)
FOCUSGAINED(ODE_eOBJECT)
FOCUSLOST(ODE_eOBJECT)
Properties

ALTERED

EDITABLE - has Set method
EMPTY

ERROR

FIELDPATH - has Get/Set methods
FORMAT - has Set method
IMMEDIATERETURN - has Set method
ISAUTOSELECT

JUSTIFICATION - has Get/Set methods

MANDATORY - has Set method

NEXTSELECTEDINDEX - has Get method
POPUPMENU - has Set method
SELECTEDINDEX - has Set method
SELECTIONMODE - has Set method
TABSTOP - has Set method

VIEWLINK - has Set method

Methods

CLEARSELECTION()
GETFIELDPATHSTRING()
GETNEXTSELECTEDINDEX(ODE_eLONG)
NEXTSELECTEDINDEX(ODE_eLONG)
RESETSELECTEDINDEX(ODE_eLONG)
RESETSELECTIONINTERVAL(ODE_eLONG, ODE_eLONG)
SETAUTOSELECT(ODE_eBOOL)
SETFIELDPATHSTRING(ODE_eSTRING)

SETSELECTIONINTERVAL(ODE_eLONG, ODE_eLONG)

LonglIntFormat

C# support for LongIntFormat

Properties

CURRENCY - has Set method

DISPLAYMASK - has Set method

DISPLAYPICTURE - has Set method

EDITMASK - has Set method

MAXIMUMSET

MINIMUMSET

Methods

DISPLAYSTRING(ODE_eOBJECT)

EDITSTRING(ODE_eOBJECT)

LONGINTTOSTRING(ODE_eOBJECT, ODE_eSTRING, ODE_eOBJECT)
SETMAXIMUM(ODE_eOBJECT)

SETMINIMUM(ODE_eOBJECT)

STRINGTOLONGINT(ODE_eSTRING, ODE_eSTRING, ODE_eOBJECT)

Menu

C# support for Menu

Inherits

GuiObject

Constructors
CONSTRUCTOR(ODE_eSTRING)
CONSTRUCTOR()

Events

CLICK(ODE_eOBJECT)

Properties

ACCELERATOR - has Set method
CHECKED - has Is/Set methods
CHECKMANDATORYFIELDS - has Set method
COUNT

IGNOREVALIDATION - has Set method
MNEMONIC - has Set method
MNEMONICKEYCODE - has Set method
SELECTED - has Is/Set methods
STYLE - has Set method

TEXT - has Get/Set methods
VALIDATION - has Set method
Methods

ADD(ODE_eOBJECT)
ADDSEPARATOR()
GETITEM(ODE_eLONG)

GETITEMCOUNT

MenuBar

C# support for MenuBar

Inherits

GuiObject

Constructors
CONSTRUCTOR()

Properties

MENUCOUNT - has Get method
Methods

ADD(ODE_eOBJECT)

GETMENU(ODE_eLONG)

Menultem

C# support for Menultem

Inherits

GuiObject

Constructors
CONSTRUCTOR(ODE_eSTRING)
CONSTRUCTOR()

Events

CLICK(ODE_eOBJECT)

Properties

ACCELERATOR - has Set method
CHECKED - has Is/Set methods
CHECKMANDATORYFIELDS - has Set method
COUNT

IGNOREVALIDATION - has Set method
MNEMONIC - has Set method
MNEMONICKEYCODE - has Set method
SELECTED - has Is/Set methods
STYLE - has Set method

TEXT - has Get/Set methods
VALIDATION - has Set method
Methods

ADD(ODE_eOBJECT)
ADDSEPARATOR()
GETITEM(ODE_eLONG)

GETITEMCOUNT

MessageBox

C# support for MessageBox

Constructors

CONSTRUCTOR()

CONSTRUCTOR(ODE_eOBJECT, ODE_eSTRING, ODE_eSTRING, ODE_eLONG, ODE_eLONG)
Properties

ARGUMENT1 - has Set method

ARGUMENT2 - has Set method

ARGUMENTS3 - has Set method

BUTTONTYPE - has Set method

LOCALE

MESSAGE - has Set method
MESSAGETYPE - has Set method
PARENT

TITLE - has Set method

Methods
SETABFLOCALE(ODE_eOBJECT)
SETABFPARENT(ODE_eOBJECT)

SHOW()

MultiLineEdit

C# support for MultiLineEdit

Inherits

GuiObject

Constructors

CONSTRUCTOR()
CONSTRUCTOR(ODE_eSTRING)
Events

CLICK(ODE_eOBJECT)
DOUBLECLICK(ODE_eOBJECT)
FIELDERROR(ODE_eOBJECT)
FIELDVALIDATION(ODE_eOBJECT, ODE_eOBJECT)
FIELDVALIDATION(ODE_eOBJECT)
FOCUSGAINED(ODE_eOBJECT)
FOCUSLOST(ODE_eOBJECT)
Properties

ALTERED - has Set method
AUTOSELECT - has Set method
DATALINK - has Set method
EDITABLE - has Set method
EDITLIMIT - has Set method

EMPTY

ERROR

IMMEDIATERETURN - has Set method
INSERTBREAK - has Set method
INSERTTAB - has Set method
MANDATORY - has Set method
POPUPMENU - has Set method

TABSTOP - has Get/Set methods

TEXT - has Set method

NodeEvent

C# support for NodeEvent

Properties
HPSID
TREENODE

SOURCE

PageSelectEvent

C# support for PageSelectEvent

Properties
HPSID
SELECTEDPAGEINDEX

SOURCE

Pane

C# support for Pane

Inherits

GuiObject

Constructors

CONSTRUCTOR()

Events

CLICK(ODE_eOBJECT)
DOUBLECLICK(ODE_eOBJECT)
FOCUSGAINED(ODE_eOBJECT)
FOCUSLOST(ODE_eOBJECT)
Properties

BORDERSTYLE - has Set method
LOWERED_BEVEL
NO_BORDER

OPAQUE - has Set method
POPUPMENU - has Set method
RAISED_BEVEL

TABSTOP - has Set method

Methods

ADD(ODE_eOBJECT)

PasswordField

C# support for PasswordField

Inherits

EditField

GuiObject

Constructors

CONSTRUCTOR()
CONSTRUCTOR(ODE_eSTRING)
Events

CLICK(ODE_eOBJECT)
DOUBLECLICK(ODE_eOBJECT)
FIELDERROR(ODE_eOBJECT)
FIELDVALIDATION(ODE_eOBJECT)
FOCUSGAINED(ODE_eOBJECT)
FOCUSLOST(ODE_eOBJECT)
Properties

ALTERED - has Set method
AUTOSELECT - has Set method
AUTOTAB - has Set method
BORDER - has Set method
DATALINK - has Set method
EDITABLE - has Set method
EDITLIMIT - has Set method

EMPTY

ENABLED - has Set method
ENABLED - has Set method

ERROR

FORMAT - has Set method
IMMEDIATERETURN - has Set method
JUSTIFICATION - has Get/Set methods
MANDATORY - has Set method
POPUPMENU - has Get/Set methods
SETLINK - has Set method
TABSTOP - has Set method

TEXT - has Set method

Point

C# support for Point

Constructors

CONSTRUCTOR(ODE_eLONG, ODE_eLONG)
Properties

X - has Set method

Y - has Set method

PopupMenu

C# support for PopupMenu

Inherits

GuiObject
Constructors
CONSTRUCTOR()
Methods
ADD(ODE_eOBJECT)

ADDSEPARATOR()

PushButton

C# support for PushButton

Inherits

GuiObject

Constructors

CONSTRUCTOR()
CONSTRUCTOR(ODE_eSTRING)

Events

CLICK(ODE_eOBJECT)
FOCUSGAINED(ODE_eOBJECT)
FOCUSLOST(ODE_eOBJECT)

Properties

CHECKMANDATORYFIELDS - has Set method
HORIZONTALTEXTPOSITION - has Set method
IGNOREVALIDATION - has Set method

IMAGE - has Set method

MNEMONIC - has Set method

MNEMONICKEYCODE - has Set method

POPUPMENU - has Set method
PRESSED

SETTABSTOP

TEXT - has Set method
VALIDATION - has Set method
VERTICALTEXTPOSITION
Methods

SETVERTICALTEXTTOIMAGEPOSITION(ODE_eLONG)

RadioButton

C# support for RadioButton

Inherits

GuiObject

Constructors

CONSTRUCTOR()
CONSTRUCTOR(ODE_eSTRING)
Events

CLICK(ODE_eOBJECT)
DOUBLECLICK(ODE_eOBJECT)
FIELDERROR(ODE_eOBJECT)
FOCUSGAINED(ODE_eOBJECT)
FOCUSLOST(ODE_eOBJECT)
Properties

ALTERED - has Set method
DATALINK - has Set method
EDITABLE - has Set method
EMPTY

ERROR

IMMEDIATERETURN - has Set method
MANDATORY - has Set method
MNEMONIC - has Set method
MNEMONICKEYCODE - has Set method
POPUPMENU - has Set method
SELECTED - has Set method
TABSTOP - has Set method

TEXT - has Set method

Rectangle

C# support for Rectangle

Inherits

GuiObject
Constructors
CONSTRUCTOR()
Events
CLICK(ODE_eOBJECT)

DOUBLECLICK(ODE_eOBJECT)

RowFocusGainedEvent

C# support for RowFocusGainedEvent

Properties
HPSID
PHYSICALINDEX
SOURCE

VIRTUALINDEX

RowFocusLostEvent

C# support for RowFocusLostEvent

Properties
HPSID
PHYSICALINDEX
SOURCE

VIRTUALINDEX

Rule

C# support for Rule

Events

ACTIVATE(ODE_eOBJECT)
CHILDRULEEND(ODE_eOBJECT)
COMMERROR(ODE_eOBJECT)
CONVERSE(ODE_eOBJECT)
INITIALIZE(ODE_eOBJECT)
PARENTRULEEND(ODE_eOBJECT)

POST(ODE_eOBJECT)

RULEEND(ODE_eOBJECT)

SQLERROR(ODE_eOBJECT)

TERMINATE(ODE_eOBJECT)

Properties

ACTIVEWINDOW

CALLINGRULE - has Get method

IMPNAME - has Get method

INSTANCE

LONGNAME - has Get method

SHORTNAME - has Get method

WINDOW - has Get method

Methods

GETIMPNAME()

GETINSTANCENAME()

GETTARGETWINDOW()

FINDGUIOBJECT(ODE_eSTRING)
FINDGUIOBJECT(ODE_eSTRING, ODE_eLONG)
POSTTO(ODE_eOBJECT, ODE_eSTRING)
POSTTO(ODE_eOBJECT, ODE_eSTRING, ODE_eOBJECT)
POSTTO(ODE_eOBJECT, ODE_eSTRING, ODE_eOBJECT, ODE_eSTRING)
POSTTOCHILD(ODE_eSTRING, ODE_eSTRING)
POSTTOCHILD(ODE_eSTRING, ODE_eSTRING, ODE_eOBJECT)
POSTTOCHILD(ODE_eSTRING, ODE_eSTRING, ODE_eOBJECT, ODE_eSTRING)
POSTTOPARENT(ODE_eSTRING, ODE_eOBJECT)
POSTTOPARENT(ODE_eSTRING)
POSTTOPARENT(ODE_eSTRING, ODE_eOBJECT, ODE_eSTRING)
QUERYUSERAUTHENTICATION()
SETHELPFILE(ODE_eSTRING)
SETUSERAUTHENTICATION(ODE_eSTRING, ODE_eSTRING)
SHOWHELPTOPIC(ODE_eSTRING)

TERMINATE()

TRACE(ODE_eSTRING)

Set

C# support for Set

Methods
ADDSETITEM(ODE_eSTRING, ODE_eDECIMALRef, ODE_eLONG)

ADDSETITEM(ODE_eSTRING, ODE_eINTRef, ODE_eLONG)

ADDSETITEM(ODE_eSTRING, ODE_eSTRINGRef, ODE_eSTRING, ODE_eLONG)
ADDSETITEM(ODE_eSTRING, ODE_eDECIMALRef, ODE_eSTRING, ODE_eLONG)
ADDSETITEM(ODE_eSTRING, ODE_eINTRef, ODE_eSTRING, ODE_eLONG)
ADDSETITEM(ODE_eSTRING, ODE_eSTRINGRef)
ADDSETITEM(ODE_eOBJECT)

ADDSETITEM(ODE_eSTRING, ODE_eINTRef)

ADDSETITEM(ODE_eSTRING, ODE_eSTRINGRef, ODE_eLONG)
ADDSETITEM(ODE_eSTRING, ODE_eDECIMALRef)
GETSETITEM(ODE_eDECIMALRef)

GETSETITEM(ODE_eINTRef)

GETSETITEM(ODE_eSTRINGREef)

GETSETITEMFROMDISPLAY(ODE_eSTRING)

REFRESH()

Setltem

C# support for Setltem

Constructors

CONSTRUCTOR(ODE_eSTRING, ODE_eSTRINGRef, ODE_eLONG)
CONSTRUCTOR(ODE_eSTRING, ODE_eDECIMALRef, ODE_eSTRING, ODE_eLONG)
CONSTRUCTOR(ODE_eSTRING, ODE_eDECIMALRef, ODE_eLONG)
CONSTRUCTOR(ODE_eSTRING, ODE_eINTRef, ODE_eLONG)
CONSTRUCTOR(ODE_eSTRING, ODE_eINTRef, ODE_eSTRING, ODE_eLONG)
CONSTRUCTOR(ODE_eSTRING, ODE_eINTRef)

CONSTRUCTOR(ODE_eSTRING, ODE_eSTRINGRef)
CONSTRUCTOR(ODE_eSTRING, ODE_eSTRINGRef, ODE_eSTRING, ODE_eLONG)
CONSTRUCTOR(ODE_eSTRING, ODE_eDECIMALRef)

Properties

DISABLED

ENABLED

GETDISPLAY

GETENCODING

GETTEXT

NONSELECTABLE

STATE - has Set method

ShortIntFormat

C# support for ShortIntFormat

Properties

CURRENCY - has Set method
DISPLAYMASK - has Set method
DISPLAYPICTURE - has Set method
EDITMASK - has Set method
MAXIMUMSET

MINIMUMSET

Methods
DISPLAYSTRING(ODE_eOBJECT)
EDITSTRING(ODE_eOBJECT)
SETMAXIMUM(ODE_eOBJECT)
SETMINIMUM(ODE_eOBJECT)
SHORTTOSTRING(ODE_eOBJECT, ODE_eSTRING, ODE_eOBJECT)

STRINGTOSHORT(ODE_eSTRING, ODE_eSTRING, ODE_eOBJECT)

TabControl

C# support for TabControl

Inherits

GuiObject

Constructors

CONSTRUCTOR()
CONSTRUCTOR(ODE_eSTRING)
Events
TABPAGEDeselected(ODE_eOBJECT)
TABPAGESelected(ODE_eOBJECT)
Properties

BACKGROUND - has Set method
COUNT

FONT - has Set method
FOREGROUND - has Set method
MULTIPLEROWS - has Set method
ORIENTATION - has Set method
SELECTEDTAB

SELECTEDINDEX

SIZE - has Set method

TABSTOP - has Set method
VISIBLE - has Set method

Methods

ADDPAGE(ODE_eOBJECT)
GETPAGE(ODE_eLONG)
INSERTPAGE(ODE_eLONG, ODE_eOBJECT)
REMOVE(ODE_eOBJECT)
REMOVEAT(ODE_eLONG)

SETENABLEDPAGE(ODE_eLONG, ODE_eBOOL)

Table

C# support for Table

Inherits

GuiObject

Constructors

CONSTRUCTOR()
CONSTRUCTOR(ODE_eSTRING)
Events

CELLCLICK (ODE_eOBJECT)
CELLDOUBLECLICK (ODE_eOBJECT)
CELLFOCUSGAINED(ODE_eOBJECT)
CELLFOCUSLOST(ODE_eOBJECT)
CLICK(ODE_eOBJECT)
DATAREQUIRED(ODE_eOBJECT)
ENTERKEYPRESSED(ODE_eOBJECT)
FIELDERROR(ODE_eOBJECT)
FIELDVALIDATION(ODE_eOBJECT)
HEADERCLICK(ODE_eOBJECT)
ROWFOCUSGAINED(ODE_eOBJECT)
ROWFOCUSLOST(ODE_eOBJECT)
Properties

ALTERED - has Set method
AUTOSELECT - has Set method
BACKBUFFER - has Get/Set methods
BACKGRNDCOLOR

BORDER

BORDERSTYLE - has Set method
DATABASESIZE - has Get method
CURRENTCOLUMN

CURRENTROW

EDITABLE - has Set method

ELEVATORPOSITION - has Get method
EMPTY

ERROR

FIRSTVISIBLEROW - has Get/Set methods
FOREGRNDCOLOR

JUSTIFICATION - has Get/Set methods
HEADERBACKGROUND - has Get/Set methods
HEADERFONT - has Get/Set method
HEADERFOREGROUND - has Get/Set methods
HEADERHEIGHT

IMMEDIATERETURN - has Set method
ISAUTOSELECT

ISROWSELECT

LASTVISIBLEROW - has Set method

LINES - has Get/Set methods

MANDATORY - has Set method
NEXTSELECTEDINDEX
NUMBERINGCOLUMN - has Has/Set methods
POPUPMENU - has Set method

ROWHEIGHT

ROWSELECT - has Is/Set methods
SCROLLABLEOCCURS

SCROLLLOCK - has Is/Set method
SCROLLBARS - has Set method
SELECTEDINDEX - has Set method
SELECTEDROWCOUNT - has Get method
SELECTIONMODE - has Get/Set methods
TABSTOP - has Set method

VIEWLINK - has Get/Set methods
VISIBLEOCCURS

Methods

ADDCOLUMN(ODE_eOBJECT)
CLEARSELECTION()
CONVERTTOPHYSICAL(ODE_eLONG)
DISABLETOPANDBOTTOMEVENTS(ODE_eBOOL)
GETCOLUMN(ODE_eLONG)
GETFIRSTVISIBLEOCCURRENCE
GETLASTVISIBLEOCCURRENCE

GETLISTLINK

GETNEXTSELECTEDPHYSICALINDEX
GETNEXTSELECTEDINDEX()
GETNEXTSELECTEDINDEX(ODE_eLONG)

GETOCCURS

GETSCALEDHEADERHEIGHT

GETSCALEDROWHEIGHT
GETSELECTEDPHYSICALINDEX
GETSELECTEDVIRTUALINDEX

GETVISIBLEROWS

NEXTSELECTEDINDEX(ODE_eLONG)
RESETSELECTEDINDEX(ODE_eLONG)
RESETSELECTIONINTERVAL(ODE_eLONG, ODE_eLONG)
SETLISTLINK(ODE_eOBJECT)
SETMOREDATA(ODE_eBOOL)
SETMOREROWS(ODE_eLONG, ODE_eBOOL)
SETNUMBERINGCOLUMN(ODE_eBOOL)
SETSELECTIONINTERVAL(ODE_eLONG, ODE_eLONG)
SETSCALEDHEADERHEIGHT(ODE_eLONG)
SETSCALEDROWHEIGHT(ODE_eLONG)

SETVIRTUALLISTBOXSIZE(ODE_eLONG, ODE_eLONG)

TabPage

C# support for TabPage

Inherits

GuiObject

Constructors

CONSTRUCTOR()
CONSTRUCTOR(ODE_eSTRING)
Properties

DISABLEDIMAGE - has Set method
IMAGE - has Set method

TITLE - has Set method

Methods
ADDCHILD(ODE_eOBJECT)

ADDIMAGE(ODE_eSTRING)

TerminateEvent

C# support for TerminateEvent

Properties

HPSID

Timer

C# support for Timer

Constructors
CONSTRUCTOR(ODE_eOBJECT)
Events
TIMER(ODE_eOBJECT)
Properties

DELAY - has Set method
ENABLED - has Set method
HPSID - has Set method
REPEATS - has Set method
RUNNING

Properties

START()

STOP()

TimerEvent

C# support for TimerEvent

Properties
HPSID

SOURCE

TreeView

C# support for TreeView

Inherits

GuiObject

Constructors

CONSTRUCTOR()
CONSTRUCTOR(ODE_eOBJECT)
Events
NODECLICK(ODE_eOBJECT)

NODEDOUBLECLICK(ODE_eOBJECT)

BEFORELABELEDIT(ODE_eOBJECT)
AFTERLABELEDIT(ODE_eOBJECT)
BEFORENODESELECT(ODE_eOBJECT)
AFTERNODESELECT(ODE_eOBJECT)
BEFORENODEEXPAND(ODE_eOBJECT)
AFTERNODEEXPAND(ODE_eOBJECT)
BEFORENODECOLLAPSE(ODE_eOBJECT)
AFTERNODECOLLAPSE(ODE_eOBJECT)
Properties

LABELEDIT - has Get/Set methods
IMAGEINDEX - has Get/Set methods
POPUPMENU - has Set methods
SELECTEDIMAGEINDEX - has Get/Set methods
SELECTEDNODE - has Get/Set methods
TEXT - has Get/Set method

Methods

ADD(ODE_eOBJECT)
ADDBMPTOIMAGELIST(ODE_eSTRING)
CLEAR()

COLLAPSE()

COLLAPSEALL()

COUNT()

EXPAND()

EXPANDALL()

FIND(ODE_eSTRING)
INSERT(ODE_eLONG, ODE_eOBJECT)

REMOVE(ODE_eSTRING)

TreeNode

C# support for TreeNode
Constructors

CONSTRUCTOR()
CONSTRUCTOR(ODE_eOBJECT)
Properties

BACKGROUND - has Set method
HPSID - has Set method
FOREGROUND - has Set method
FONT - has Get/Set method

LABELEDIT - has Get/Set methods

IMAGEINDEX - has Get/Set methods
POPUPMENU - has Set methods
SELECTEDIMAGEINDEX - has Get/Set methods
TEXT - has Get/Set method

Methods

ADD(ODE_eOBJECT)

CLEAR()

COLLAPSE()

COUNT()

EXPAND()

EXPANDALL()

FIND(ODE_eSTRING)
INSERT(ODE_eLONG, ODE_eOBJECT)

REMOVE(ODE_eSTRING)

Window

C# support for Window

Events

CLOSE(ODE_eOBJECT)
CONVERSE(ODE_eOBJECT)
ENTERKEY(ODE_eOBJECT)
INITIALIZE(ODE_eOBJECT)
TERMINATE(ODE_eOBJECT)
WINDOWERROR(ODE_eOBJECT)
WINDOWVALIDATION(ODE_eOBJECT)
Properties

ALTERED - has Is/Set methods
CLIENTSIZE

CLIENTSIZESET - has Is method
DEFAULTBUTTON
FINDFOCUSEDGUIOBJECT
FOCUSEDGUIOBJECT
FOCUSOWNER - has Get method
GETABFMENUBAR
GETDEFAULTPUSHBUTTON
GETSCALEDCLIENTSIZE
HELPTOPIC - has Get method

MAXIMIZABLE - has Is/Set method

MENUBAR

MINIMIZABLE - has Is/Set methods

POPUPMENU - has Get/Set methods

RESIZABLE - has Is/Set methods

TEXT - has Set method

TITLE - has Set method

Methods

ADDCHILD(ODE_eOBJECT)

CLEARALTERED()

CLEARSELECTION()

CLEARWINDOWCHANGES()

PRINTFRAME()

SETABFMENUBAR(ODE_eOBJECT)
SETDEFAULTPUSHBUTTON(ODE_eOBJECT)
SETSCALEDCLIENTSIZE(ODE_eOBJECT)
SHOWMESSAGEBOX(ODE_eSTRING, ODE_eSTRING, ODE_eLONG, ODE_eLONG)
SHOWMESSAGEBOX(ODE_eSTRING, ODE_eLONG)
TERMINATE()

UPDATEDISPLAY()

WindowValidationEvent

C# support for WindowValidationEvent

Properties

ACCEPT
FIELDERROR

HPSID
MANDATORYERROR
SETACCEPT
SETSHOWMESSAGE
SHOWMESSAGE

SOURCE

Sample Code

The sample in this section demonstrates ObjectSpeak for user interface object CheckBox. You can also use the zip file from
{Install_DirectoryNSAMPLES\Java to import it into the Repository.

Check Box Sample

K S e m e m o m o m—m =

<*

> Sanple rule to denonstrate Object Speak for GU control: Check Box <

>

dcl

aBool bool ean;

aChar char (5);

bool eanChar proc (aBool ean bool ean): char(5);

traceGui Obj ect proc (aGui Object object type CGui Object);
traceoj ect proc (anOhject object type CheckBox);
clickedObj ect object type CheckBox;

def i nePopupMenu proc;

aPopupMenu obj ect type PopupMenu;

aMenul t em obj ect type Menultem

Menud ick proc for dick object aMenultem

(e object type dickEvent);

aCheckBox obj ect type CheckBox;

checkBoxd ick proc for dick type CheckBox

(e object type dickEvent);

checkBoxFocusGai ned proc for FocusGai ned type CheckBox
(e object type FocusGai nedEvent);

checkBoxFocusLost proc for FocusLost type CheckBox

(e object type FocusLostEvent);

enddcl

/1 Initialize the w ndow

proc for Initialize object SAMPLE CHECKBOX

(e object type InitializeEvent)

/1 define a popup nmenu

def i nePopupMenu()

STATI C_TB. set PopupMenu(aPopupMenu)

/'l instantiate the object

map new CheckBox

t o aCheckBox

/1 set the properties using the methods provided
aCheckBox. set Al tered(fal se)

aCheckBox. set Backgr ound(new Col or (212, 208, 200))
aCheckBox. set Dat aLi nk(SAMPLE_CHECKBOX_FLD2 of SAMPLE_CHECKBOX W
aCheckBox. set Enabl ed(true)

aCheckBox. set Font (Font . Swi ss10)

aCheckBox. set For egr ound(Col or . Bl ack)

aCheckBox. set Hpsl D(" DYNAM C_TB")

aCheckBox. set | medi at eRet urn(f al se)

aCheckBox. set Locat i on(30, 50)

aCheckBox. set PopupMenu(aPopupMenu)

aCheckBox. set Sel ect ed(fal se)

aCheckBox. set Short Hel p(' Dynami ¢ CheckBox |inked to a boolean field'

aCheckBox. set Si ze(250, 16)

aCheckBox. set TabSt op(true)

aCheckBox. set Text (" Dynam ¢ CheckBox")

aCheckBox. set Text (" abcdef ghi j kIl mopqr st uvwxyz")

/| aCheckBox. aCheckBox. set Mnenonic(' D) // or
aCheckBox. set Mhenoni cKeycode(30)

aCheckBox. set Vi si bl e(true)

aCheckBox. set Focus()

/1 define the listener for the object

handl er aCheckBox(checkBoxC i ck)

handl er aCheckBox(checkBoxFocusGai ned)

handl er aCheckBox(checkBoxFocusLost)

/1 add the object to the w ndow

SAMPLE_CHECKBOX. addChi | d(aCheckBox)

endpr oc

/'l process the click event for this type of object
proc checkBoxdick for Click type CheckBox

(e object type dickEvent)

map thisRul e. fi ndGui Obj ect (e. Hpsl D)

to clickedObject

IR 1o =] e R T ")
trace(' Message: checkBox ' ++e. Hpsl D++' has been clicked')
trace(' Here are the objects properties:-')
traceQui Obj ect (e. Sour ce)

<*

tracej ect (clickedObject)

endpr oc

/'l process the FocusGai ned event for this type of object
proc checkBoxFocusGai ned for FocusGai ned type CheckBox
(e object type FocusGai nedEvent)

map thisRule.findGQui Object(e. Hpsl D)

to clickedObject

=T =Y (e

trace(' Message: checkBox ' ++e. Hpsl D++' has focus gai ned')
trace(' Here are the objects properties:-")

traceGui Obj ect (e. Source)

tracej ect (clickedObject)

endpr oc

/1 process the FocusLost event for this type of object
proc checkBoxFocusLost for FocusLost type CheckBox

(e object type FocusLostEvent)

map thisRule.findGQui Object(e. Hpsl D)

to clickedObject

==Y (R

trace(' Message: checkBox ' ++e. Hpsl D++' has focus lost')
trace(' Here are the objects properties:-")
traceQui Obj ect (e. Source)

traceQoj ect (clickedoj ect)

endpr oc

/'l process the popup nenu

proc Menudick for Cick object aMenultem
(e object type dickEvent)

endpr oc

/'l process the cl ose event

proc for Cl ose object SAMPLE_CHECKBOX

(e object type O oseEvent)
SAMPLE_CHECKBOX. Ter ni nat e

endpr oc

/1 Terminate the w ndow

proc for Term nate obj ect SAMPLE_ CHECKBOX
(e object type Term nateEvent)

endpr oc

/] trace the properties of the Gui Object

proc traceCGui Obj ect (aCui Cbj ect object type Gui Object)
trace(' Altered :'++ bool eanChar (aGui Object.Altered()))
endpr oc

Il trace the properties of the object

proc traceObject (anCbj ect object type CheckBox)
trace(' Background :'

++ char (anObj ect . Background().getRed()) ++ ',°'

++ char (anObj ect . Background().getGeen()) ++ ','

++ char (anObj ect . Background() . get Bl ue()))

trace(' Enabled :'

++ bool eanChar (anObj ect . Enabl ed()))

trace(' Font :'

++ anObj ect . Font () . di spl ayNane())

trace(' Foreground :'

++ char (anObj ect . Foreground().getRed()) ++ ',°'

++ char (anObj ect. Foreground().getGeen()) ++ ','

++ char (anObj ect . Foreground() . get Bl ue()))

trace(' HpsID :'

++ anObj ect. Hpsl D())
trace(' | mmedi ateReturn :
++ bool eanChar (anObj ect . | medi at eReturn()))

trace(' Location :'

++ char (anObj ect. Location().X()) ++ ','

++ char (anQbj ect. Location().Y()))

I/ trace(' Mienonic :'++ anObject. Menonic())

I/ trace(' Mienonic :'++ char(anQbject. Menoni cKeycode()))
trace(' Selected :'

++ bool eanChar (anObj ect . Sel ected()))

trace(' ShortHelp :'

++ anObj ect. shortHel p())

trace(' Size :'

++ char (anObj ect. Si ze(). Wdth()) ++ ',°'
++ char (anObj ect. Si ze(). Hei ght()))
trace(' TabStop :'

++ bool eanChar (anObj ect. TabSt op()))
trace(' Text :'

++ anObj ect. Text())

trace(' Visible :'

++ bool eanChar (anObj ect. Visible()))
trace(' Focus :'

++ bool eanChar (anObj ect . hasFocus()))
caseof (anQbject. HpslD())

case ' STATIC TB

map anObj ect . dat aLi nk()

to aChar

case ' DYNAM C_TB'

map anObj ect . dat aLi nk()

t o aBool

map bool eanChar (aBool)

to aChar

endcase

trace(' Linked Data :'++ aChar)
endpr oc

/'l Convert a boolean into character
proc bool eanChar (aBool ean bool ean): char (5)
i f aBool ean

proc return(' True')

el se

proc return(' Fal se')

endi f

endpr oc

/1 define a popup nenu

proc defi nePopupMenu

map new PopupMenu

to aPopupMenu

map new Menul tem

to aMenultem

aMenul t em set Hpsl D(" SAMPLE_M ")
aMenul t em set Text (" Sanpl e Popup nenu")
aMenul t em set Mnenoni c(' P')

Handl er aMenul t em(Menud i ck)
aPopupMenu. add(aMenul t em)

endpr oc

	ObjectSpeak Reference Guide
	Introduction to ObjectSpeak
	User-Interface Objects
	Comprehensive List of Objects
	Abstract Class Objects
	Basic Control Objects
	Dynamic-Only Control Objects
	Supporting Objects

	Java Batch Objects
	Events
	Data Validation
	ObjectSpeak Events

	User-Interface Properties
	Java Support Matrix
	Supported Methods for Java Classes
	Supported Methods in CSharp
	Sample Code

